FINGERPRINT DE VARIEADES ELITES DE MANDIOCA VIA MARCADORES ISSR

Carolina Macedo Miranda¹, Kátia Pestana Nogueira², Iane dos Santos Queiroz³, Paulo Henrique da silva⁴, Carlos Alberto da Silva Ledo⁵, Cláudia Fortes Ferreira⁶

¹Estudante de graduação da Universidade Federal do Recôncavo da Bahia, Rua Ruy Barbosa, 710, Centro, 44380-000 Cruz Almas, BA, E-mail: ¹lol_fsa@hotmail.com, ²katypestana@yahoo.com.br, ³q.iane@hotmail.com, ⁴pphsilvaufrb@gmail.com, ⁵carlos.ledo@embrapa.br, ⁶claudia.ferreira@embrapa.br

Temática: Melhoramento genético e biotecnologia

Resumo

A crescente demanda por mudas de mandioca por produtores e melhoristas de todo o mundo, faz com que o *fingerprinting* de variedades elite se torne obrigatório dentro do programa de melhoramento de mandioca. A técnica do DNA fingerprint permite a identificação correta dos materiais, assegurando assim, os direitos dos melhoristas em casos, por exemplo, de contestação de idoneidade. O presente trabalho teve-se como objetivo criar uma base de dados de *fingerprint* de 21 variedades elite de mandioca pertencentes ao Banco de Germoplasma (BAG)-Mandioca da Embrapa Mandioca e Fruticultura, assim como também otimizar o equipamento *Fragment Analyzer Automated CE System*, de forma a acelerar o processo de obtenção dos mesmos. Devido a mandioca se propagar vegetativamente, essa atividade se torna ainda mais importante em se tratando da identificação correta de materiais para uso em plantios.

Palavras Chave: Marcador molecular, caracterização, identidade.

Introdução

A mandioca, *Manihot esculenta Crantz*, pertence à família das Euphorbiaceaes. Originária da América Latina, é uma espécie que possui grande importância social, pois suas raízes são fontes de carboidratos e as folhas ricas em proteínas, muito utilizadas em vários países na alimentação humana e animal, e também para a produção de amido. É uma espécie de porte arbustivo, dicotiledônea, monóica, alógama, que se reproduz vegetativamente e que é produzida em todo o território brasileiro, possuindo assim, diversas nomenclaturas a depender da região. Devido a esse fato, se faz necessário a identificação correta dos genótipos por meio da técnica do DNA Fingerprint, para assegurar os direitos dos melhoristas em casos de contestação de idoneidade.

Em um Banco Ativo de Germoplasma, cada acesso possui uma sequência de nucleotídeos que compõe o seu DNA. A identificação dessas diferenças por meio dos polimorfismos obtidos, a partir de marcadores moleculares, revela um padrão único, uma impressão digital genética, denominada de *Fingerprint* (Borém, 2001.). A técnica do DNA *fingerprint* consiste na identificação de um genótipo em particular, utilizando marcadores moleculares confiáveis, que permitem identificar cultivares e linhagens melhoradas de plantas. Dentre os marcadores moleculares utilizados, estão os ISSR-Inter Simple Sequence Repeats.

Os marcadores do tipo ISSR são dominantes, não diferenciam indivíduos homozigoticos dos heterozigóticos, porém analisam vários locos em uma reação. São baseados no método nos microssatélites (Preczenhak, 2013), onde os primers são formados a partir das próprias sequencias das repetições em tandem.

Portanto, teve-se o objetivo de desenvolver *Fingerprints* de DNA por meio da utilização dos marcadores ISSR, a fim de fornecer um conjunto de marcas capazes de identificar da melhor forma, um indivíduo em questão, por meio de cálculos de RP (poder de resolução de um primer), Ib (Informativeness of a primer) e calculo da probabilidade de

confundimento (c) (Dallas, 1988, Prevost & Wilkinson, 1999, Torre & Escandon, 2006). Com isso, espera-se garantir a identidade das variedades elites de mandioca pertencentes ao BAG-Mandioca da Embrapa Mandioca e Fruticultura, e também otimizar o equipamento *Fragment Analyzer* de forma a acelerar o processo da obtenção do fingerprint via marcadores ISSR.

Material e Métodos

Para a obtenção dos *fingerprints* das variedades elites de mandioca, foi utilizado o DNA de folhas jovens dos acessos (variedades elite) pertencentes ao BAG-Mandioca da Embrapa Mandioca e Fruticultura, apresentados na Tabela 1.

Tabela 1. Acessos do BAG-Mandioca utilizados para obtenção dos *fingerprintings* das variedades elite de mandioca.

Variedades elite	Variedades elite
1. Aipim Brasil	12. BRS Poti Branca
2. Amansa Burro	13. BRS Prata
3. BRS Aramaris	14. BRS Rosada
4. BRS Caipira	15. BRS Tapioqueira
5. BRS Dourada	16. BRS Verdinha
6. BRS Formosa	17. BRS Mani Branca
7. BRS Gema de Ovo	18. Pretinha
8. BRS Guaíra	19. Amarelo I
9. BRS Jari	20. Amarelo II
10. BRS Jarina	21. BRS Mulatinha
11. BRS Kiriris	

O DNA foi extraído seguindo o protocolo de Doyle & Doyle (1990). Para as reações de PCR foram utilizados *primers* ISSR apresentados na Tabela 2.

Tabela 2. Primers ISSR testados em equipamento *Fragment Analyzer* para obtenção dos *fingerprintings* das variedades elite de mandioca.

Nome do primer	Ta (°C)	Nome do primer	Ta (°C)	Nome do primer	Ta (°C)
ISSR 29	48	ISSR 31	58	ISSR 82	55
ISSR 50	48	ISSR 35	58	ISSR 84	55
ISSR92	48	ISSR 37	58	ISSR 93	55
ISSR 101	48	ISSR 39	58	ISSR 53	45
ISSR 32	48	ISSR 41	58	ISSR 68	45
ISSR34	48	ISSR 42	58	ISSR 1	50
ISSR58	48	ISSR 79	58	ISSR 4	50
ISSR 76	48	ISSR 06	55	ISSR 16	50
ISSR 30	48	ISSR 07	55	ISSR 17	50
ISSR 40	48	ISSR 27	55	ISSR 77	45
ISSSR 97	48	ISSR 33	55	ISSR 95	45

Foram testados no total de 33 primers ISSR (Tabela 2), em todas as 21 variedades elite de mandioca.

Paras os marcadores ISSR, as reações de PCR foram realizadas com 2,5µl de DNA, 2,25 µl de primer ISSR, 2,0 µl de Taq DNA Polimerase 0,5U, 1,5 µl de MgCl2 25mM, 1,2 µl de dNTP 2,5Mm, 1,5 µl de Tris KCl 1x, e 4,05 µl de água Mili-Q em um volume final de 15 µl. As reações de PCR foram amplificadas em termociclador Veritti (Applied Biosystems) com os seguintes ciclos: 94°C por 3 minutos seguidos de 39 ciclos de 94°C por 45 segundos,

temperatura de anelamento específica de cada primer por 45 segundos, 72°C por 1 minuto, e uma extensão final pela polimerase de 72°C por 7 minutos. A eletroforese dos fragmentos amplificados foi realizada no equipamento *Fragment Analyzer Automated CE System (Advanced Analytical)* por meio de eletroforese capilar. A caracterização molecular (DNA *fingerprint*) foi tabulada em planilha de dados. Os perfis dos marcadores ISSR de cada genótipo foram obtidos somente pela presença (1) e ausência (0) de bandas de alta densidade.

Resultados e Discussão

O perfil eletroforético dos primers ISSR-29, 50 92 e 101, encontra-se na Figura 1.

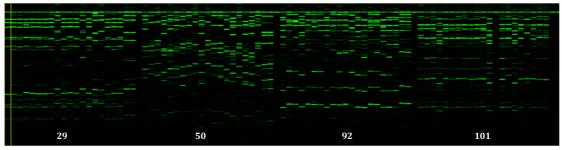


Figura 1. Perfil eletroforético obtido em equipamento *Fragment Analyzer* dos primers A ISSR 29, ISSR 50, ISSR 92 e ISSR 101.

A partir dos resultados obtidos foi realizada a analise dos dados para a identificação do fingerprint das variedades obtendo-se os valores de $[b-informativeness\ of\ a\ band:\]b=1-(2|0.5-p|),$ onde $[b-informativeness\ of\ a\ band:\]b=1-(2|0.5-p|),$ onde $[b-informativeness\ of\ a\ band:\]b=1-c=proporção dos indivíduos que contem a banda, resolution power of a primer: <math>[b-informativeness\ of\ a\ band:\]b=1-c=proporção dos indivíduos aleatoremente desse grupo em estudo e terem o mesmo padrão de bandas. De forma contrária, <math>[b-informativeness\ of\ a\ band:\]b=1-c=probabilidade de se pegar dois indivíduos aleatoriamente e terem bandeamento diferente.$

Onze primers tiveram seus Ib e Rp calculados (Tabela 2), entretanto, com base nos valores de Rp, somente os primers ISSR29, 79, 77 e 37 (negrito) foram utilizados nos cálculos do *finterprint* por apresentarem os maiores valores.

Tabela 2: Primer, total de locos polimórficos, genótipos identificados, c=probabilidade de pegar dois genótipos aleatoriamente e eles terem o mesmo padrão de bandeamento, D = probabilidade de pegar dois genótipos aleatoriamente e possuírem bandeamento diferente.

PRIMER	TLP	GI	RP	C=probabilidade de confundimento $c = [x^2 + (1-x)^2]^{n/x}$	D=probabilidade de dois indivíduos pegos ao acaso possuírem bandeamento diferente (D=1-C)
ISSR-29	42	21	14.24	8.09 x 10 ⁻⁷	0.99
ISSR-50	32	21	8.0	4 x 10 ⁻³	0.99
ISSR-92	21	21	7.2	1.5 x 10- ³	0.99
ISSR-34	18	21	8.0	9.56 x 10 ⁻⁴	0.99
ISSR-79	30	21	9.26	1.43 x 10 ⁻⁴	0.99
ISSR-77	22	21	8.28	4.88 x 10 ⁻⁴	0.99
ISSR-37	31	21	8.0	5.8 x 10 ⁻⁴	0.99
ISSR-31	-	-	2.6	-	-
ISSR-82	-	-	2.3	-	-
ISSR-53	-	-	4.8	-	-
ISSR-6		-	5.0	-	-

Com base nos cálculos, a probabilidade de se pegar dois acessos desse grupo e possuírem o mesmo bandeamento, por exemplo, somente usando o primer ISSR-29, é baixa (c = 8.09 x 10 ⁻⁷) com D = 99% - certeza de que dois indivíduos são diferentes. Isso demonstra que os primers selecionados com base nos valores de Rp são capazes de serem usados quando se quer investigar a identidade de um material externo – contra esse grupo de indivíduos e portanto, servirem de primers com alto poder discriminatório para uso na técnica do DNA *fingerprint* de variedades elites de mandioca.

Quando se usam dois primers, o poder deles se multiplica, assim como três ou quatro, como pode ser visto na Tabela 3.

Conclusão

Os primers selecionados por apresentarem os maiores valores de Rp nesse estudo, poderão ser usados no fingerprint de variedades elites em programas de melhoramento genético de mandioca.

Agradecimentos

Ao CNPq, pelo financiamento da bolsa de Pesquisa da Estudante de Graduação e à Embrapa Mandioca e Fruticultura pelo financiamento do projeto e a infraestrutura.

Bibliografia

BORÉM, A. Melhoramento de Plantas, In: **Melhoramento de Plantas**, 2. ed. Universidade Federal de Viçosa, 2001. 453p.

DALLAS, JF. Detection of DNA "fingerprints" of cultivated rice by hybridization with human minisatellite DNA. 1988. **Proceedings of the National Academy of Science**, v. 85, p. 6831-6835, 2003.

DOYLE, J.J.& DOYLE, J. L. Isolation of plant DNA from fresh tissue. **Focus**, v.12, p. 13-15, 1990.

LEOI, L.C.T. Desenvolvimento de Marcadores Microssátelites (SSR) em *Arachis hipogaea*. **Dissertação** (Mestrado em Ciências Genômicas e Biotecnologia). Universidade Católica de Brasília, 119 p, 2003.

PRECZENHAK, A. P. Diversidade genética estimada por meio de marcadores moleculares e morfoagronômicos em acessos de mini-tomate. **Dissertação** (Mestrado em Produção Vegetal). Universidade Estadual do Centro-Oeste. Guarapuava, 79 p., 2013.

PREVOST, A e WILKINSON, MJ. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. **Theoretical and Applied Genetics**, v. 98, p. 107-112, 1999.

TORRE, MCP e ESCANDON, AS. Construction of a molecular identification profile of new varieties of *Nierembergia linariaefolia* by anchored microsatellites. **Proceedings of the National Academy of Science**, 85, p. 6831-6835, 2006.