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Abstract — This work uses a filter based on neural networks to
verify the mismatches in two Arabidopsis thaliana germplasm.
Aiming to demonstrate the robustness and adaptability of the
filter it will be applied in a reuse model context. The neural
network filter previously defined and performed using the
genome of an animal of the species Bos Taurus is used
maintaining the main parameterization pre-defined to identify
the SNPs on the mismatches detected in the reassembled
germplasm. The experiments with the adapted filter in the new
genome indicate that the quality and level of SNPs detection are
preserved despite of the lack of a training process for this specific
data,
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[. INTRODUCTION

The correct identification of single nucleotide
polymorphisms (SNP) is an important issue to understand
variability in a population of specie allowing to study its
consequences. However, for correct identification of SNPs
candidates efficient filters are mandatory for quality on
detection. The SNP filtering applied on data obtained by next
generation sequencing (NGS) is a challenge due to its own
characteristics. In this way, new developments are necessary to
obtain an efficient and robust search for SNPs detection. In this
respect, a study developed by these same authors [1] introduced
the NeuroSNP, a filter tool based on neural networks attesting
the possibility of the use a computational intelligence tool as
technique for SNPs filtering.

The main goal of this work is to use a neural network
trained previously for a bovine genome [1] to filter the SNPs of
a new genome in a context of model reuse. The objective is
evaluate the robustness and adaptability of the machine learning
filter developed regardless the type of data it is applied. For this
purpose the genome of Arabidopsis Thaliana species is used.
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II. THE NEUROSNP FILTERING

The NeuroSNP filtering [l] was developed using an
artificial neural networks model. The input variables are
intrinsically based on the output variables of MAQ software [2]
that contains its own filter. In this way, the NeuroSNP
configuration was defined with ten neurons in the input layer, a
hidden layer with twenty neurons and a binary output layer. The
Resilient Propagation (RPROP) learning algorithm was applied
on training phase to construct a resilient network. The model
was encoding using the library Fast Artificial Neural Network
(FANN) [3]. The parameters for NeuroSNP execution are listed
in Table 1.

Table I: Parameters of NeuroSNP

Parameters | Description
-n Output file of training the network.
-0 Output file of NeuroSNP
-d Source file of the SNP - output file MAQ.

-r Restriction (0 - Low, 1 - High, 2 - Medium).

The binary filter encoded in MAQ software classifies the
candidate SNP as 0 or | if the SNP is true or false positive,
respectively. Thus, the usually used function at neural network it
would the step function. However, the developed network
achieved better results using the sigmoid function (Figure 1) as
output. This function classifies the SNPs in the range [0, 1]
instead of binary values. That singular difference allows the
inclusion of an important feature in the NeuroSNP structure
defined as restriction. The restriction parameter has as objective
to set the output of the sigmoid function as binary value with
different adjustments depending on a discrete value defined by
the user. Thus the neural network NeuroSNP can use this
parameter to refine the performance for different kinds of data.

CISTI 2015 | 641



Three restrictions, Low, Medium and High were defined.
The Low restriction classifies any SNPs as true SNP if the
output value is greater than 0. The Medium restriction is similar
to the step function, i.e., all SNPs with output value greater than
0.5 is rated as true. The High restriction only classifies SNPs as
true if the output value is equal to 1. Figure | depicted these
restrictions in the sigmoid function.
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Figure 3: Sigmoid functions and restrictions.

III. IDENTIFICATION OF FALSE POSITIVES

The task of assembly a complete genome embodies the
process of sequencing, alignment and assembly of reads. In
each of these steps an error rate is generated. Thus, in the SNPs
identification phase this error can induce the filter to interpret
the mismatches as a SNP, In the discovery stage any difference
between the sequences is a mismatch with some of these
differences being a SNPs and others no. Despite the difference,
define when this mismatch is or not a SNP is a complex task.
Usually, this definition is committed to a filtering step.
Regarding the NGS platforms, the introduced errors remain in
the range of 0.1% up to 1% [4].

The process evolves by the aligning of two sequences with
the reference genome to generate consensus. The alignment and
assembly software identifies a mismatch in the first positions of
the fragment. However the obtained alignment may not be the
best for this fragment. This situation typically occurs when short
reads are used, which is common for NGS platforms data. The
mismatch generated by the adopted alignment could be an error
in the sequencing step, or a real SNP.

The Figure 2 shows the correct alignment between
fragments, generating true SNPs.
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Figure 4: True SNPs generated by the alignment step.

The Figure 3 indicates an example of a mismatch
generated by an alignment error resulting from sequencing
mistake [3].

Another possible case depicted in Figure 4 the alignment is
corrected. However the reads present low quality.
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Figure 2: False positives gemerated by the alignment step.
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Figure 1: False positive generated by low quality.

The main question to be evaluated is ensure if a mismatch is
a SNP or represents an error. Usually a filter is the responsible
for this task. Using some strategy the filter attempts to classify
mismatches as SNPS or sequencing error. When an error is
reported as SNPs a false positive is obtained. Despite the NGSs
platforms errors could be considered low (0.1% up to 1%), the
genome size usually is huge with millions of base pairs. Thus,
the relative error is small, but the absolute value of mismatch
errors for the complete genome could be very large. Therefore,
an efficient filtering tool is mandatory for the purpose of SNP
detection on high performance.

IV. DATABASE MODELS

An attempt to develop a supervised learning specific for
SNPS filtering must necessarily defines a strategy for the
construction/obtainment of the training database with the
determination of instances class accurately. This is a hard task
since for this kind of problem a well-defined base of SNPs for
each genome is not trivial to obtain. Besides, the data for the
sequencing error class do not have a prior pattern to be
generated. Usually a filtering problem is considered as one-
class classification problem when tackled by means of machine
learning tools, So, to construct the databases for the SNPs class
and sequencing errors class two strategies are defined:

1. By using a pre-filter for determining the classes (First
Model);

2. By building specific data sets based on pre-defined
rules aiming to maximize the potential of
generalization of the supervised classification tool
(Second Model).

Following, the construction of database for the two
models are described in details.
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B.  First Model

In this case, the data for the two classes are obtained
directed of the archives generated for a standard method: the
archive of detected mismatches and the archive of filtering
these mismatches

1. Dataset used was extracted from the output files
of the MAQ software [2].

These steps was used the reassembled genome
Bos Taurus [6].

3. The first file is derived from the discovery step
(mismatches detected).

4. The second file (true SNPs) is obtained from the
filtering step.

5. First file has about 7 million SNPs and the
second contains about 2 million.

2

These two sets are used for the training phase of the
neural network to be generated.

C.  Second Model

For the second model, more restricted rules are used
aiming to separate clearly the two classes of SNPs and false
positives, The rules are based on modifications of the rules used
by the filter of the MAQ software defining sets of high and low
trusted SNPs. The rules, applied on the files generated for the
First Model are:

1. SNPs with high trust (about 429,078 SNPs):
1. covering greater > 6;
2. Phred-like > 20;
3. @(;lality and mapping quality on the flank of 6 >
50.
2. SNPs with low trust (about 1,821,527 SNPs):
1. Same parameters in the group with high trust.

2. Pick the SNPs that have at least one parameter
equal 0.

These two files are used for training phase as previous
model. It is interesting to emphasize that both strategies suffer
with problems relating to noise in class determination (SNPs or
false positive) of each candidate. The rules for the Second
Model are more rigorous trying to diminish this effect. The
evaluation of each model in previous work [1] indicates a better
potential for Second Model when the filter is applied in the
same genome used for training the NeuroSNP filtering.

V. OBTAINING DATA BY REASSEMBLY

The processes of discovery and filtering are always
executed after genome assembling. For that it is necessary to
execute this phase of the project using MAQ software. It is
worthwhile to stand out that the genome assembling could be
very extensive. Aiming to test NeuroSNP filter in genomes
different of Bos Taurus genome two distinct germplasm were

reassembled using the MAQ software. The stage of discovery
generates the necessary file for create the set of false positives.
The SNPfilter, filter included in MAQ software generates the
file used to create the set of true SNPs in both models.

The first genome analyzed by NeuroSNP filter was an
animal of the species Bos Taurus, Fleckvieh breed. The
experiments carried out indicate that the NeuroSNP filter
improves the results obtained only using the SNPfilter coupled
in MAQ software [1]. The tests accomplish in this work are
based on the genome of Arabidopsis Thaliana species, which
was the first plant genome sequenced with a large volume of
resecarch over its data. Its genome is diploid with five
chromosomes and about 125 million base pairs. Two different
germplasm, the TSU-1 and BUR-0 were reassembled, aligned
to the reference genome TAIR10 [7].

V1. ODDS RATIO-OR

A difficult task is to asseverate that the results of filtering
process are reliable, i.e., if the filter indicates that a mismatch is
a SNP it is not ease to confirm directly the veracity of this
information. An indirect measure namely, Odds Ratio (OR), will
be used to evaluate the results generated by the filters. For the
SNPs filtering problem, the OR measure indicates the change in
probability of finding a valid alignment within a sample of
filtered SNPs, compared with other set of unfiltered sample.
Following, the description of the measure using the sets of
filtered and unfiltered data:

A, = Sample of unfiltered SNPs or total.

A, = Number of total alignments found in A, in relation
to dbSNP base,

Ag= Filtered sample (SNPfilter or NeuroSNP).

Ay = Number of alignments (SNPs) found in A¢ in relation

to dbSNP base.
The following rates define the OR:
(A ) Am
r =
' A~ Am
A
r(d,)m —L—
r(4
ope L4
r(4,)

The dbSNP database is the reference used to attest the
veracity of the SNPs detected. Greater values of OR indicates
that the filter is more efficient, augmenting the number of true
SNPs detected in relation to dbSNP database. The value adopted
for the analysis considerer a confidence interval (CI) of 95% for
the standard error (SE).

SE:\{II Ik S
Af_Am Am Af-Aﬁl -Afa
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CI'= exp(In{OR)+1.96x SE)
CI'= exp(In(OR)~1.96% SE)
cI=[CI', CI']

VII. TESTS WITH BUR-0

Each model was run 10 times, where each run get different
values for the training error and testing. Thus to facilitate
analysis of the results, the selected networks received the
following names: NeuroSNP1.A to network with the lowest and
the first model NeuroSNP1.B for with the greatest error. The
NeuroSNP2.A to network with the lowest and the second model
NeuroSNP2.B for the greatest error.

B, Results Obtained by First Model

Table 2 shows the results of the First Model, where is
possible to see that none of the two networks could overcome
the result obtained with SNPfilter. The behavior of the First
Model remains similar to observed in the bovine genome, i.e.,
the model maintains its pattern for the new data set. The Cls
obtained by the ORs are greater than the value observed in the
bovine genome, but the range is still small demonstrating that
the ORs kept accurate.

The variation in the value of the ORs for the second genome
is small. However, its value still maintains inconstant as in
bovine genome. Although the first model is not the best between
both, the maintenance of behavior demonstrates that it is robust,
despite not being the most effective. Table 2 displays the result
of the ORs obtained by NeuroSNP applied on bovine genome
compared with that obtained in the germpiasm BUR-0. As can
be seen the behavior of the filter is similar, with mode
effectiveness for the current germplasm.

Table 2: Results for SNPfilter and NeuroSNP using the First Model with
SNPS of germplasm BUR-0 and a comparison with Bos Taurus.

BUR-0 __
“Arabidopsis thaliana “BosTaurus
5NPs  Alignments OR- €I "OR
MAQ 1,135,193 921 - ' )
SNPfilter 544,881 532 183.) 1.715 - 2.069 5.375 5356-5.393

l\muroh\dl’l A }
1011 1.719-2.125 5.030

High 307 R e

Medium 510,646 736 1778 1613-1959 4303 4289-4317
Low 681,773 870 1574 1431-172%6 3513 3502-3.523

TION....2.-1 i eI :
High 189486 250 1627 1415-1871 6067 6.043-6.091
Medium 530,193 798 1789 1.627-1.967 4840 4823-483
Low 751417 842 1382 1.258-1517 3471 3461-3481

The increasing in CI interval is explained by the difference
in the size of the number of SNPs and the total number of
alignments discovered. In the bovine genome the total number
of SNPs detected is 2 to 3 times greater than the number of
alignments, while in the germplasm of this BUR-0 this value is
600 to 850 times higher.

C.  Results Obtained by Second Model

Table 3 shows the results obtained by the NeuroSNP using
the Second Model. As observed in the bovine genome, this
model remained a stable behavior, obtaining values higher for
OR than SNPfilter except for NeuroSNP 2.B where low
restriction is settled. The model behavior was close to that
obtained for the bovine genome, indicating that the reuse is
possible for SNPs filtering with other genomes. The efficiency
was preserved in the model reuse process with results with a
behavior very similar to that obtained in the bovine genome.

As seen previously the bovine genome, NeuroSNP 2.B has
a larger population than NeuroSNP 2.A, but with a smaller
variation in OR. The variation in population size can be an
interesting feature for the researcher. As observed in the First
Model, the ICs have a greater variation in the bovine genome,
and again it can be explained by the difference between the
sample size and the number of SNPs alignment, which in this
model is 500 to 650 times higher.

Table 3: Results for SNPfilter and NeuroSNP using the Second Model with
SNPs of germplasm BUR-0 and a comparison with Bos Taurus,

Arabidopsis thaliana "1 Bos Taurus
SNPs  Alignments OR a | OrR U

Ti3s188 921 - - -
1.883 1.715-2.069| 3375 5.356-5.393
NeuroSNP2.A

SNPfilter 544,881 332

High 295986 576 2402 21s4 2665|7399 7.322.7477
Medium 416,154 767 2274 2066-2503| 7.119 7.063-7.174
Low 454620 785 2130 1937-2343| 6880 6:836-6918

NeuruSNPLB

tigh 142681 265 2292 1.999.2627| 6207 6.109-6.307
Medium 302030 345 2226 2.002-2475| 6843 6.892-6.935
L 476508 681 1762 1.596-1946| 6042 6015-6.069

The Second Model presents, again. more effectiveness,
even when presented to data from a new genome. The networks
of the Second Model can be descripted with informative and
restrictive  characteristics. Therefore variations in the
restrictions of sigmoid function generate populations with
different sizes, but with similar ORs values. These features
indicate that the Second Model is more robust and effective.

D. Considerations

The Second Model showed better indices between the two
models studied, being the best alternative for SNPs filtering.
The results obtained with the introduction of a new genome
indicates that the filtering based on neural networks is robust
and can be used as complementally filter to work together with
the traditional filters adopted as SNPfilter of MAQ software.

VIII, TESTS WITH TSU-1

The second germplasm analyzed is the TSU-1 following the
standards steps performed to bovine genome and germplasm
BUR-0. In the discovery phase 1,025,908 SNPs are detected,
with 460,140 SNPs obtained after the filter application.
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B.  Results Obtained by First Model

Table 4 shows the results obtained with NeuroSNP for the
First Model. As happen in previous genomes, filtering with
NeuroSNP obtained ORs worse than SNPfilter. The behavior of
the First Model remains similar to both genomes analyzed. The
First Model indicates that even though it is not the most
effective it is robust. The CIs calculated have higher values than
the bovine genome, however, as in the BUR-0 germplasm, the
difference between the sample size of SNPs and the number of
alignments is high (600 to 830 times higher for this model).

Table 4 displays the comparison between the ORs obtained
in the bovine genome and germplasm TSU-1. For the First
Model the results are close, with the NeuroSNP 2.B presenting a
relative difference between the variations of ORs.

Table 4: Resuits for SNPfilter and NeuroSNP using First Model with SNPS of
germplasm TSU-I and a comparison with Bos Taurus.

TSU-1
Arabidupsis thaliana Bos Taurus
SNDs

Alignments  OR ¢ OR Cl
MAQ 1025908 8T8 . I
SNPfilter 460,140 750

1906 1.729-2.101| |5.375 5.356 - 5.393

NeurnSNPL.A

High 284,015 453 ULEAS TeUA L 2008 TR0530 5012 - 5048
Medium 429476 634 1791 1.619-1.4982 4303 4289 - 4.317
Low 582256 780 1566 1.422-1.723 | 3513 3502-3523

NeuroSNP1L.B
1420 1.203-1.678 |  6.067 0.043 - 6.091
1.820 1.649- 2009  4.840 4.823 - 4.856
1380 1.252- 1,320 | 3.471 3461 -3.481

[ligh 138,773 165
Medium 459,968 716
Low 645,088 765

C.  Results Obtained by Second Model

The experiments for this model have the results presented in
Table 5. As in® previous genomes, this model obtained better
results in both networks. Exception is the NeuroSNP 2.B, using
high constraint. The model conserved his performance as well
as the population variation between NeuroSNP 2.A and the
NeuroSNP 2.B, being more restrictive and informative than the
SNPfilter.

The values of the Cls obtained by the Second Model
networks are larger than the bovine genome, but keep a similar
behavior to that encountered in germplasm BUR-0. Likewise,
the difference between sample size and the number of SNPs
alignments is high for this model (500 to 650 times higher). The
behavior is also maintained when compared with the ORs
values in relation to the bovine genome as can be seen in Table
5.

Table 5: Results for SNPfilter and NeuroSNP using Second Model with SNPs
of germplusm TSU-1 and comparison with Bos Taurus.

TSU-1
Arabidopsis thaliana Bos Taurus
SNPs  Alignments OR ¢ [T OR I
MAQ 1,025,908 a78 g B =

SNTfilter 460,140 750 1906 15.375 5.356-5.393

High 267,469 58 2 2154 -2667 7399 7322-7477
Medium 364,580 692 2220 2.009-2453 |7.119 7.065-7.174
Low 402649 703 2042 1.849-2255 | 6.877 6.836-6.918

“NeuroSNP2.B
High 118335 321303 1993 2661
Medium 255,114 473 2169 1.939-2425
Low 401,684 612 781 1607 -1975

16307
|6.883 6.832- 6,933
16042 6015 - 6.069

D. Considerations

As the previous genomes the Second Model presented
the best results in the experiments. The behavior of the two
models showed that both are robust, however, only the Second
Model is efficient for SNPS classification. The difference
between the sample size of SNPs and the total number of
alignments discovered increases the CI for all models of
germplasm TSU-1, however, despite that the accuracy of the
ORs is still high.

[X. DISCUSSION

The software SNPs MAQ filter has three rules
separate, each candidate must meet just one rule, and each rule
uses distinct variables. At this point, the network presents a
more efficient solution to the classification of mismatches,
because it uses all available variables, and as seen, both models
are restrictive and informative. The application of the restriction
allows the user to reduce the population of SNPs to be studied,
conserving the information acquired.

Figure 5 and Figure 6 have the objective to display that
the network models maintain the same behavior when applied to
a different data set of the data used in training phase. The
Second Model presented the best ORs showing more robustness
when compared with the First Model.
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Figure 5: Comparison between normalized OR of First Model.
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Figure 6: Comparison between normalized OR of Second Model.

X. CONCLUSIONS

The increase in capacity of NGS platforms, which provide
data of millions of base pairs in a single run, generates the
necessity of constant advances in computational methods for the
handling and analysis of this large volume of data aiming a
general and greater understanding of the biological species.
Among the possible analysis based on genetic material can
highlight the research related to SNPs. These surveys can
generate relevant knowledge. However, previous steps as the
discovery and filtering of these SNPs need to be performed
effectively. Specifically for NGS platforms, where reads are
short and error-prone, the assembly process is very hard
increasing the number of mismatches present in the sample that
will be used in the discovery of SNPs step. Any differences in
sequencing are a potential SNP in the discovery step. Therefore
the necessity of adaptation of computational strategies for the
treatment of sequences obtained via NGS.

This work was presented and developed a computational
strategy based on computational intelligence and machine
learning, with ability to filter SNPs from whole genome
(NeuroSNP). In the NeuroSNP building process two different
models were examined and compared to the reference filter of
MAQ software, namely SNPfilter. In the genomes assessed,
NeuroSNP obtained similar or better results than MAQ filter.
Computational experiments clearly indicated the potential of the
presented learning tool for the detection of SNPs. Their use
alone or with traditional filters is presented as an alternative for
robust determination of SNPs in different genomes.

Computational experiments clearly indicated the potential of
the introduced machine learning tool for SNPs detection when
applied in different genomes. The use of a neural network alone
or combined with traditional filters presents as an alternative for
robust determination of SNPs in different genomes. The
adoption of measures like OR showed that the application of

the filter augments the chance of finding a positive alignment of
SNPs in the sample with the expectation that this new scenario
reflects directly in the reduction of false positives.

It is important to notice that the construction of database for
training phase of the classifier can be improved mainly in two
directions: (i) by defining more specific rules for determining
priority of false positives; (ii) using biologically confirmed
SNPs for constructing the class of true positives. In any case,
the supervised classification tends to enhance its performance
with the use of more precise information about the SNPs.
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