1º Simpósio Latino Americano de Canola

19 a 21 de agosto de 2014 Passo Fundo, RS, Brasil

DESEMPENHO AGRONÔMICO DE HÍBRIDOS DE CANOLA EM DIFERENTES ÉPOCAS DE SEMEADURA EM DOIS VIZINHOS-PR

Valtecir Andre Hrchorovitch¹, Jean Carlo Possenti², Jovane Bruno Weber Sulzbacher³, Robson Alves Ribeiro³, Bruna Regina Dalle Laste Lorenzetti³, Kamila Cristina Fabiane³, Gilberto Omar Tomm⁴

¹Eng. Agrônomo, Mestrando do Programa de Pós-Graduação em Agronomia (PPGAG) da Universidade Tecnológica Federal do Paraná (UTFPR), Campus Pato Branco, PR, Brasil. E-mail: <u>valtecir_eng@yahoo.com.br</u>

²Prof. Dr., Programa de Pós-Graduação em Agronomia (PPGAG) da Universidade Tecnológica Federal do Paraná (UTFPR), Campus Pato Branco, PR, Brasil.

³Acadêmico (a), Curso de Agronomia,Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, PR, Brasil.

RESUMO

O cultivo de canola no Brasil vem sendo estudado desde 1974 e as indicações específicas para seu cultivo no Sudoeste do Paraná precisam ser geradas. O objetivo deste trabalho foi identificar a melhor época de semeadura para a região e verificar se existe efeito direcionado entre cinco híbridos de canola a épocas de semeadura no município de Dois Vizinhos-PR. O experimento foi executado na área experimental da Universidade Tecnológica Federal do Paraná – UTFPR, campus Dois Vizinhos, na safra 2013. Os híbridos utilizados foram o Hyola 61, Hyola 76, Hyola 411, Hyola 433 e Hyola 571 e as seis épocas de semeadura, entre 9/3 e 26/7 tiveram intervalo de 28 dias. Os resultados obtidos, em que pese serem relativos à apenas um ano safra, permitem concluir que nas condições edafoclimáticas de Dois Vizinhos-PR, é possível de ser cultivada a canola. Contudo, os resultados das interações entre híbridos e épocas, necessitam serem observados com reserva, tendo em vista que as variáveis climáticas sofrem influências acentuadas em função do ano. Sugere-se a realização de outros ensaios semelhantes para elucidar estes aspectos.

Palavras-chave: Brassica napus L., produtividade, adaptação.

INTRODUÇÃO

A canola é uma oleaginosa que tem elevado potencial para ampliar a produção de óleo vegetal do Brasil. A canola cultivada pertence à família das crucíferas e do gênero *Brassica* e o seu cultivo destaca-se por ser uma excelente alternativa de cultivo, principalmente no período de safrinha e de outono-inverno, ocorrendo principalmente como rotação de cultura com o trigo no Sul do Brasil (TOMM *et al.*, 2008). A cultura entra no sistema de rotação de culturas da propriedade e contempla o uso de máquinas e equipamentos já existentes.

A cultura permite ainda aumentar a renda das propriedades rurais. Uma vez que, no período outono-inverno, existem grandes quantidades de áreas sem cultivos. Desta forma, a cultura tem forte papel social e econômico, contribuindo para aumento da produção por unidade de área, geração de emprego e renda no campo, além de se obter óleo para consumo humano, biodiesel e farelo de excelente qualidade. Os grãos de canola produzido no Brasil, segundo Tomm *et al.* (2009), possuem em torno de 24 a 27% de proteína bruta e em média de 38% de óleo.

⁴Pesquisador, Embrapa Trigo, Rod. BR 258, KM 294, Caixa Postal 451, CEP 99001-970, Passo Fundo, RS, Brasil.

Atualmente os híbridos Hyola presentes nos campos de produção são os de origem Australiana, que trazem como principal características maior resistência a fungos causadores de moléstias, a exemplo da Canela-preta, uma das principais doenças fúngicas da cultura. A adaptação dos híbridos de canola vem sendo constatado em todo o país através de pesquisas distribuídas de Norte a Sul. O desempenho obtido com híbridos de canola no Brasil, na safra 2010 foi de 1344 kg.ha⁻¹(CONAB, 2010). O peso de mil grãos de canola pode variar de 2 a 3 gramas, isso se deve a fatores genéticos, nutricionais e ambientais. Deste modo, objetivou-se avaliar a influência da época de semeadura em cinco diferentes híbridos de canola, para produtividade e peso de mil grãos, nas condições edafoclimáticas de Dois Vizinhos-PR.

MATERIAL E MÉTODOS

O experimento foi conduzido na área experimental da Universidade Tecnológica Federal do Paraná – UTFPR, campus de Dois Vizinhos, situado a 25° 44′ 35″ de latitude Sul, longitude de 53° 4′ 30″ W-GR e altitude de 565 metros,na safra de 2013. O município de Dois Vizinhos-PR está localizado na região Sudoeste do Paraná, e tem uma precipitação anual de aproximadamente 2000 mm, o clima local é de transição, subtropical úmido, mesotérmico (Cfa), com verões quentes e menor frequência de geadas no inverno, segundo a classificação de Koppen. O solo é um Nitossolo vermelho distroférrico úmbrico, textura argilosa fase floresta subtropical perenifólia, relevo ondulado, de clima subtropical (BHERING *et al.*, 2008).

Na condução do ensaio decampo foi utilizado o delineamento experimental de blocos ao acaso, com parcelas subdividas, com três repetições. Nas parcelas foram distribuídas as épocas de semeadura e os híbridos nas sub-parcelas. Os híbridos utilizados foram a Hyola 61, Hyola 76, Hyola 411, Hyola 433 e Hyola 571. A semeadura obedeceu a um intervalo de 28 dias uma época da outra e iniciaram no dia 9/3 (época 1), 6/4 (época 2), 4/5 (época 3), 1/6 (época 4), 29/6 (época 5) e 26/7 (época 6).

A semeadura visou à população de plantas 40 plantas por m². O espaçamento entre linhas foi de 0,45 m e a semeadura, bem como todos os tratos culturais e a colheita foram realizadas manualmente. As parcelas tinham uma área de 67,50 m² e as sub-parcelas continham uma área de 13,50 m². A avaliação da estimativa de rendimento de grãos (Kg.ha⁻¹) foi baseada na colheita de uma área útil de 7,2 m² e com a umidade de grão corrigida para 9%.

As avaliações de peso de mil grãos foram realizadas no Laboratório de Análise de Sementes da UTFPR, campus Dois Vizinhos. Seguindo-se os procedimentos descritos nas Regras para Análise de Sementes - RAS (BRASIL, 2009), para a avaliação de peso de mil sementes, realizou-se a homogeneização das amostras médias e retirada das amostras de trabalho. O peso médio de 1000 grãos, realizado de acordo com as RAS, procedeu-se por meio da contagem ao acaso, com contador mecânico, de 8 repetições de 100 sementes, que eram provenientes da porção pura, as quais foram pesadas em balança analítica eletrônica. Posteriormente a variância, o desvio padrão e o coeficiente de variação dos valores obtidos nas pesagens foram calculados, através das fórmulas:

Variância (V) =
$$\frac{n(\sum x^2) - (\sum x)^2}{n(n-1)}$$

Desvio Padrão $(S) = \sqrt{Variância}$

Coeficiente de Variação (CV) =
$$\frac{S}{X} * 100$$

Onde: x corresponde ao peso de cada repetição; n é o número de repetições; ∑ corresponde ao somatório das repetições e X é o peso médio de 1000 sementes.

O resultado da determinação foi obtido através da multiplicação por 10 do peso médio obtido das repetições de 100 grãos, sendo que o coeficiente de variação não deve exceder a 4%. O resultado foi expresso em gramas e posteriormente tabulados e, após a tabulação, testou-se o nível de significância e quando pertinente aplicou-se o teste Duncan a 5% para verificar o nível de significância dos resultados dos tratamentos. Os dados foram processados estatisticamente com auxílio do aplicativo computacional Genes (CRUZ, 2013).

RESULTADOS E DISCUSSÃO

O desempenho dos híbridos foi decorrente das condições edafoclimáticas locais do experimento. No entanto a época 2 e época 6 foram afetadas pelo déficit hídrico ocorrido no início de sua implantação, problema que culminou em população de plantas aquém da desejada e consequentemente causou redução drástica de produtividade de grãos quando comparado com as demais épocas de semeadura. De acordo com os dados pluviométricos Tabela 1, demostraram que na época 2 coincidiu com a redução de 239 mm, em relação a época 1, sendo que o terceiro decêndio encerrou sem ocorrência de chuva. Na época 6, verificou-se que durante todo o mês de julho ocorreu uma baixa pluviosidade, prejudicando o potencial produtivo devido à redução no estande final de plantas.

Tabela 1. Precipitação pluvial ocorrida em Dois Vizinhos-PR durante o período de condução do experimento (Março a Novembro/2013). Dois Vizinhos-PR, 2013.

Decêndio	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro
1	119	112	28	72	18	60	25	42	16
2	175	26	147	246	40	5	72	69	130
3	83	0	79	216	18	45	97	112	74
Total	377	138	254	534	76	110	194	233	220

Fonte: Coasul, 2014.

Conforme mostra a Tabela 2, verifica-se que as épocas de semeadura influenciaram a produtividade dos híbridos testados de maneira significativa. As épocas 1 (605 kg.ha⁻¹) e 5 (519 kg.ha⁻¹), obtiveram maiores índices de produtividade no ensaio. Em ensaios realizados em Maringá-PR, Tomm *et al.* (2010), verificaram que a época com maior potencial de rendimento de grãos foi a semeada no mês de marco e indicou que semeaduras posteriores a esse período implicaram em perdas progressivas no potencial de rendimento de grãos de canola.

A condição local, imposta ao ensaio (Tabela 1) verificou uma maior precipitação pluviométrica durante a fase de florescimento da canola, fase esta que ocorre entre os 45 a 90 dias após a emergência (varia conforme híbrido), condição esta que pode ter caracterizado maior pegamento de flores e melhor taxa de polinização, levando a um melhor resultado de rendimento de grãos. Estes dados corroboram os de Tomm *et al.* (2008) em ensaios realizados no Nordeste do estado da Paraíba, observaram que com o déficit hídrico houve aumento da temperatura média e consequentemente maior abortamento de flores terminais e desuniformidade no enchimento de síliquas de alguns genótipos Hyola, como por exemplo Hyola 60.

Tabela 2. Produtividade (kg.ha⁻¹) de cinco híbridos de canola cultivados em seis épocas de semeadura. Dois Vizinhos-PR, 2013.

		Hí	bridos				
Épocas de Semeadura	Hyola 61	Hyola 76	Hyola 411	Hyola 433	Hyola 571	Média	
Época 1	589	400	631	727	678	605 a	
Época 2	144	14	74	133	156	104 d	
Época 3	322	350	218	329	297	303 bc	
Época 4	466	445	573	316	1.071	360 b	
Época 5	312	306	820	525	631	519 a	
Época 6	72	95	257	276	231	186 cd	
Média	318 AB	268 B	429 A	384 AB	332 AB		
CV%	29,32						

As médias seguidas pela mesma letra não diferem estatisticamente entre si. Foi aplicado o teste de Duncan ao nível de 5% de probabilidade.

A produtividade média dos híbridos testados foi inferior a média de produtividade do Estado do Paraná, 1.092 kg.ha⁻¹, na safra 2011/2012 (SEAB, 2013). Os híbridos testados comportaram-se de maneira diferente em função das épocas testadas, merecendo destaque para o híbrido Hyola 433. A menor média de produtividade de grãos foi obtida pelo híbrido Hyola 76 com 268 kg.ha⁻¹. Dados semelhantes foram obtidos por Tomm *et al.* (2008). Os autores concluíram que híbridos de ciclo mais longo (a exemplo o Hyola 60) produziram menos devido a maior restrição hídrica em alguns períodos durante a condução do ensaio e a sensibilidade ao fotoperíodo, em relação aos materiais precoces (Hyola 433).

Os híbridos de ciclo longo, a exemplo o Hyola 76, tem indicação a semeadura mais cedo, meadas do mês de abril, especialmente devido à alta sensibilidade ao fotoperíodo e a compensação por novas flores a aquelas abortadas pelo frio intenso (geada) (TOMM *et al.*, 2009). Entretanto, em todos os materiais testados, verificou-se acentuada desuniformidade na maturação, para todas as épocas. Este fato favoreceu o ataque de pássaros na fase de précolheita.

Ao verificarmos os dados de PM grão (Tabela 3), percebe-se que as épocas apresentaram certa homogeneidade, tiveram pouca diferença entre si, sendo que a época 1, época 3, época 4 e época 5 não diferiram estatisticamente entre si. A época 6, foi a que apresentou menor peso de mil grão. A época 2, não obteve-se resultados, em função de fatores abióticos que interferiram na germinação e no estabelecimento das plântulas. Os híbridos, quando observados o PM grão, podemos caracterizar que o Hyola 433 teve maior PM grão, porém não diferindo dos híbridos Hyola 76, Hyola 411 e Hyola 571. O híbrido de menor peso de mil grãos foi o Hyola 61.

Tabela 3. Peso de mil grãos híbridos de canola cultivados em seis épocas de semeadura. Dois Vizinhos-PR. 2013.

	•	•	Híbridos	•	•	
Épocas de Semeadura	Hyola 61	Hyola 76	Hyola 411	Hyola 433	Hyola 571	Média
Época 1	2,49 aA	2,83 aA	2,89 aA	2,83 aA	2,88 aA	2,79 a
Época 2	0,00 cA	0,00 cA	0,00 cA	0,00 cA	0,00 cA	0,00 c
Época 3	2,54 aA	2,55 abA	2,65 abA	3,00 aA	2,74 aA	2,70 a
Época 4	2,88 aA	2,76 aA	2,91 aA	2,91 aA	2,95 aA	2,88 a
Época 5	2,46 aA	2,61 aA	2,71 abA	2,97 aA	2,70 aA	2,69 a
Época 6	1,46 bB	2,06 bA	2,21 bA	2,21 bA	2,11 bA	2,01 b
Média	1,97 B	2,13 A	2,23 A	2,32 A	2,23 A	
CV%			13.12			

As médias seguidas pela mesma letra não diferem estatisticamente entre si. Sendo letras maiúsculas na linha e minúsculas na coluna. Foi aplicado o teste de Duncan ao nível de 5% de probabilidade.

Quando comparamos os dados de produtividade e o peso de mil grão, é possível acreditar que a época mais produtiva foi a época 1 e também com maior peso de mil grão. E os híbridos Hyola 411 e Hyola 433 se apresentaram neste estudo em particular, como os mais produtivos quando relacionados e o rendimento de grãos e o peso de mil grãos.

CONCLUSÕES

Os resultados obtidos, em que pese serem relativos à apenas um ano safra, permitem concluir que nas condições edafoclimáticas de Dois Vizinhos, é possível de ser cultivada a canola. Contudo, os resultados das interações entre híbridos e épocas, necessitam serem observados com reserva, tendo em vista que as variáveis climáticas sofrem influências acentuadas em função do ano. Sugere-se a realização de outros ensaios semelhantes a fim de elucidar estes aspectos.

- BHERING, S. B; SANTOS, H. G. dos; BOGNOLA, I. A.; CÚRCIO, G. R.; MANZATTO, C. V.; CARVALHO, J. W.; CHAGAS, C. da S.; ÁGLIO, M. L. D. & SOUZA, J. S. de. **Mapa de solos do Estado do Paraná: legenda atualizada**. Rio de Janeiro: EMBRAPA/IAPAR. 2008. 74p.
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Regras para análise de sementes**. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília, 2009. 399 p.
- COASUL COOPERATIVA AGROINDUSTRIAL. **Índice Pluviométrico**. Disponível em: http://www.coasul.com.br/utilitarios/indice-pluviometrico/>.
- CRUZ, C. D. GENES a software package for analysis in experimental statistics and quantitative genetics. **Acta Scientiarum. Agronomy**, v.35, p.271-276, 2013.
- COMPANHIA BRASILEIRA DE ABASTECIMENTO CONAB. **Canola**. Gerência de Levantamento e Avaliação de Safras. Brasília: CONAB. Setembro de 2010. Disponível em: http://www.ebah.com.br/content/ABAAAgSVMAF/apresentacao-canola-conab#>.
- SECRETARIA DA AGRICULTURA E DO ABASTECIMENTO SEAB. Departamento de Economia Rural DERAL. **Estimativa de safra**. Disponível em: http://www.agricultura.pr.gov.br/arquivos/File/deral/pss.xls.
- TOMM, G. O.; MENDES, M. R. P.; FADONI, A. C.; CUNHA, G. R. da. Efeito de épocas desemeadura sobre o desempenho de genótipos de canola de ciclo precoce e médio,em Maringá, Paraná. Passo Fundo: Embrapa Trigo, 2010. 13 p. html. (Embrapa Trigo.Boletim de pesquisa e desenvolvimento online, 75). Disponível em: http://www.cnpt.embrapa.br/biblio/bp/p bp75.htm>.
- TOMM, G. O.; RAPOSO, R. W. C.; SOUZA, T. A. F. de; OLIVEIRA, J. T. de L.;RAPOSO, E. H. S.; SILVA NETO, C. P. da; BRITO, A. C.; NASCIMENTO, R. de S.;RAPOSO, A. W. S.; SOUZA, C. F. de. **Desempenho de genótipos de canola (Brassicanapus L.) no Nordeste do estado da Paraíba, Nordeste do Brasil**.Passo Fundo: Embrapa Trigo, 2008. 15 p. html (Embrapa Trigo. Boletim dePesquisa e Desenvolvimento Online, 65). Disponível em: http://www.cnpt.embrapa.br/biblio/bp/p_bp65.htm.
- TOMM, G. O.; WIETHÖLTER, S.; DALMAGO, G. A.; SANTOS, H. P. dos. **Tecnologia para produção de canola no Rio Grande do Sul**. Passo Fundo: Embrapa Trigo, 2009. Passo Fundo: Embrapa Trigo, 2009. 41 p. html. (Embrapa Trigo. Documentos Online, 113). Disponível em: http://www.cnpt.embrapa.br/biblio/do/p_do113.htm.