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Abstract
The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful spe-

cies from the Amazon with great economical potential, due to the multiple uses of its fruit´s

pulp and seeds in the food and cosmetic industries, including the production of cupulate, an
alternative to chocolate. In order to support the cupuassu breeding program and to select

plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next

Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330

ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant

motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with

a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs contain-

ing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp

and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77

SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs

were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to

witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed

that these markers were transferable to cacao genotypes, and that genome availability

might be used as a predictive tool for polymorphism detection and primer design useful for

both Theobroma species. To our knowledge, this is the first report involving EST-SSRs

from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu

to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu

and cacao genetic maps, respectively.
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Introduction
The cupuassu tree, Theobroma grandiflorum (Willd. ex Spreng.) Schum., belonging to theMal-
vaceae family, is a fruitful species native to the Amazon [1]–as the cacao tree (Theobroma
cacao L.) whose seeds are used as raw material for chocolate production. The cupuassu tree is
considered one of the main tree crops in the Amazon region [2,3], being economically impor-
tant in Brazil, with great potential at international level due to the multiple uses of its fruit
pulp and seeds. From the pulp, several products are manufactured, such as juices, ice creams,
liquors, jams, jellies, creams and sweets [2, 3]. Cupuassu seeds have a high quality fat, com-
posed mainly of oleic and stearic acid [4, 5], from which a product similar to chocolate, called
cupulate, can be obtained [6–8]. Moreover, cupuassu received attention because of its proteo-
lytic activity, useful in food industry [8], its antioxidant and cytotoxic activity, as well as its
action in increasing glucose tolerance [9–11]. Due to its potential for the “chocolate” industry
—particularly in the actual period of announced cacao beans and chocolate shortage [12, 13]–
studies related to cupuassu species are increasing at molecular and breeding level [14–17].
Moreover, the genetic proximity of cupuassu with cacao—that has been thoroughly studied
during the last 10 years [18–21]–allowed the transfer of data and technologies, as well as com-
parison for improvement of breeding programs related to different characteristics such as
pulp/seed quality and disease resistance.

Considering that in Brazil, the main phytopathological problem that affects the Theobroma
genus is the witches’ broom disease—caused by the hemibiotrophic basidiomyceteMoni-
liophthora perniciosa [22]–the cupuassu breeding program should integrate the selection of
lines that present both pulp/seed quality and resistance to this fungus. Such selection could be
assisted by microsatellites (SSRs) markers that are short repeat motifs with high polymorphism
due to indel mutation-type in one or more repeats [23]. SSRs distribution is considered as non-
random across both coding and noncoding regions of genomic DNA, and some of these SSR
structures are important for different cell function (e.g. gene transcription, chromatin organi-
zation, DNA replication, cell cycle), indicating that some of the SSR groups may not be neutral
[23]. In plant genetics, the SSRs were preferred due to their high variability, abundance, multi-
allelic nature, reproducibility, polymorphism, transferability as well as their codominant inher-
itance, chromosome-specific location and wide genomic distribution [23–25]. SSRs, in many
species, were widely used for genetic diversity studies, molecular mapping, molecular finger-
print and conservation strategies [26].

When these SSRs are identified in expressed sequence tags (ESTs), the selection of interest-
ing plant genotypes could be quite efficient mainly because the markers are physically associ-
ated to coding regions and can enhance the evaluation of plant populations by enabling the
variation assay in expressed genes with known function [27]. With the advent of low cost next
generation sequencing (NGS) technologies, it is now possible to easily obtain thousands of
ESTs that could be the main source for in silico SSR identification (then named EST-SSRs).
Identification of EST-SSRs is also important in the study of different species from the same
genus [28–32], in which gene function and biological processes could be conserved [24, 33]
and may be related to the same responses to biotic and/or abiotic stresses. Therefore, the trans-
ferability of SSRs or EST-SSRs between species may support the idea of similar existing func-
tion, as well as to contribute to comparative genomics and diversity analysis [34–36].

For this reason, herein, we focused on: i) the identification and description of SSRs from
new generation sequencing-obtained ESTs of cupuassu; ii) the analysis of the related EST func-
tion; iii) the validation of the SSRs on cupuassu genotypes with varied pulp quality and resis-
tance to witches’ broom disease and diversity study in relation to both characteristics; iv) the
transferability of cupuassu SSR to cacao genotypes. To our knowledge this is the first work

Cupuassu EST-SSRs Development and Transferability

PLOS ONE | DOI:10.1371/journal.pone.0151074 March 7, 2016 2 / 19

Abbreviations: ATT, titratable acidity; EST,
expressed sequence tag; NGS, next generation
sequencing; ORF, open reading frame; UTR,
untranslated region; SSR, simple sequence repeat;
SST, total soluble solids.



involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transfer
from cupuassu to cacao.

Material and Methods

Plant material
Cupuassu genotypes used for EST-SSR validation were selected focusing on subsequent appli-
cations in breeding program for pulp quality improvement and/or witches’ broom disease
resistance. Sixteen cupuassu genotypes from Embrapa Amazonia Oriental were used (Tables 1
and 2) in this study. Among them, fourteen were resistant to witches’ broom disease and two
susceptible (Table 2; personal communication R.M. Alves). The genotypes 174 (Coari) and
1074, resistant and susceptible to witches’ broom disease, respectively, were the genitors of sev-
eral of the progenies used in the breeding programs in Brazil (Table 1) [14]. For marker trans-
ferability analysis, three Theobroma cacao L. genotypes, from Ceplac (Bahia, Brazil) were used:
two resistant, SCA6 and TSH 516, and one susceptible, ICS1. The TSH 516 genotype corre-
sponds to the SCA6 x ICS1 cross [37].

Cupuassu pulp quality analyses
For the pulp quality analyses, five cupuassu fruits were harvested from three different plants
(n = 15) for each of the sixteen cupuassu genotypes described (Table 2). For the evaluation of
the pulp characteristics (°Brix, acidity, humidity and pH), 20 g of pulp from each fruit were col-
lected and analyzed as previously described [38]. The Brix was determined using a refractome-
ter PR-101 (ATAGO). The total acidity, expressed in citric acid percentage, was determined by
titration using 0.1 N NaOH. The pH was determined using a Horiba F-21 pH-meter. For the
determination of humidity, the samples were oven dried at 105°C until weight stabilization.

EST sequencing, EST-SSR identification, and primer design
In this study, pulp and seed of the cupuassu genotype (Coari 174) (Theobroma grandiflorum
[Willd. ex Spreng.] Schumm.; see also Plant material) grown at the experimental station of
Embrapa Amazonia Oriental (Belém, Pará, Brazil) were sequenced using the 454 platform /
Roche Applied Sciences. The raw sequences were trimmed and assembled using the est2assem-
bly [39] and Mira [40] software resulting on 8,330 contig sequences. The sequences are avail-
able on the cupuassu restricted databases at http://lbi.cenargen.embrapa.br/cupuacu/. The
ESTs were screened for the presence of SSRs using the MISA software [41] according to the fol-
lowing criteria: i) nucleotide motif/minimum number of repeats of 1/10, 2/6, 3/4, 4/2, 4/3, 5/3,
6/5, 7/2, 8/2 and 9/2; and ii) maximum difference between two SSRs of 100 bp. For putative
function determination and annotation, EST sequences containing SSRs were compared with
the public sequence database using BLASTX against the non-redundant (NR) protein database
(http://www.ncbi.nih.gov/BLAST/; [42]) and with the cacao protein-coding sequence database
(http://cocoagendb.cirad.fr; [19]). Alignments showing similarity with an expected value
(e-value)�1.10−7 were considered significant. The GO annotation for the ESTs containing
SSRs were performed using Gene Ontology Consortium tools (http://www.geneontology.org/)
[43] and then manually inspected and classified as previously described [44]. The primers were
designed using the Primer3 software (http://primer3.wi.mit.edu/) according to the following
criteria: i) amplicon size of 100–300 bp; ii) primer length of 17–23 bases; iii) melting tempera-
ture of 56–60°C; and iv) GC content of 40%-60%. See Fig 1 for the general scheme of data min-
ing for SSR identification.
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Location of the EST-SSR in relation to the coding sequence of the cDNA
The open reading frame (ORF) of the 70 chosen ESTs was determined using the ORF Finder
program (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and by comparison with cacao genome

Table 1. Origin of the cupuassu genotypes from the Brazilian breeding programs used in this study. AM: Amazon State from Brazil; AP: Amapá State
from Brazil; PA: Pará State from Brazil.

Genotype Original crossing(♀ x ♂) ♀ origin ♂ origin

32 174 x 186 Coari—AM Codajás—AM

42 186 x 434 Codajás—AM Muaná—PA

44 186 x 434 Codajás—AM Muaná—PA

46 186 x 215 Codajás—AM Manacapuru—AM

47 186 x 1074 Codajás—AM Itacoatiara—AM

48 186 x 1074 Codajás—AM Itacoatiara—AM

51 215 x 624 Manacapuru—AM Santarém—PA

56 186 x 1074 Codajás—AM Itacoatiara—AM

57 186 x 513 Codajás—AM Oiapoque—AP

61 220 x 228 Manacapuru—AM Manaus—AM

62 220 x 185 Manacapuru—AM Codajás—AM

63 174 x 248 Coari—AM Itacoatiara—AM

64 220 x 185 Manacapuru—AM Codajás—AM

174 - Coari—AM -

186* - Codajás—AM -

215 - Manacapuru—AM -

1074 - Parintins—AM -

* This genotype was used in some of the original crosses but was not used in the subsequent analysis presented in this work.

doi:10.1371/journal.pone.0151074.t001

Table 2. Pulp characteristics and response to witches’ broom disease of the cupuassu genotypes used in this study. ATT: titratable acidity; R: resis-
tant; S: susceptible; SST: total soluble solids; ST: total solids.

Genotype Physico-chemical characteristics of pulp Response to witches’ broom disease

pH SST ATT Humidity ST SST/ATT

32 3.7 12.2 1.7 82.3 17.7 7.0 R

42 3.6 12.7 1.7 84.0 16.0 7.5 R

44 3.3 16.0 2.4 83.9 16.1 6.7 R

46 3.6 11.3 1.6 85.4 14.6 6.9 R

47 3.9 10.3 1.2 88.1 11.9 8.4 R

48 3.2 11.0 2.2 86.0 14.0 5.0 R

51 3.4 10.6 1.6 85.1 14.9 6.7 R

56 3.4 13.0 2.2 83.2 16.8 5.8 R

57 3.7 12.5 1.4 84.9 15.1 8.8 R

61 3.4 12.1 2.7 86.5 13.5 4.6 R

62 3.5 11.7 1.9 86.1 13.9 6.3 S

63 3.9 12.5 0.9 85.1 14.9 13.3 R

64 4.0 11.3 1.1 86.3 13.7 10.6 R

174 3.5 13.1 1.5 83.9 16.1 8.7 R

215 3.5 14.4 2.2 80.4 19.6 6.6 R

1074 3.5 10.7 1.8 86.0 14.0 5.9 S

doi:10.1371/journal.pone.0151074.t002
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(http://cocoagendb.cirad.fr; [19]), and the SSR was localized in relation to the ORF. The possi-
ble locations were: in the 5’ untranslated region (5’UTR), in the ORF region, or in the 3’
untranslated region (3’UTR). In some cases, due to the EST sequence length or quality, it was
not possible to clearly determine the ORF and consequently the location of the SSR.

DNA extraction, PCR amplification and electrophoresis conditions
Cupuassu and cacao DNA were extracted from young leaves as previously described [45] and
quantified using Nanodrop 2000 (Thermo Scientific). The optimization phase of the 77 prim-
ers designed was performed using the cupuassu genotypes 174 and 1074 (see Plant material).

Fig 1. Scheme used for data mining and development of EST-SSRs from cupuassu seeds and pulp.

doi:10.1371/journal.pone.0151074.g001
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For the optimization phase, PCR was performed in 13 μl containing 7.5 ng of DNA, 0.25
mmol.l-1 of each dNTPs, 10 mmol.l-1 of Tris-HCl pH 8.3, 50 mmol.l-1 of KCl, 2 mmol.l-1 of
MgCl2, 0.2 μmol.l-1 of each primer, and 1U of Taq DNA polymerase (Phoneutria). Amplifica-
tions were performed using the Mastercycler PCR 5333 thermocycler (Eppendorf), using the
following conditions: 96°C for 2 min, 30 cycles at 94°C for 1 min, 58°C for 1 min, 72°C for 1
min, and a final extension step at 72°C for 7 min. Amplified fragments were analyzed by elec-
trophoresis on 4% denaturing TBE acrylamide gels. Polymorphism was evaluated by scoring
the SSR bands. When comparing the genotypes, the presence or absence of a determined band
(similar size) indicated similarity or dissimilarity between genotypes, respectively. The 10-bp
molecular marker (Invitrogen) was used as a reference to score the bands. For the confirmation
of the polymorphic primers, the amplifications were made on the 16 cupuassu genotypes
(Table 1). PCR was performed as described above, excepted for the primers that were labelled
with the M13 tail, and with the increase in the reaction of 0.2 μmol.l-1 of M13 primer labelled
with NEDTM fluorescence, and 10 μmol.l-1 of 6-FAM. The amplification products were ana-
lyzed on the ABI3500 sequencer (Applied Biosystems) using GeneScan™ 500 LIZ™ dye (Life
Technologies) as internal size standard. The allele size was defined using the GeneMarker soft-
ware. The transferability of the developed EST-SSR primers was carried out by cross-species
amplification on genomic DNA of three T. cacao genotypes (SCA6, ICS1, TSH516) using the
same PCR and electrophoretic conditions (4% denaturing TBE acrylamide gel) as described
above.

Sequencing of amplicons for marker confirmation
PCR amplifications were carried out in 20 μl reaction volume containing PCR buffer 1X (Invi-
trogen), 0.375 mM of each primer (see S1 Table), 10 ng/μl of cupuassu DNA (genotypes 1074
and 174) and 0.5 U of Taq polymerase (Invitrogen). Thermocycling conditions consisted of an
initial melt at 95°C for 5 min followed by 28 cycles of 95°C for 30 s, 58°C for 90 s, 72°C for 30 s
and a final extension step of 72°C for 10 min. All amplifications were performed in a MyCycler
thermocycler (Bio-Rad Laboratories). PCR amplification reactions were checked on electro-
phoresis on 1.8% agarose gel stained with Gel-red I (Invitrogen). PCR products were cleaned
with ExoSap-IT (USB) according to the manufacturer’s instructions. Sequencing was per-
formed on the ABI3100 equipment (Applied Biosystems) at Ceplac (Bahia, Brasil). The confir-
mation of the SSR marker was based on the comparison of number of repeated sequences of
each allele among the different genotypes.

Genetic diversity and statistical analysis
The amplified SSR DNA bands representing different alleles were scored on the different geno-
types. The genetic diversity parameters were assessed in terms of observed number of alleles
(Na), observed heterozygosity (Ho), and expected heterozygosity (He) using the Genetic Data
Analysis software [46]. Polymorphic information content (PIC) was obtained for each locus as
previously described [47] and null alleles were examined using Micro-checker software, v.2.2.3
[48]. Factorial Component Analysis (FCA) was made with the GENETIX software [49]. Corre-
lation test between molecular data and pulp quality or resistance to witches’ broom disease was
realized using the SAS program [50].

In silico comparison of Theobroma grandiflorum loci with Theobroma
cacao var. Criollo
For cupuassu/cacao loci comparison, T. grandiflorum ESTs were compared to cacao genome
var. Criollo (CacaoGenDB; http://cocoagendb.cirad.fr) using the blastn tool of the CacaoGenDB
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configured with the following parameters: blast against gene sequences (including UTRs and
introns) and expected e-value of 1.10−10 [19]. Specific repeat motifs observed in cupuassu loci
were searched in the corresponding region of the cacao sequence (ORF or UTRs). Primers used
for SSR analysis in cupuassu and for transferability study in cacao were also blasted on the cacao
genome using the specific Primer Blaster tool from CocoaGenDB, with an acceptability of up to
three mismatches. Each cupuassu EST and the corresponding cacao sequences were compared
and aligned using the Clustal Omega program (http://www.ebi.ac.uk/Tools/msa/clustalo/).

Results

Frequency, distribution and function of SSRs in cupuassu ESTs
Among a total of 8,330 EST sequences from cupuassu (pulp and seeds), 1,517 ESTs containing
1,899 SSRs were identified (Fig 1). Two-hundred and eighty ESTs contained more than one
SSR (data not shown). From the 1,899 EST-SSRs, nine types of motifs were identified: mono-
nucleotides (9%), dinucleotides (7.5%), trinucleotides (25.4%), tetranucleotides (10.7%), penta-
nucleotides (2.0%), hexanucleotides (0.3%), heptanucleotides (29.3%), octanucleotides (8.2%)
and nonanucleotides (7.6%) (Fig 2A). Within the mononucleotides, A and T were the most fre-
quents (4.53% and 4.27%, respectively); within the dinucleotides, AT, AG and TC were the
most frequent (1.58%, 1.47% and 1.42%, respectively), followed by the GAA (1.32%), AAG
(1.26%), CTT (1.21%), TCT and TTC (1.16%) trinucleotides (S2 Table). The tetra-, penta-,
hexa-, hepta-, octa- and nonanucleotides presented similar low frequency, mostly<0.7% (S2
Table). The motifs were found with a minimum and maximum of 2 and 19 repeats, respectively
(Fig 2B, S2 Table). From the 1,517 EST-SSRs, 44.6, 17.8, 11.3 and 7.75% presented 2, 4, 3 and
10 repeats, respectively (Fig 2B). The other highest categories were 5, 6, 7, 8 and 11 repeats
(6%, 4.1%, 2.3%, 1.7% and 1.3%, respectively) followed by the lowest categories (12, 9, 13, 14,
15, 16, 17, 19 repeats, all<1%; Fig 2B). The mono-, di- and trinucleotides were the most
repeated (repeat number 6 to 19; Fig 2C). Tetranucleotides were repeated three to six times,
pentanucleotides three to five times, hexanucleotides five times, hepta- and nonanucleotides
two to four times and octanucleotides two times (Fig 2C). From the 1,517 ESTs containing
SSRs, 70 ESTs were selected based on their functional annotation focusing mainly on sequences
potentially involved in the pulp and seed quality characteristics or development, but also in
other potentially interesting regulating sequences (e.g. transcription factors) or sequences
related to resistance (Fig 3; S1 Table). From these, 24.29% were related to primary metabolism,
including lipid (10%) and sugar metabolisms (1.43%), 21.43% were related to gene expression
and RNAmetabolism, 12.86% to protein synthesis and processing, 12.85% to drought, seed
development and other abiotic stresses, 10% to chromatin and DNAmetabolism, 8.57% to sig-
nal transduction and post-translational regulation, 2.86% to stress resistance, defense and
detoxification. The other categories corresponded to 7.14% (Fig 3). The 70 selected ESTs con-
tained 77 SSRs for which primers were designed (Fig 1; S1 Table). Considering these 77 SSRs in
relation to the coding sequence position, 33.7% were found in the ORF, 22.1% in the 5’UTR
and 11.7% in the 3’UTR; for 32.5% of the SSRs, the localization in relation to the ORF was not
possible (Fig 4A). The 5’UTR contained mono-, di-, tri-, tetra- and heptanucleotides, while the
3’UTR contained mono-, di-, and trinucleotides (Fig 4B). The ORF mainly contained tri- and
mononucleotides, followed by di-, tetra- and nonanucleotides (Fig 4B).

Polymorphism detection in cupuassu genotypes and diversity analysis
From the 77 SSRs selected, 22 were pre-selected, and finally 11 were confirmed as polymorphic
(Fig 1, Table 3) when tested in the cupuassu genotypes described in Table 1. The number of
alleles per EST-SSR ranged from 2 to 6 with an average of 3.18. The observed heterozygosity
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(Ho) values ranged from 0 to 0.88 with an average of 0.51, and the expected heterozygosity
(He) values ranged from 0.083 to 0.76 with an average of 0.5. PIC values of the EST-SSR ranged
from 0.32 to 0.7 with an average of 0.5 (Table 3). Eight of the SSRs were located in the ORF of
the corresponding EST (72.7%) and 3 in the 5’UTR (27.3%) (Table 3). These 11 markers used
in the genetic diversity analysis revealed a clusterization according to the resistance vs suscepti-
bility of the cupuassu genotypes; the susceptible genotypes 62 and 1074 were discriminated
from the others (Fig 5). Interestingly, the genotype 1074, that present the higher deviation, also
came from a different geographic origin (Parintins—AM; Table 1) than the other genotypes.
The diversity analysis also showed a tendency of genotype clusterization according to the SST/
ATT parameter, discriminating into two groups: i) SST/ATT� 7.0 (genotypes 32, 44, 46, 48,
51, 56, 61, 62, 215, 1074); ii) SST/ATT> 7.0 (genotypes 42, 47, 57, 63, 64 and 174) (Fig 5,
Table 2).

Transferability of EST-SSRs
The transferability of the cupuassu EST-SSRs to T. cacao was analyzed by cross-species amplifi-
cation. From the 22 pre-selected EST-SSRs (polymorphic or not in cupuassu; Fig 1), 17
amplified cacao DNA, which corresponds to a transferability rate of 77% (Table 4). The ampli-
fications were within the expected size, and 14 of the 17 cupuassu SSRs were polymorphic in
cacao (Table 4). From the 11 EST-SSRs polymorphic in cupuassu, 8 were transferable to cacao
and 6 were also polymorphic in this species (Tables 3 and 4). The 11 polymorphic locus of
cupuassu were also compared to the cacao genome database (cacao var. Criollo) and several
homolog sequences were encountered (Table 5). Eight cupuassu loci presented polymorphism
when compared to cacao: six of them presented the same repeat motif, but with less repeats

Fig 2. Frequency of 1899 EST-SSRs with different motifs and repeat number. A. Frequency of EST-SSRs with mono-, di-, tri-, tetra-, penta-, hexa-,
hepta-, octa- and nonanucleotide motifs. B. Frequency of EST-SSRs with 2 to 19 repeat motifs. C. Frequency of mono-, di-, tri-, tetra-, penta-, hexa-, hepta-,
octa- e nonanucleotide motifs for each repeat number category.

doi:10.1371/journal.pone.0151074.g002
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Fig 3. Functional annotation of the 70 ESTs selected for primer design. The frequency of each category was indicated.

doi:10.1371/journal.pone.0151074.g003

Fig 4. Frequency of the 77 selected EST-SSRs in the different sequence region. A. Frequency of the EST-SSRs according to sequence structure. B.
Frequency of repeat motif in each sequence region. ORF: open reading frame; UTR: untranslated region, nd: undetermined.

doi:10.1371/journal.pone.0151074.g004
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(c2723, c5718, c70, c180, c193B, c203B) for at least one homolog sequence, and 2 of them did
not present the repeat motif (c3202/3202B, c733; Table 5). Two loci showed the same motif/
repeat number in cupuassu and cacao (c339, c431B; Table 5). The in silico analysis showed that
some primers were transferable allowing the identification of a polymorphic locus (e.g. c2723;
Fig 6A, Tables 4 and 5). Some primers were transferable but the locus was non-polymorphic
(e.g. c339; Fig 6B, Tables 4 and 5). The two other situations corresponded to primers that were
not able to amplify the cacao gene, whatever if the locus was polymorphic or not (e.g. c193,
c733; Fig 6C, Tables 4 and 5). It is interesting to note that some loci were transferable to cacao
but presented different polymorphism depending on the cacao variety analyzed: for example,
the c431B locus is polymorphic in SCA6/ICS1/TSH516 varieties (Table 4) but did not pre-
sented potential polymorphism in the in silico analysis using the Criollo variety (Table 5).

Discussion
In this article we obtained and analyzed a large number of ESTs from Theobroma grandiflorum
(cupuassu) with the objective to identify new SSR markers useful for marker assisted selection
in cupuassu with respect to both quality and resistance to witches’ broom disease. Both of these
characteristics are important from a practical point of view for increasing the development of
cupulate production or pulp-derived products, as an alternative to chocolate production

Table 3. Characteristics of elevenmicrosatellite loci derived from cupuassu ESTs analyzed in cupuassu genotypes (see Table 1). He: expected het-
erozygosity; Ho: observed heterozygosity; Na: number of alleles; PIC: polymorphic information content. For all the locus/primers, the annealing temperature
was 58°C.

Locus
name

Putative gene function Organism Repeat motif Marker validation Position in
sequence

Amplicon
sizerange (bp)

Na He Ho PIC

c2723a,b AML1 Citrus unshiu (CAT)6 265–280 4 0.52 0.63 0.44 ORF

c5718a,b Disease resistance
protein RPM1

Ricinus
communis

(CTC)5 258–267 4 0.65 0.44 0.57 ORF

c70a,b Ethylene-responsive
element-binding factor

Gossypium
hirsutum

(AGA)6 135–141 2 0.40 0.4 0.32 5’UTR

c3202 CBL-interacting serine/
threonine-protein kinase

Ricinus
communis

(GAA)6 258–297 3 0.58 0.85 0.50 ORF

c3202Ba,b CBL-interacting serine/
threonine-protein kinase

Ricinus
communis

(GAA)6 239–293 6 0.50 0.50 0.45 ORF

c733 Ubiquitin-activating
enzyme E1

Ricinus
communis

(CAA)2(CAA)2 88–94 2 0.52 0.67 0.43 ORF

c180a Eukaryotic translation
initiation factor 5A isoform

I

Hevea
brasiliensis

(GA)8 200–212 2 0.20 0.00 0.70 5’UTR

c193B DNA-binding protein Vitis vinifera (GAT)4 297–315 2 0.52 0.88 0.38 ORF

c203Ba,b Nuclear acid binding
protein

Ricinus
communis

(TTGACCCGC)2 157–211 2 0.08 0.08 0.50 ORF

c339a Transcription factor Ricinus
communis

(AAAT)2 137–147 4 0.60 0.50 0.40 ORF

c431Ba,b Ribosomal protein S14 Nicotiana
tabacum

(A)10(TA)8(TA)6(TA)10 231–276 4 0.76 0.64 0.40 5’UTR

Mean 3.18(35)* 0.50 0.51 0.50 -

a Transferable to cacao genotypes SCA6, ICS1 and TSH516 –see also Table 4
b Polymorphic in cacao genotypes SCA6, ICS1 and TSH516 –see also Table 4

* Total number of alleles

doi:10.1371/journal.pone.0151074.t003

Cupuassu EST-SSRs Development and Transferability

PLOS ONE | DOI:10.1371/journal.pone.0151074 March 7, 2016 10 / 19



declared in crisis [12, 13]. Moreover, the cupuassu breeding program needs the insertion of
new markers for genetic fine mapping and selection of genome regions specifically involved in
quality and/or resistance, in order to complement previous genetic analysis of cupuassu popu-
lation [14, 15, 17]. Here we obtained SSR markers from NGS ESTs of cupuassu genotypes with
different levels of resistance to witches’ broom disease and pulp quality. It is important to high-
light that we produced the first EST database from cupuassu as well as the first EST-SSRs for
this species. In cacao, more than 200,000 ESTs from different plant genotypes and organs sub-
mitted or not to different biotic and abiotic stresses [18, 44, 51–54], and more than 2,000 SSRs
(whose 1631 [81%] were EST-SSRs) were already obtained (S3 Table) whereas in cupuassu,
only genomic SSR were previously found (unpublished data, R.M. Alves). Furthermore, ESTs
for use in molecular studies related to pulp or bean quality from the Theobroma genus are rare
[18, 53].

Under these conditions, our results are highly relevant due to the large amount of ESTs gen-
erated (8,330) as well as the functional data associated to some of the EST-SSR identified (Fig
3). SSRs were detected in 18% of the ESTs analyzed (Fig 1), which corresponds to a high fre-
quency comparing to data produced from other crops [24, 55, 56] with similar technical
approaches (e.g. NGS, Misa analysis). Here, the highest proportions of EST-SSRs identified
were hepta- and trinucleotides (29.3% and 25.4%, respectively; Fig 2A). Trinucleotides were
generally considered as the most abundant class of SSRs in plant ESTs [27, 55–57] but other

Fig 5. Distribution of the 16 genotypes of cupuassu (resistant and susceptible, described in Table 1) based on allele frequencies using eleven
polymorphic SSRmarkers (Table 3) and pulp quality characteristics (Table 2). The susceptible cupuassu genotypes were indicated by squares (62 and
1074); the other ones were susceptible and indicated by diamonds. The cupuassu genotypes with SST/ATT parameter >7.0 were indicated in red; those with
SST/ATT parameter� 7.0 were indicated in blue. Orange circle separated the susceptible genotypes to the resistant ones (green circle).

doi:10.1371/journal.pone.0151074.g005
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works also indicated dinucleotides [33, 58]. Since the addition or deletion of three nucleotides
within translated regions usually does not affect the ORFs, it is not uncommon to detect a high
abundance of these repeat motifs in EST-SSRs [59, 60], as we observed in our results (Fig 4B).
But generally, it is accepted that the abundance of one or other SSR class may be due to the
search criteria used for EST mining [26, 58, 61]. Nevertheless, the search criteria used for EST
mining influences the frequency of the repeat number of the SSRs motifs; here the most fre-
quent repeat number were 2, 4, 3 and 10 (44.6%, 17.8%, 11.3% and 7.75%, respectively; Fig 2B).
Moreover, the SSRs containing the highest repeat numbers (10 to 19) were also the ones that
contained exclusively mono- and dinucleotides (Fig 2C), while the SSRs with the lowest repeat
numbers (2 to 6) contained larger motifs (tetra- to nonanucleotides; Fig 2C).

From the 1,899 EST-SSRs identified, 77 were tested as to their polymorphism in 16
cupuassu genotypes and 11 were polymorphic (Table 3). The PIC values (average 0.5; Table 3)
observed here was closed to the ones found in cacao and cupuassu studies using genomic SSR
[14, 62]. Such polymorphism was associated to genetic diversity of cupuassu according to the
resistance parameter (characteristic that better discriminated the cupuassu genotypes) and, to a
lesser extent, to SST/ATT parameter (Fig 5). The ATT data found in our study were consistent
with the results obtained in other evaluations [63, 64], and 13 of the 16 genotypes studied
(81%) presented ATT values higher than the minimum required (1.5; Table 2) [65]. The pH of
cupuassu genotypes used here also showed values closed to those observed in other studies [63,
64, 66, 67] and all the genotypes (100%) presented values higher as to the required limit for
good cupuassu quality (2.6; Table 2) [65]. The SST content also were consistent with other
studies [63] and higher to the required limit [65] (Table 2); it is important to note that the har-
vesting period could influence the pulp quality as observed in other analyses where the SST val-
ues were lower than the expected values [64, 67]. Genotypes 63 and 64 showed the highest
SST/ATT and for this reason may be considered as good candidate for breeding programs

Table 4. Transferability analysis of the EST-SSRs from cupuassu to Theobroma cacao.

Locus Cacao genotypes Observed size range (bp)

SCA6 ICS1 TSH516

c2723* 153 159 156 153–159

c8207 - 166 - 166

c5718* 117/126 117/126 117 117–126

c70* 204 204 207 204–207

c3202B* 170 173 173 170–173

c180* 104 104 - 104

c203B 130 130 139 130–139

c1251 132 132 130 130–132

c339* - - 115 115

c2763 154 158 158 154–158

c5718B 174 170 174 170–174

c431B* 156 153 153 153–156

c431C 150 146 156 146–156

c432 136 146 146 136–146

c8097 188 190/200 190 188–200

c618 - - 156/164 156–164

c1295 152 156 156 152–156

*Polymorphic in cupuassu (see also Table 3)

doi:10.1371/journal.pone.0151074.t004
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Table 5. Comparison of the 11 polymorphic Theobroma grandiflorum loci (see Table 4) with the cacao genome database (Theobroma cacao var.
Criollo; CocoaGenDB—http://cocoagendb.cirad.fr). Chr.: chromosome; F: forward primer; R: reverse primer; (-) indicates no specific repeat type in the
corresponding gene region.

Theobroma grandiflorum Theobroma cacao

Locus
name

Sequence
size (bp)

Repeat motif(n°
of repeat)

Position in
sequence

E-
value

Identity
(%)

Locus ID Chr. Putative gene function Repeat motif(n°
of repeat)

c2723 317 (CAT)6 ORF 1E-
129

95.9 Tc06_g013290 Tc06 AML1 (CAT)5

c5718 684 (CTC)5 ORF 0 87.14 Tc07_p005960 Tc07 Disease resistance
protein RPS2

(CTC)4

c70 761 (AGA)6 5’UTR 0 96.18 Tc09_p008690 Tc09 Profilin-1 (AGA)3
2E-21 84.9 Tc09_p004370 Tc09 Profilin-1 (AGA)1

c3202 452 (GAA)6 ORF 1E-
175

91.85 Tc04_p030640 Tc04 CBL-interacting serine/
threonine-protein kinase

1

-

c3202B 452 (GAA)6 ORF 1E-
175

91.85 Tc04_p030640 Tc04 CBL-interacting serine/
threonine-protein kinase
1

-

c733 1880 (CAA)2(CAA)2 ORF 0 96.93 Tc09_p034380 Tc09 Ubiquitin-activating
enzyme E1 2

-

1E-
180

85.22 Tc09_p034390 Tc09 Ubiquitin-activating
enzyme E1 2

-

c180 881 (GA)8 5’UTR 0 94.14 Tc02_p032650 Tc02 Eukaryotic translation
initiation factor 5A-2

(GA)6

2E-34 88.18 Tc03_p010560 Tc03 Eukaryotic translation
initiation factor 5A

(GA)1

4E-26 86.21 Tc09_p002800 Tc09 Eukaryotic translation
initiation factor 5A

(GA)2

c193B 1974 (GAT)4 ORF 1E-15 89.47 Tc05_p005710 Tc05 WRKY transcription
factor 44

-

4E-12 94 Tc07_p002020 Tc07 WRKY transcription
factor 20

-

3E-47 87.21 Tc05_p001480 Tc05 Predicted protein (GAT)1

0 96.92 Tc09_p034740 Tc09 DNA-binding protein (GAT)2

7E-11 86.25 Tc07_p000190 Tc07 WRKY transcription
factor 2

(GAT)1

c203B 1507 (TTGACCCGC)2 ORF 0 97.1 Tc06_p019000 Tc07 Hypothetical protein (TTGACCCGC)1

1E-48 88.64 Tc06_p008790 Tc06 Nuclear acid binding
protein, putative

-

c339 2695 (AAAT)2 ORF 9E-42 93.85 Tc04_p020630 Tc04 LRR receptor-like
serine/threonine-protein
kinase GSO2

-

0 97.19 Tc08_p005660 Tc08 Transcription factor
bHLH145

(AAAT)2

6E-12 82.31 Tc02_p010840 Tc02 Uncharacterized protein -

c431B 2301 (A)10(TA)8(TA)6
(TA)10

5’UTR 5E-52 96.24 Tc05_p000610 Tc05 Ribosomal protein S4,
mitochondrial

-

2E-11 100 Tc05_p000830 Tc05 Hypothetical protein -

0 99.15 Tc05_p001190 Tc05 Hypothetical protein (A)10(TA)8(TA)6
(TA)6

1E-37 94.17 Tc05_p001180 Tc05 Cytochrome b -

0 99.34 Tc05_p001200 Tc05 Ribosomal protein S14,
mitochondrial

-

8E-11 100 Tc05_p000730 Tc05 Hypothetical protein -

3E-13 90.62 Tc01_p014050 Tc01 Uncharacterized protein -

doi:10.1371/journal.pone.0151074.t005
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(Table 2). Generally, these data suggested that the cupuassu germplasm collection, as well as
the cupuassu breeding program, generated material with high genetic variability related to pulp
quality, and that the marker found here could be used for subsequent analysis of new crosses
for cupuassu population and potentially for use in other Theobroma species.

Because EST-SSRs are generated from coding and expressed sequences, which are generally
well conserved between species, the possibility to find conserved primers flanking the repeats—
and possibly polymorphic—motifs, is high [26, 41]. Here we observed in vitro and in silico
marker transferability between cupuassu and different varieties of cacao (resistant and suscep-
tible to witches’ broom disease; Tables 4 and 5). Generally, the in silico analysis confirmed the
in vitro results, and different transferability situations were observed (Table 5 and Fig 6).
Transferability requires not only polymorphism between cuapuassu and cacao sequences, but
also good primer design, able to amplify the polymorphic regions (Fig 6A). Therefore, the
availability of the cacao genome and the study of the family of genes with interesting function
can help to design primers able to amplify—and consequently to be efficiently transferred—

Fig 6. Alignment between cupuassu ESTs and genomic cacao sequence (Criollo variety, see also Table 5) showing the different possible
transferability situations. A. Transferable primers and polymorphic locus.B. Transferable primers and non-polymorphic locus.C. Untransferable primer
and polymorphic locus.D. Untransferable and non-polymorphic locus.

doi:10.1371/journal.pone.0151074.g006
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between different species from the same genus. It is important to note that we report the first
cupuassu-cacao marker transferability; whereas only a few studies of transferability between
the two Theobroma species have been already reported and always from cacao to cupuassu [38,
68]. The first report used cacao markers previously developed [69] (S3 Table) to define the nat-
ural mating system of Theobroma grandiflorum in its putative center of diversity [38] while the
second specifically deals with marker transferability from cacao to cupuassu [68]. The poly-
morphism rate calculated in these studies was lower (43.8%; Alves et al., 2006) than the one
obtained here from EST-SSRs (77%; Fig 1, Table 4). Generally, in the work presented here we
obtained a higher transferability (77%) than presented in other tests regarding marker transfer-
ability between correlated species [31, 35, 70]. The success of transferability between species as
observed for coffee [71], rice [70], bananas [72], barley [73] and gerbera [74] is due to saving
time and costs in the development of new markers.

Conclusion
Here we obtained the first EST-SSRs from cupuassu. These markers were polymorphic in
cupuassu and allowed diversity analysis of the studied genotypes, mainly in relation to pulp
quality. Moreover, these markers were transferable to cacao genotypes. The detection of
EST-SSRs was also an important point regarding sequence function; the sequences containing
ESTs will be good candidates for functional studies related to pulp and seed quality as well as to
resistance to witches’ broom disease. Moreover, these markers may contribute to develop or
saturate both the cupuassu and cacao genetic maps, respectively.
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