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INTRODUCTION 

 

In Brazil, the current estimation of breeding values 

(EBVs) of production traits for dairy bulls and cows in 

Brazilian selection programs is based on a 305-day lactation 

model (LM). This standard approach in estimating EBVs 

has some disadvantages when the available test day records 

are projected to a 305-day lactation milk yield and the 

projection factors assume a standard shape of the lactation 

curve (Sawalha et al., 2005; Bilal and Khan, 2009). On the 

other hand, using test day records directly has become the 

most used approach in genetic models designed for 

breeding value estimation of production traits in dairy cattle 

populations, replacing the traditional 305-day lactation milk 

yield (305MY) evaluations (Muir et al., 2007; Dzomba et 

al., 2010; Bignardi et al., 2011; Cobuci et al., 2011). 

Random regression models (RRM) are used to fit a 

linear model to obtain random regression coefficients and 

from them the estimation of genetic parameters and the 

prediction of breeding values (Jamrozik and Schaeffer, 

1997). Some advantages of RRM include more accuracy for 

accounting environmental factors that affect cows at 

different stages of the lactation curve and increase of the 

accuracy in genetic evaluations (Costa et al., 2008; 

Abdullahpour et al., 2010; Naranchuluum et al., 2011). In 

addition, RRM permit evaluation and ranking animals 

(cows or bulls) for each test-day by estimating a breeding 

value for each test day yield. These sets of breeding values 
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define the genetic lactation curve for each animal as 

deviation from the average trajectory of the population (or 

groups of individuals), and may allow the selection of 

animals whose lactation curves are more persistent (Cobuci 

et al., 2011). 

Several studies have shown that there may be 

divergences between breeding values estimated by LM and 

RRM (Lidauer et al., 2003; Melo et al., 2007) as well as 

between parameters obtained by fitting RRM using 

different covariance functions (Kim et al., 2009; Ç ankaya et 

al., 2014). Legendre polynomials (LP) have been the 

preferred function to fit RRM, but there is not a consensus 

in literature about the best order to use (Biassus et al., 2010; 

Ç ankaya et al., 2014; Aliloo et al., 2014). Canada, Italy and 

United Kingdom are already using a fourth or fifth order LP 

to fit RRM in their national genetic evaluations (Muir et al., 

2007). The lack of consensus about the most suitable 

models enforce the importance of defining the best 

modeling of the covariance structure of RRM when using 

test day records for genetic evaluation of dairy cattle 

populations.  

The purpose of this study was to compare genetic 

parameters and breeding values estimates obtained by 

fitting a traditional 305-day LM and random regression test 

day models using LP to predict breeding values for milk 

yield trait of Holstein cattle in Brazil. 

 

MATERIAL AND METHODS 

 

Data consisted of milk yield collected by the Milk 

Recording Services of the Brazilian Association of Holstein 

Breeders (ABCBRH) and its state affiliates between 1990 

and 2011. The data were edited to include only records of 

first lactation cows between 18 and 48 months of age at 

calving, with full pedigree information and at least six test 

day records during 6 to 305 days of lactation. The records 

were removed from original data if 305-d lactation and test 

day milk yields were out of the range of 3,400 to 11,525 kg 

and of 9.88 to 43.45 kg, respectively.  

The contemporary groups (CG) were defined by cows 

calving at the same herd-year-season of calving (LM) or the 

same herd-year-month of calving (RRM). The CG was 

edited to contain at least four records of cows, progeny of 

bulls with at least two daughters in two different herds. 

Four classes of age at calving (18 to 25, 26 to 27, 28 to 29, 

and 30 to 48 months) and four calving seasons (January 

through March, April through June, July through September 

and October through December) were combined to produce 

16 age-season classes. Two datasets including the same 

animals, belonging to 296 herds, consisted of 30,228 

lactation records totaling 262,426 test days records from 

daughters of 2,726 bulls were used in this study. The 

pedigree file included 59,486 animals. 

The 305-day lactation records were analyzed by a single 

trait animal model (LM) including the fixed effects of herd-

year-season of calving and age at calving (linear covariable) 

and the random additive genetic animal and residual effects 

in order to estimate genetic parameters and breeding values 

for 305MY, as follows: 

 

𝒀𝒊𝒋 = 𝑯𝒀𝑺𝒊 + 𝒃𝒏𝒙𝒊𝒋 + 𝒂𝒊𝒋 + 𝒆𝒊𝒋 

 

where Yij is the cumulative milk yield at 305 days of 

animal j on herd-year-season of calving i, HYSi is the fixed 

effect of herd-year-season i, bn is the linear covariable for 

305-day yield as a function of age at calving, xij is the age 

of cow at calving, in months; aij is the additive genetic 

effect of animal j on herd-year-season of calving i, eij is the 

residual effect. 

The test day milk yields (TDMY) were analyzed in 

order to obtain genetic parameters and cumulative EBVs for 

305MY using the following model:  

 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝐻𝑌𝑀𝑖 + ∑ ∅𝑘(𝐷𝐼𝑀𝑡) 𝛽𝑚𝑘

𝑛

𝑘=1

+ ∑ ∅𝑘(𝐷𝐼𝑀𝑡) 𝑢𝑗𝑘

𝑛

𝑘=1

+ ∑ ∅𝑘(𝐷𝐼𝑀𝑡) 𝑝𝑒𝑗𝑘

𝑛

𝑘=1

+ 𝑒𝑖𝑗𝑘𝑙𝑚 

 

Where yijkl is the i-th test day record of cow j made on 

day in milk t within herd-year-month of test (HYM) 

subclass l; βmk are kth fixed regression coefficient specific 

for the mth subclass of calving age-season classes; HYMl = 

fixed effect herd-year-month of testing; ujk and pejk are the 

kth random regression coefficients that describe, 

respectively, the additive genetic effects and the permanent 

environmental effects on cow j; Ø k(DIMt) are the LP for the 

test day record of cow j made on day in milk t, in which k is 

the nth parameter of coefficient of LP of 4th and 5th orders; 

and eijkl is the random residual. The RRM referring to the 

fourth and fifth orders LP were designated as RRM4 and 

RRM5, respectively. Many studies in literature have pointed 

out these orders as recommended as well as they have 

already been used in Canada, Italy and United Kingdom for 

genetic evaluations (Muir et al., 2007). 

It was assumed that: 

 

𝑣𝑎𝑟 [
𝒖
𝒑𝒆
𝒆

] = [
𝑨 ⊗ 𝑮 0 0

0 𝑰 ⊗ 𝑷 0
0 0 𝑹

] 

 

G and P are covariance matrices of the random 

regression coefficients, R = Iσ2
e is a diagonal matrix 

(residual) and ⊗ is a Kronecker product between matrices. 
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The LP are defined for the range of –1 to +1, thus the 

days in milk values were transformed as below (Kirkpatrick 

et al., 1994), 

 

𝐷𝐼𝑀𝑡
∗ = −1 +

2(𝐷𝐼𝑀𝑡 − 𝐷𝐼𝑀𝑚𝑖𝑛)

𝐷𝐼𝑀𝑚𝑎𝑥 − 𝐷𝐼𝑀𝑚𝑖𝑛
, 

 

Where DIMmin and DIMmax are minimum and maximum 

values for the days in milk (DIM). 

For the t-th standardized days in milk (DIM*
t), the k-th 

polynomials is given as follows: 

 

∅(𝐷𝐼𝑀𝑡
∗)𝑘

=
1

2𝑘
√

2𝑘 + 1

2
∑(−1)𝑚 (

𝑘
𝑚

) (
2𝑘 + 1

𝑟
) (𝐷𝐼𝑀𝑡

∗)𝑟−2𝑚

𝑘/2

𝑚=0

 

 

Where k/2 = (k-1)/2 if k is odd and m is an index 

number needed to determine the k-th polynomial. 

Variance components, genetic parameters and EBVs for 

305MY from RRM or LM models and the covariance 

matrices of random regression coefficients were estimated 

by using REMLF90 software (Misztal et al., 2014) which 

uses the Method of Restricted Maximum Likelihood 

(REML). 

The EBV of animal i for test day t was calculated by: 

 

𝐸𝐵𝑉𝑖𝑡 = 𝒛´𝑡�̂�𝑖 = ∑ 𝛼𝑖𝑗

𝑘𝑎−1

𝑗=0
𝜙𝑗(𝐷𝐼𝑀𝑡) 

 

Where î  is a (ka×1) vector of the estimates of 

additive genetic random regression coefficients specific to 

the animal i, and zt is a (ka×1) vector of LP coefficients 

evaluated at day t. An example for fifth order polynomial 

was presented as follow: 

 

�̂�𝑖 = 

[
 
 
 
 
�̂�𝑖0

�̂�𝑖1

�̂�𝑖2

�̂�𝑖3

�̂�𝑖4]
 
 
 
 

, 𝒛𝑡 = 

[
 
 
 
 
𝜙0𝑡

𝜙1𝑡

𝜙2𝑡

𝜙3𝑡

𝜙4𝑡]
 
 
 
 

 

 

 

z 3́05 for fifth-order LP used under study was as follows: 
 

z’305 = [212.132 –1.276756E–15 1.586427 2.529227E–15 

2.144969] 

 

The 305-day random regression breeding value of 

animal i was obtained by summing the EBVs from day 6 to 

305 days in milk, which was illustrated for example for a 

fifth order LP as follows: 

 

𝐸𝐵𝑉𝑖 = ∑ (�̂�𝑖0𝜙0𝑡 + �̂�𝑖1𝜙1𝑡 + �̂�𝑖2𝜙2𝑡 + �̂�𝑖3𝜙3𝑡 +305
𝑡=6

�̂�𝑖4𝜙4𝑡) 

 

REMLF90 software (Misztal et al., 2014) was also used 

to estimate the standard error of prediction (SEP) of EBVs. 

The SEP was calculated as the square root of the prediction 

error variance. All reliabilitiy values were derived from 

standard errors (SE) of the EBVs, as r2 =  1 − (𝑆𝐸2/𝜎𝑎
2), 

where σ2
a was the additive genetic variance for the trait and 

r2 is the correlation between the true breeding value and 

estimated breeding values (Misztal and Wiggans, 1988). 

The models were compared according to the goodness 

of fit, using the values of residual variance (RV), the 

Akaike’s information criterion, AIC = –2logL+2 p, and 

Schwarz’s Bayesian information criterion, BIC = –2logL+p 

log (λ), where p is the number of parameters in the model. 

Using REML, λ = n–r(X), n being equal to the number of 

test day records and r(X) equal to the rank of the systematic 

effects incidence matrix. The model is chosen based on the 

lowest values of AIC and BIC. Additionally, a log-

likelihood ratio test (LRT) of the likelihood was applied to 

test the significant differences between models with 

different orders of LP. The null hypothesis (H0) implied that 

restricted likelihood functions of the models did not differ 

when the number of parameters increased. The calculated 

value of LRT was compared to the chi-square table (x2) with 

ten degrees of freedom with level of significance set at 5%. 

 

RESULTS 

 

The goodness of fit of RRM showed lower values of 

estimates of the maximum of the likelihood function 

(–2LogL), AIC and BIC tests (Table 1) for RRM4 and lower 

RV for RRM5. The difference in the –2LogL between RRM4 

and RRM5 tested by LRT was significant (p<0.05) by the 

chi-square statistic. Thus the null hypothesis of equality of 

RRM was rejected. 

Table 1. Number of parameters (p), estimates of the maximum of the likelihood function (–2 Log L), Akaike’s information criterion 

(AIC), Bayesian information criterion (BIC), residual value (RV), likelihood ratio test (LRT) and chi-square statistics (x2) for random 

regression models using Legendre polynomials 

Model p –2 Log L AIC BIC RV LRT x2 

RRM4 21 1,328,860.6 1,328,902.6 1,328,974.4 5.402 - - 

RRM5 31 1,475,279.4 1,475,341.4 1,475,447.4 4.887 146,418.8* 18.30 

RRM4 and RRM5, random regression models fitted by fourth and fifth order Legendre polynomials. 

* p<0.05. 
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The heritability for the 305MY estimated by RRM4 and 

RRM5 were equal 0.23 and 0.24 and slightly higher than 

0.21, the value obtained for 305MY by LM (Table 2). 

Additive genetic variances from RRM4 (402,908.3 kg2) and 

RRM5 (400,119.7 kg2) were higher than the value from LM 

(311,000 kg2). The estimates of heritability, additive genetic 

and permanent environmental variances of test day yields 

from 6 to 305 days in milk ranged from 0.16 to 0.27, from 

3.76 to 6.88 kg2 and from 11.12 to 20.21 kg2, respectively 

(Figure 1). 

Additive genetic and permanent environmental 

correlations among test days along days in milk ranged 

from 0.20 to 0.99 and from 0.07 to 0.99 for RRM4 and 

RRM5, respectively (Figure 2). High additive genetic 

correlations were observed between adjacent test day milk 

yields and were close to 1 mainly during mid-lactation, but 

decreased with the increasing of distance between test days. 

The standard deviations of average 305MY EBVs of 

bulls from RRM4 and RRM5 models increased from 11% to 

31%, when progeny sizes decreased from 200 to 399 to 10 

to 24 compared to those from LM (Table 3). For cows, 

differences between standard deviations of 305MY EBVs 

from RRM4 and RRM5, and those from LM ranged from 

26% to 31%, depending on number of test days. 

The rank correlation between EBVs for 305MY from 

LM and EBVs for 305MY from RRM4 and RRM5 models 

for bulls increased from 0.86 to 0.95 with the increase in 

bulls’ progeny size (Table 4). Rank correlations were higher 

than 0.80 for cows and, in general, increased from 0.83 to 

0.87 when the number of test days increased from 6 to 10. 

The rank correlations between EBVs for 305MY from 

LM and RRM4 and RRM5 were equal to 0.87 and 0.86 for 

Table 2. Estimates of additive genetic (σ2
a), residual (σ2

e) and 

permanent environmental (σ2
pe) variance components and 

heritability coefficients (h2) for 305-day milk yield (305MY) 

estimated from LM, RRM4 and RRM5 models 

Model h2 σ2
a σ2

e σ2
pe 

RRM4 0.23 402,908.3 486,000.0 843,284.2 

RRM5 0.24 400,119.7 439,830.0 849,730.5 

LM 0.21 311,000.0 1,181,000 - 

LM, 305-day lactation model; RRM4 and RRM5, random regression 

models fitted by fourth and fifth order Legendre polynomials. 

Figure 1. Heritability (h2), additive genetic (AG) and permanent 

environmental (PE) variances of test day milk yields on days in 

milk estimated from random regression models fitted by fourth 

(RRM4) and fifth (RRM5) order Legendre polynomials. 

 

 

Figure 2. Additive genetic correlation estimates (rg; left) and permanent environmental correlation (rpe; right) between test-day milk yield 

along days in milk estimated from random regression models fitted by fourth (RRM4) and fifth (RRM5) order Legendre polynomials. 
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all cows and 0.89 (for both RRM) for all bulls (Table 5). 

These correlation estimates decreased from 0.89 to 0.69 

when proportion of selection of top bulls was 10% and 

decreased to 0.85 when proportion of selection was 1%. 

When the proportion of selection decreased from 60% to 

10%, the rank correlation decreased from 0.78 to 0.57. 

The rank of EBVs for 305MY for the ten top bulls 

estimated from RRM models was different for bulls S1, S2, 

S3, S5, S6, S7, and S10 compared to those from LM but 

these sires were ranked at the top ten in both models (Table 

6). The largest differences in the rank of bulls were 

observed for bulls S4, S8, and S9, which were ranked as the 

16th, 20th, and 19th by LM model. The differences between 

the rank of top bulls may be better depicted by means of the 

trajectories of EBVs of test days on days in milk for the five 

top bulls estimated by RRM4 (Figure 3). EBVs of test days 

for bull S1 estimated from RRM were higher than those 

estimated for bull S3 mainly between 6 and 60 and between 

150 and 305 days in milk. Although S5 showed a flatter 

trajectory of EBVs on days in milk with higher EBVs 

between 6 and 120 days in milk, S4 presented higher test-

day EBVs between 120 and 305 days in milk compared to 

S5. 

The number of bulls evaluated by RRM4 and RRM5 

Table 4. Spearman rank correlation between EBVs for 305MY estimated from LM and EBVs for 305MY from RRM4 and RRM5 models 

for bulls and cows according to progeny size and number of test days 

Bulls  

progeny size 
Number of bulls 

Models Cows number of 

test days 
Number of cows 

Models 

RRM4 RRM5 RRM4 RRM5 

200 to 399 29 0.95 0.95 10 9449 0.87 0.86 

100 to 199 74 0.97 0.97 9 9569 0.86 0.86 

50 to 99 154 0.92 0.92 8 5433 0.86 0.85 

25 to 49 175 0.92 0.92 7 3534 0.86 0.86 

10 to 24 352 0.86 0.86 6 2243 0.83 0.83 

EBVs, estimated breeding values; 305MY, 305-day milk yield; LM, 305-day lactation model; RRM4 and RRM5, random regression models fitted by 

fourth and fifth order Legendre polynomials. 

Table 6. Ranks of EBVs of the ten top bulls with progeny size 

higher than 49 selected by EBVs for 305MY estimated from 

RRM4 and RRM5 and respective ranks from LM 

Sire Progeny size RRM4 RRM5 LM 

S1 143 1 1 2 

S2 64 2 2 3 

S3 51 3 3 1 

S4 80 4 4 16 

S5 90 5 5 4 

S6 235 6 6 5 

S7 145 7 7 6 

S8 162 8 8 20 

S9 154 9 9 19 

S10 79 10 13 9 

EBVs, estimated breeding values; 305MY, 305-day milk yield; RRM4 and 

RRM5 = random regression models fitted by fourth and fifth order 

Legendre polynomials; LM, 305-day lactation model. 

Table 3. Standard deviations (kg) of EBVs for 305MY estimated by RRM4 and RRM5 models, and percentage of change (between 

brackets) with respect to standard deviations by LM model for bulls and cows according to progeny size and number of test days 

Bulls 

progeny size 

Number of 

bulls 

Models Cows number 

of test days 

Number 

of cows 

Models 

LM RRM4 (%) RRM5 (%) LM RRM4 (%) RRM5 (%) 

200 to 399 29 424.7 462.3 (+8) 467.1 (+10) 10 9,449 308.6 392.6 (+27) 392.7 (+27) 

100 to 199 74 476.8 530.9 (+11) 534.0 (+12) 9 9,569 309.1 395.5 (+28) 396.2 (+28) 

50 to 99 154 412.6 481.2 (+16) 484.7 (+17) 8 5,433 308.8 404.3 (+31) 405.9 (+31) 

25 to 49 175 380.3 446.2 (+17) 446.6 (+17) 7 3,534 327.8 418.8 (+28) 420.8 (+28) 

10 to 24 352 323.9 421.1 (+30) 424.0 (+31) 6 2,243 333.7 419.8 (+27) 421.8 (+26) 

EBVs, estimated breeding values; 305MY, 305-day milk yield; RRM4 and RRM5, random regression models fitted by fourth and fifth order Legendre 

polynomials; LM, 305-day lactation model. 

Table 5. Spearman rank correlation (p<0.0001) between EBVs for 

305MY estimated from LM and EBVs for 305MY from RRM4 

and RRM5 models for bulls with progeny size higher than 49 and 

cows selected for 305MY 

Animal selected Number RRM4 RRM5 

Bulls    

All  2,726 0.89 0.89 

10%  273 0.70 0.69 

1%  27 0.87 0.85 

Cows    

All  56,760 0.87 0.86 

60% 34,056 0.78 0.78 

40% 22,704 0.71 0.70 

10% 5,676 0.57 0.54 

EBVs, estimated breeding values; LM, 305-day lactation model; 305MY, 

305-day milk yield; RRM4 and RRM5, random regression models fitted by 

fourth and fifth order Legendre polynomials. 
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models was 8% lower than the number of bulls evaluated 

by LM models in the class 0.30 to 0.39 of reliability of 

EBVs (Table 7). There was from 9% to 17% more bulls in 

the classes between 0.40 to 0.49 and 0.70 to 079 when 

RRM models were compared to LM models. The classes of 

reliability above 0.80 to 0.89 presented between 58% and 

136% more bulls when the number of bulls estimated by 

RRM models was compared to the number of bulls by LM 

model. 

The average percentage of gain in reliability of EBVs 

for 305MY from RRM4 and RRM5 models increased in 

average from 4% to 17% with the decrease in bulls’ 

progeny size compared to the average of reliabilities 

estimated by LM, whose values ranged between 0.41 and 

0.89 (Table 8). The gain of reliability in parentheses ranged 

from 8% to 33% to 1% to 13% with the decrease in progeny 

size. For cows, the average gain in reliability was between 

23% and 24% for every class of test day. Moreover, the gain 

in reliability of cows of each class ranged from 11% to 49% 

for cows with 6 test day records to 0% to 102% for cows 

with 10 records. 

 

DISCUSSION 

 

In a comparison between RRM4 and RRM5 models, AIC, 

BIC, –2LogL and LRT indicated RRM4 as the best fit of 

lactation curve (Table 1). In literature, models with higher 

orders of LP were indicated as the best fit according to AIC, 

BIC, –2LogL and residual values (Biassus et al., 2010; 

Aliloo et al., 2014). Although RV was lower for RRM5, 

increasing the order of polynomials did not affect breeding 

values and their reliabilities as well as the estimates of 

Table 7. Number of bulls evaluated by RRM4 and RRM5 models, 

and percentage of change (between brackets) with respect to the 

number of bulls by LM according to classes of reliability (r2) of 

EBVs 

r2 LM RRM4 (%) RRM5 (%) 

0.90 to 0.99 22 52 (+136.0) 52 (+136.0) 

0.80 to 0.89 78 123 (+58.0) 123 (+58.0) 

0.70 to 0.79 104 122 (+17.0) 123 (+18.0) 

0.60 to 0.69 111 130 (+17.0) 128 (+15.0) 

0.50 to 0.59 136 160 (+18.0) 161 (+18.0) 

0.40 to 0.49 186 202 (+9.0) 200 (+8.0) 

0.30 to 0.39 363 335 (–8.0) 333 (–8.0) 

RRM4 and RRM5, random regression models fitted by fourth and fifth 

order Legendre polynomials; LM, 305-day lactation model; EBVs, 

estimated breeding values. 

Table 8. Reliabilities and their standard deviations of EBVs for 305MY estimated from LM and the percentage of gain with range in 

brackets by RRM4 and RRM5 models for bulls and cows according progeny size and number of test days 

Bulls 

progeny 

size 

Number 

of bulls 

Models Cows 

number of 

test days 

Number 

of cows 

Models 

LM1 RRM4
2 (%) RRM5

2 (%) LM RRM4
 (%) RRM5

 (%) 

200 to 399 29 0.89±0.06 +4 (1-13) +4 (1-13) 10 9,449 0.34±0.08 +24 (0-102) +24 (0-102) 

100 to 199 74 0.84±0.05 +5 (2-14) +5 (2-14) 9 9,569 0.34±0.08 +24 (13-50) +24 (13-51) 

50 to 99 154 0.71±0.11 +10 (4-24) +10 (4-24) 8 5,433 0.32±0.09 +24 (8-65) +24 (9-64) 

25 to 49 175 0.59±0.10 +13 (4-25) +13 (4-25) 7 3,534 0.31±0.08 +23 (11-48) +23 (11-48) 

10 to 24 352 0.41±0.12 +17 (8-33) +17 (8-33) 6 2,243 0.31±0.09 +23 (11-46) +23 (11-46) 

EBVs, estimated breeding values; 305MY = 305-day milk yield; LM, 305-day lactation model; RRM4 and RRM5, random regression models fitted by 

fourth and fifth order Legendre polynomials.  
1 Average and standard-deviation of reliability of EBVs from LM.  
2 Average percentage of gain (%) in reliability compared to lactation model (range in parenthesis). 

 

Figure 3. Trajectory of test day breeding values (kg2) on days in milk of five top bulls (S1 to S5) selected on breeding values for 305 day 

milk yield estimated from lactation model and random regression models fitted by fourth (RRM4) models. 



Padilha et al. (2016) Asian Australas. J. Anim. Sci. 29:759-767 

 

765 

genetic parameters in this study.  

The heritability estimates for 305MY were equal to 0.23 

and 0.24 from RRM4 and RRM5 and slightly higher than 

0.21 obtained by the LM model but the all values showed 

the same magnitude (Table 2). Additive genetic variances 

for 305MY estimated by RRM4 and RRM5 were about 29% 

higher than that in LM model. The residual value decreased 

about 10% when models were fitted by fourth (RRM4) and 

fifth (RRM5) order LP. Similarly, Biassus et al. (2010) 

compared models fitted by LP from third to sixth orders, 

which showed that the differences between RV of models 

decreased from 14% to 5% when the polynomial orders 

increased. Ç ankaya et al. (2014) compared models fitted 

from second to fourth orders and the differences between 

RV of models decreased from 24% to 10%. Residual 

variance values presented by Takma and Akbas (2009) 

decreased from 30% to 7% when adjusted models from 

second to sixth orders. 

In general, heritabilities for selected test days on days in 

milk were higher than that estimated from LM model, 

except in early lactation (6, 30, and 90 days in milk) (Figure 

1). Heritability estimates increased from 0.15 in the 

beginning up to 0.26 in mid lactation (210 days) and then 

decreased to 0.22 in DIM 305. Kim et al. (2009) reported 

higher heritability along days in milk from RRM (0.15 to 

0.46) than from the LM (0.15) for Holstein cattle in Korea, 

which is in agreement with the present study. Araújo et al. 

(2006) for a population of Holstein cattle in Minas Gerais, 

Brazil used random regression with LP of third, fourth and 

fifth orders and estimated heritabilities 0.12 to 0.29 with an 

increasing trajectory during lactation. Costa et al. (2008) 

using Holstein cattle data in Brazil found heritabilities 

ranging from 0.27 to 0.42 with higher heritability in mid-

lactation and lower at beginning and end of curves. 

Dorneles et al. (2009) using a RRM of fourth order 

estimated heritability for Holstein cattle of Rio Grande do 

Sul State, Brazil, which increased from 0.14 to 0.20. 

The trajectory of the additive genetic variance showed a 

sharp decrease in the beginning of lactation and then 

increased for the remaining of the lactation (Figure 1). 

Permanent environmental variances from both RRM 

showed a typical U shape with higher variances at the 

extremes of lactation. This trend is similar to those reported 

by Miglior et al. (2009) in China and by Bignardi et al. 

(2009), Cobuci et al. (2011) and Pereira et al. (2013) in 

Brazil. Additionally, the low heritability at the beginning of 

lactation curve (6 to 60 days) was coincident with the lower 

additive genetic variance and higher permanent 

environmental variances at the same period. The higher 

heritability in mid lactation (90 to 270 days) coincided with 

the higher additive variances and the lower permanent 

environmental variances but at 305 days heritability 

decreased, genetic variance increased and permanent 

environmental variance increased. 

As expected, higher genetic and permanent 

environmental correlations between adjacent test days 

(close to 1) and lower ones between distant DIM were 

observed is this study (Figure 2) and are in agreement with 

the pattern reported for Holstein cattle in Brazil (Dorneles 

et al., 2009; Bignardi et al., 2009; Cobuci et al., 2011). The 

lowest correlations were observed between early lactation 

(DIM 6) and the other test day milk yields. Except for DIM 

6 and 30, in general, permanent environmental correlations 

were lower than the genetic correlations between DIM 

(Figure 2). 

The standard deviations of EBVs for 305MY from 

RRM4 and RRM5 were higher than that estimated from LM 

(Table 3). When bulls’ progeny size decreased from higher 

classes of progeny size (200 to 299) to lower classes (10 to 

24), the distribution of EBVs increased from 11% to 30% 

higher than that in the LM, which indicate that bulls with 

less information presented larger changes in distribution of 

EBVs around the mean promoted by RRM. For cows, the 

change in the standard deviation of EBVs was around 28% 

higher in RRM models compared to LM, considering 6, 7, 8, 

9, or 10 test days by lactation. Melo et al. (2007), using data 

from Brazilian Holsteins, found that standard deviations of 

EBVs from RRM was 22% higher compared to the standard 

deviations from 305-day LM for cows and the differences 

were up to 3% for bulls with progeny size higher than 49 

and up to 22% for bulls with lower progeny size. Lidauer et 

al. (2003) reported an increase about 9% for young bulls 

with at least 20 progenies and about 3% for active bulls 

with 60 progenies of Finnish dairy cattle. Therefore the 

increase in the standard deviations of mean values of EBVs 

suggested that estimates from RRM changed the 

distribution of values of EBVs of bulls and cows and 

consequently changed the ranking of top bulls and cows. 

In Table 4, the rank correlations of EBVs of bulls for 

305MY estimated from LM with ranks of EBVs from 

RRM4 and RRM5 models increased from 0.86 to 0.96 

according to the increase of the progeny size classes, which 

indicate that the increase in the amount of information 

approximate the estimation of EBVs of LM and RRM 

models. On other hand, as the amount of information 

(progeny size) decreased, the differences in the ranks of 

EBVs were higher between models, which suggest, in this 

case, that the re-ranking of bulls was higher for bulls with 

less progeny size. For cows, there was a substantial 

difference in the correlations between RRM models and LM 

in general, but, according to the number of test days, these 

differences were similar for cows with 6, 7, 8, 9, or 10 test 

days. Thus these results confirm the assumption that RRM 

may change the ranking of top animals. These changes in 
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ranking became more evident when a selection of bulls and 

cows was applied by RRM4 and RRM5 EBVs of cows and 

EBVs of bulls with progeny size higher than 49 (Table 5). 

The correlations decreased from 0.87 to 0.57 when 10% of 

cows were selected by RRM EBVs and increased as the 

proportion of selection decreased to 40% and 60% of cows. 

The selection of top bulls by RRM4 and RRM5 EBVs 

decreased the rank correlation from 0.89 to 0.70 (10% of 

bulls) and from 0.89 to 0.87 (1% of bulls). In order to 

illustrate the changes in the rankings of animals, the top ten 

bulls from the 10% of best bulls are shown (Table 6). 

Although the rank correlations between 10% of bulls were 

strong, the position of some bulls in relation to the other 

bulls may have large changes as observed for bulls S4, S8, 

and S9. The trajectory of test-day EBVs on days in milk 

may show important information to explain why the 

cumulative EBVs for 305MY from RRM models were 

higher compared to EBVs from LM, which may be 

observed in the trajectory of the best five bulls selected for 

EBVs at 305 days in Figure 3. For example, bull S3 was 

ranked as the first best bull by LM EBVs but it did not 

present the best initial EBVs compared to EBVs for S1 (6 to 

60 days in milk) or the best final EBVs (150 to 305 days in 

milk), although the EBVs in mid-lactation (60 to 150 days) 

were equal. Therefore, the bull S1 was better than bull S3 in 

regard to the trajectories of test day EBVs because RRM 

models were able to estimate the test day EBVs (and 

cumulative EBVs for 305MY) with more precision. 

Consequently, the differences between the two bulls became 

more evident, which could not have been identified by LM. 

The main advantage of RRM in comparison to LM was 

the reliability of EBVs of bulls and cows (Tables 7 and 8). 

There were a substantial increase in the number of bulls 

whose EBVs were classified in the classes of reliability 

mainly for classes above 0.70 to 0.79 (Table 7). That 

increase suggested that RRM may promote an important 

increase in the number of bulls with higher reliability. 

Moreover, when the classes of progeny size higher than 100 

to 199 were considered, the gain in reliability was around 

4% and 5%, which showed the superiority of RRM models 

even when the increasing in the amount of information of 

bulls’ progeny size were larger (Table 8). However, the gain 

in reliability was higher for bulls in the classes of progeny 

size lower than 50 to 99, whose percentage of gain in 

average was between 10% and 17% and whose gain in 

reliability in parentheses achieved from 24% to 33% 

compared to reliability from LM model. In relation to cows, 

there were no differences in the average percentage of gain 

in reliability with the increase in the number of test days. It 

may suggest that cows or bulls with daughters that 

presented lactations in progress (or a reduced number of test 

day records) may be evaluated earlier. The early genetic 

evaluation of animals may decrease the generation intervals, 

which, in turn, may increase the genetic gain, with a 

decrease in the costs of milk recording services for the 

Brazilian Holstein breeding program. 

 

CONCLUSION 

 

Random regression models may better explain the 

genetic variability of breeding values of Holsteins in Brazil 

and estimate these breeding values with higher reliability 

compared to the traditional 305-day lactation animal model. 

The RRM using a fourth order LP is recommended to be 

used for genetic evaluations of Brazilian Holstein cattle. 
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