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Genome-wide copy number variation (CNV)
detection in Nelore cattle reveals highly
frequent variants in genome regions
harboring QTLs affecting production traits
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Abstract

Background: Copy number variations (CNVs) have been shown to account for substantial portions of observed
genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a
number of species. Information from high-resolution studies to detect, characterize and estimate population-specific
variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of
importance.

Results: Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data
from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786
distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals
revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed
to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for
obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene
annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs
associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk
production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these
CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL,
NEL < HOL) frequencies, respectively.

Conclusions: Obtained results significantly enriched the bovine CNV map and enabled the identification of variants
that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring
QTLs affecting production traits.
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Background
Copy number variations (CNVs) have been shown to ac-
count for substantial portions of genomic variation in
humans. Gains or losses in genomic regions varying
from 50 bp to several megabases (Mbp) in size have
been estimated to cover 77.97 % of the human genome
(http://dgv.tcag.ca/dgv/app/statistics?ref=GRCh37/hg19)
[1]. CNVs have also been shown to cause changes in
transcription levels of specific genes and may be an im-
portant source of material for evolutionary mechanisms
to act upon [2]. Approximately half of observed human
CNVs span regions containing protein-coding genes [1]
known to be involved in essential cellular functions,
general metabolism and the onset of different diseases
[3–9], and which may influence disease susceptibility
[10–12]. CNV alterations have also been observed in pri-
mary and metastatic cancerous tissues [4, 11, 13–15]
and to be associated with various genetic traits [11, 16].
Most reported broad population-oriented studies for

CNV detection use at least two main platforms: Com-
parative Genomic Hybridization (CGH) arrays and SNP
genotyping arrays [17–19]. Advantages and disadvan-
tages associated with these platforms have been widely
discussed in the literature [20–22]. However, with the
advent and rapidly decreasing costs of next generation
sequencing (NGS), studying CNVs with sequencing data
has also become increasingly feasible [23, 24]. The main
advantages of sequencing over genotyping lie in the im-
proved resolution of CNV identification, and particularly
in the fact that searches for CNVs are not limited to spe-
cific, pre-defined regions. NGS protocols randomly gen-
erate reads and therefore close to the entire genome can
be sampled with high coverage and resolution, thus pro-
moting higher accuracy in CNV detection and greater
precision when estimating breakpoints [24, 25].
Studies to identify and catalogue CNVs have been suc-

cessfully performed on animals of economic importance,
including catlle [26–37], chicken [38, 39], pig [40, 41],
sheep [42, 43] and goat [44]. A large number of CNVs
were identified in taurine (Bos taurus) and zebuine cattle
(Bos indicus) in regions containing genes known to affect
complex traits [17, 18, 26, 29, 31, 32]. The overlap of
CNVs reported among animals of different taurine
breeds is greater than the overlap between taurine and
indicine cattle while, even though analyses were per-
formed with data from a single Nelore (B. indicus) sam-
ple, zebu cattle were observed to have the largest CNV
diversity among studied breeds [26].
The present study is the first to widely and deeply

analyze a population of Nelore (Zebu) cattle composed
of 1,717 animals that were genotyped at high density
(~770 K SNPs). In addition, eight key ancestral bulls
were resequenced with minimal coverage of 20×. The
goal of this study was to perform a high-resolution

analysis to detect and characterize CNVs in this breed
while also estimating breed-specific variant frequencies.

Results and discussion
Genome-wide discovery and distribution of CNVs
A total of 68,007 CNVs representing 54,510 single copy
duplications, 1,729 double copy duplications, 11,672
single copy deletions, and 96 double copy deletions
(Additional file 1) were detected with the analysis of
genotyping data from 1,509 Nelore samples which
passed data QC procedures. Figure 1 shows the chromo-
some distribution of all detected CNVs. A total of 1,411,
515, and 24 CNVs were observed in >1, >2 and >10 % of
the samples analyzed, respectively.
The number of SNPs in each detected CNV varied

from 20 to 1,420 (94 ± 110). CNV length varied from
20.01 Kb to 7.75 Mbp (320 ± 413 Kbp). Figure 2 (Additional
file 1) shows the size distribution of detected CNVs. Ob-
served CNVs larger than the average by one standard devi-
ation or more (733 Kbp) and with a frequency greater than
1 % were rare and far apart (n = 116), with a mean fre-
quency of 2.47 %.

CNVR identification
Different methods for condensing overlapping CNVs
into Copy Number Variant Regions (CNVRs) have been
proposed [45–47]. Nelore CNVRs were identified using
JM-CNV [48], which considers CNV length and fre-
quency, removes extremely long or infrequent CNVs
from the initial analysis, and resolves observed break-
point issues [24, 25]. The 68,007 detected CNVs were
condensed into 7,319 CNVRs (Fig. 3: Additional file 2),
representing a total coverage of 1.56 Gigabases (61.91 %)
of the bovine autosomal genome (Additional file 3). A
total of 2,306 duplications, 212 deletions, and 4,801 du-
plications and deletions were observed in the identified
CNVRs (Fig. 4a). A high positive correlation between
the number of detected CNVRs and the size of bovine
chromosomes was observed (0.98, Fig. 3), contrary to
what was observed in terms of the number of total
CNVs detected (0.34, Fig. 1).
CNVR length varied from 20.1 Kbp to 3.81 Mbp

(213 ± 237 Kbp, Fig. 5, Additional file 2). BTA1 was found
to have the highest number of CNVRs (459), while BTA27
had the lowest number (119) of CNVRs (Additional file
2). As for the average distance between CNVRs, BTA24
and BTA19 were found to have the greatest (444.8Kbp)
and the smallest (323.5Kbp) distances, respectively. A total
of 962, 713, and 296 CNVRs showed frequencies >1, >2
and >10 % in the studied samples, respectively.

CNVs in NGS data
LUMPY [49] uses signal depth from observed split-reads
and from miss-mapped paired-end reads as evidence to
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Fig. 1 Chromosome distribution of CNVs detected with high-density SNP genotyping data from Nelore cattle

Fig. 2 Size distribution of CNVs detected using Nelore genotyping data

Fig. 3 Distribution of CNVRs detected using Nelore SNP genotyping data across bovine chromosomes
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Fig. 4 Distribution of gain, loss and mixed CNVRs detected across the Nelore genome (based on UMD3.1). a CNVRs detected with genotyping data. b CNVRs <5 Mb detected with NGS data
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identify CNVs. A total of 12,786 CNVs distributed non-
uniformly (Fig. 6) along the 29 autosomes, representing
999 duplications and 11,787 deletions, with average sizes
of 252.8 ± 692.0 Kbp and 22.9 ± 194.2 Kbp, respectively,
were detected in NGS data from eight resequenced bulls
when both types of evidence were considered (Add-
itional file 4).
Even though the analyzed NGS dataset was exceed-

ingly smaller than the SNP dataset (8 vs 1,509 animals),
and represents a reduced sample of the breed’s genetic
diversity, LUMPY detected more than ten times the
number of CNVs detected with PennCNV, when the
same eight animals were considered. Similar results have
been reported in other studies [35, 50] and may be at-
tributed to the better resolution of CNV breakpoints
which can be obtained from NGS data. Moreover, the
CNV ratio of deletions to duplications observed in the
results obtained from NGS data (11.80) is more than 56

times larger than the ratio obtained from genotyping
data (0.21), suggesting the method is more sensitive in
identifying deletions. JM-CNV [48] was used to converge
identified CNVs >1,000 bp into CNVRs. The 12,786
detected CNVs were condensed into 3,781 CNVRs,
representing a total of 84 duplications, 909 deletions,
and 2,788 duplications and deletions (Fig. 4b, Additional
file 5). Inevitable ascertainment bias may have influenced
obtained results, as the reference bovine genome
sequence was derived from a Hereford individual (Bos
taurus). Future analysis may be used to identify and cor-
rect this when a reliable Bos indicus reference sequence
becomes available.

CNV and CNVR independent validation and cross-
referencing
The importance of comparing CNV detection results
with complementary techniques, such as qPCR, FISH,

Fig. 5 Size distribution of CNVRs detected using Nelore genotyping data

Fig. 6 Chromosome distribution of CNVs detected using Nelore NGS data
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CGH arrays, SNP arrays, and sequencing has been ex-
tensively reviewed in cattle [35, 51]. Cross-validation of
CNVs detected in the genotyping data was performed
with NGS data from the eight resequenced animals. A
total of 988 CNVs were detected with genotyping data
from the eight animals (Additional file 6) and 909 (92 %)
of these overlapped with 50 bp or more of at least one
of 57,968 CNVs identified with LUMPY using evidence
from split-reads and/or miss-mapped paired-end reads -
Table 1 (see Additional file 7 for complete list). Further
evaluation of the 909 CNVs identified using SNP and
NGS data revealed that 173 were identified with all three
independent types of evidence (SNP data and signal
depth from observed split-reads and from miss-mapped
paired-end reads), while 736 were identified with at least
two types of evidence (SNP data and observed split-
reads or miss-mapped paired-end reads).
A total of 886 of the 988 CNVs (90 %) were observed

to contain mixed segments of duplications or deletions
considering mostly the NGS data (Fig. 7), which should
be considered in future studies as complexity negatively
correlates with reproducibility in subsequent CNV

studies with different platforms [52]. The high pro-
portion of observed cross-validated CNVs was con-
trasted with results reported by previous studies [52,
53]. Observed results show that some CNVs detected
with genotyping data overlap with multiple smaller
CNVs detected with NGS data (Fig. 8), confirming
previous reports [26, 52, 54] which show that NGS
offers higher resolution and precision for identifica-
tion of CNV boundaries.
A total of 68,007 CNVs identified with the SNP dataset

were cross-matched with 179 CNVRs previously vali-
dated with at least two distinct methods available at
DVGarcheive database (http://www.ebi.ac.uk/dgva/data-
download) and in the literature [26, 27, 30, 33]. A total
of 62 % (111) of previously validated cattle CNVRs were
found to overlap with CNVs identified in Nelore cattle,
considering a minimum of 10 kb of overlap [55, 56].
CNVs with frequencies >1 % were observed in 41 of
these previously reported CNVRs in the analyzed Nelore
samples (Additional file 8).
Bickhart et al. [26] reported 730 Nelore CNVs from

analyses of NGS data from a single animal, considering
BTAU4.0 as reference assembly. Conversion of BTAU4.0
to UMD3.1 coordinates using Liftover [57] resulted in
458 CNVs and a total of 295 (64.4 %) of these were
found to overlap with one or more of the CNVs cur-
rently identified in the NGS data. Observed discrepan-
cies may have resulted from specificities of applied
methods as well as sampling bias caused by the ex-
tremely reduced sample size used by [26].

CNVRs in regions containing QTLs in cattle
Recent studies [27, 30, 36, 37] revealed CNV variants as-
sociated with production traits in dairy and beef cattle.
Reported findings suggest that models combining SNP
and CNV data could be more powerful at capturing the
underlying variation and therefore provide more accur-
ate frameworks to better account for the heritability of
complex traits, as the effect of 25 % of identified CNVs
could not be accounted for by neighboring SNPs [27].
CNVRs have been detected in genomic regions shown

to contain cattle QTLs and have been shown to affect
body measurements [17], production traits [37] and
parasite resistance [30]. The 7,319 CNVRs detected with
genotyping data were compared to the 11,506 regions of
the bovine genome reported to contain QTLs (QTL
database http://www.animalgenome.org/cgi-bin/QTLdb/
BT/index). A total of 9.4 % (688/7,319) of the detected
CNVRs, which encompass a total of 312Mbp of the
bovine autosomal genome, were observed to overlap
by >50 % [17] of 286 non-redundant QTLs associated
with economically important production traits such as
residual feed intake, gestation length, marbling score,
fat thickness at the twelfth rib, dry matter intake,

Table 1 Summary of CNVs detected using SNP and resequencing
data

Animal # of CNVs detected
in SNP data

# of CNVs validated
with NGS data

% Validated

BINE_01 11 4 36

BINE_02 87 86 99

BINE_03 27 14 52

BINE_04 22 22 100

BINE_05 93 93 100

BINE_06 729 672 92

BINE_07 9 9 100

BINE_08 10 9 90

Total 988 909 92

Fig. 7 Number of non-redundant CNVs (Dup = Duplications and
Del = Deletions) detected using genotyping and NGS data
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Fig. 8 Cross-comparison of CNVs detected with SNP and NGS data. (A) Chromosomal region (BTA29:48,630,000–50,500,224) with detected
duplication (green) and deletion (red) CNVs. (B) CNVs intersecting the ASCL2 gene

Fig. 9 Chromosome distribution of relative CNV estimated frequencies in Nelore (blue) and Holstein (red) cattle [37]
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longissimus muscle area, clinical mastitis, and carcass
weight (Additional file 9).
All of the 34 CNVs found by [37] to be associated with

milk production traits in Holsteins (HOL) were also ob-
served in Nelore (NEL) cattle (Additional file 10). Com-
parisons of estimated frequencies of these CNVs in the
two breeds revealed 14, 13, 6 and 14 regions in high
(>20 % in both breeds), low (<20 % in both breeds) and
divergent (NEL > HOL, NEL < HOL) frequencies, re-
spectively. Figure 9 shows chromosome positions and
frequency differences between Nelore and Holstein cat-
tle at these CNVs.
Considering the distinct selective pressures Nelore and

Holstein cattle have been historically under either natur-
ally (tropical versus temperate climates) or artificially
(beef versus milk production), frequency deviations are
expected in underlying variant regions controlling traits
under selection. CNVR_7294 was observed in 56.93 % of
the Nelore samples tested, while a CNV located in the
same position at frequency of 2.09 % was reported to be
strongly associated with protein percentage in Holsteins
(FDR = 5,09E-05 [37]). This genome region harbors QTL
controlling carcass weight (QTL 13550), milk fat per-
centage (QTL 13547) and Milk protein percentage (QTL
13548), and the observed frequencies suggest the CNV
may be under positive selection in Nelore while strong
negative selection in Holsteins. A similar pattern of fre-
quency divergence can be observed with CNVR_7295.
Conversely, CNVR_1557, CNVR_3011 and CNVR_4292,
located in regions reported to contain QTL affecting
beef production traits, were observed at low frequen-
cies in Nelore cattle (0.07 %) and at high frequencies
in Holsteins (60.26, 66.05 and 30.42 %, respectively),
suggesting these CNVs may contribute to the under-
lying variation in traits under divergent selection in

these breeds. These observations suggest that more exten-
sive studies with CNV data from divergent breeds or other
population structures could help identify signatures of
selection in genome regions containing segmental
variations.

Gene ontology and CNVRs
The occurrence of CNVs in genome regions contain-
ing functional genes may create opportunities for the
emergence of new allelic variants, gene isoforms,
and complex mechanisms of gene expression control
as a consequence of naturally occurring evolutionary
processes. A total of 4,097 CNVRs (55.98 %) are lo-
cated within genome regions containing 10,399 an-
notated genes, which can be functionally classified as
protein coding (n = 10,070), microRNA (n = 159),
snoRNA (n = 148), snRNA (n = 10), miscRNA (n = 8),
and rRNA (n = 2).
Automated annotation of these genes with GO terms

revealed important categories, including metabolic and
cellular processes, biological regulation, response to
stimulus, cell signaling, reproduction, and growth (Fig. 10).
Many well described contrasting traits between taurine
and zebu cattle have been targets of natural selection and
production-oriented genetic improvement, and are medi-
ated by genes involved in these biological processes, in-
cluding reproduction (age of first estrous, fertility, calving
interval, etc.) [58], resistance to endo- and ectoparasites
[59], heat tolerance [60], disease resistance [61], as well as
growth and carcass and meat quality traits [62]. Therefore,
further investigation of these regions may unveil import-
ant information for understanding underlying mecha-
nisms affecting economically important traits.
Previous studies to identify CNVs in cattle using small

numbers of samples from divergent breeds have focused

Fig. 10 GO annotation for biological processes of CNVs detected in Nelore cattle
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specially on comparisons between breeds [26] and may
have provided a comprehensive view of breed-specific
CNVs potentially associated with contrasting traits ob-
served among evaluted breeds. Analysis of 1,509 Nelore
samples allowed a broad identification of CNVs segregat-
ing within the breed in addition to generating population
frequency estimates and therefore providing crucial in-
formation for inference if observed CNVs may indeed be
under selection within the breed. Several previously
reported CNVs [26, 63–65] within genome regions con-
taining genes that may control traits of interest for cattle
production were observed at extremely low frequencies
in the population studied herein (Additional file 10),
indicating that these variants may not be positively
associated with underlying factors associated with traits
under positive selection in the breed.
Sequencing of the bovine reference genome revealed

the expansion of the antimicrobial cathelicidin gene,
found as a single copy in humans and mice, into a
large gene family in cattle [66] . Bickhart et al. [26]
reported that one of these cathelicidin genes
(CATHL4) was observed to be highly duplicated in
the single evaluated Nelore sample. A single copy du-
plication spanning this gene was observed in both
SNP and NGS data but at frequencies <1 %, indicat-
ing this particular CNV is not undergoing strong
positive selection in the breed (Additional files 2 and
11). Similar divergent results were observed with
other genes previously reported to be located in gen-
ome regions with CNVs in Nelore cattle and that
have been independently shown to affect height
(pleiomorphic adenoma gene 1 - PLAG1), lipid metab-
olism (apolipoprotein L3 - APOL3 and sterol carrier
protein 2 - SCP2), transport (fatty acid binding
protein 2 - FABP2, vesicle associated membrane pro-
tein 7 - VAMP7, lecithin-cholesterol acyltransferase -

LCAT, and lecithin-cholesterol acyltransferase - PCTP),
endoparasite resistance (UL16-binding protein 17 -
ULBP17), and oxidative metabolism (aldehyde oxidase 1 -
AOX1) (Additional files 2 and 11).
Genetic imprinting represents a major mechanism of

epigenetic regulation of gene expression leading to
parent-specific differential expression of a subset of 20
bovine genes (Imprinted Gene Databases - http://
www.geneimprint.com/site/genes-by-species.Bos+taurus
[67]) and DNA sequence polymorphisms in imprinted
genes have been shown to affect production traits in cat-
tle [68]. CNVs were observed in regions spanning 11
imprinted genes in Nelore cattle: mesoderm specific tran-
script - MEST (BTA4), nucleosome assembly protein 1
like 5 - NAP1L5 (BTA6), insulin like growth factor 2
receptor - IGF2R (BTA9), neuronatin - NNAT (BTA13),
antisense transcript gene of PEG3 - APEG3 (BTA18),
maternally expressed 3 - MEG3 (BTA21), pleckstrin
homology like domain family A member 2 - PHLDA2
(BTA29), tumor-suppressing subchromosomal transfer-
able fragment 4 - TSSC4 (BTA29), achaete-scute family
bHLH transcription factor 2 - ASCL2 (BTA29), insulin
like growth factor 2 - IGF2 (BTA29), and H19 (BTA29)
(Additional file 11).
Observed CNV frequencies in regions harboring

MEST, NAP1L5, IGF2R, NNAT, APEG3, and MEG3
were very low (<0.2 %). Conversely, CNV frequencies in
the region with imprinted genes on BTA29 (49,329,504-
50,163,147 bp) were greater than 9 %. The PHLDA2
gene (also known as TSSC3) is located in the aforemen-
tioned region of BTA29 and is expressed in the bovine
placenta and embryonic tissues during pregnancy [69,
70]. Comparisons of bovine and human polypeptides re-
vealed a strong homology and suggested that PHLDA2
could be involved in the same regulatory pathways in
both species [69]. According to Huang et al. [71], proper

Fig. 11 Frequency distribution of CNVRs detected using SNP genotyping data from a population of 1,509 Nelore cattle
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PHLDA2 expression is essential for normal embryo
development during early development. Additional studies
show that PHLDA2 may affect the development of bovine
pre-implantation embryos [72]. A single copy duplication
in the region containing PHLDA2 was observed in a total
of 128 individuals (Additional files 2 and 11) and should
be considered in future studies to evaluate the effect of
this gene in early embryo development.

Annotation of most frequent CNVRs in Nelore cattle
CNVs with frequencies higher than 1 % were observed
in a total of 13 % (962/7,319) of the detected CNVRs
(Fig. 11). Six CNVRs were observed to be highly fre-
quent in Nelore, with more than 1,000 CNVs in the ana-
lyzed samples and may therefore be associated with
underlying factors positively affecting traits under selec-
tion in the breed.
BTA2:104,853,165-105,006,347 contains a duplication

that was observed in a total of 1,056 individuals. This
genome region harbors genes such as insulin-like growth
factor binding protein 2 (IGFBP2) and short stature
homeobox (SHOX), among others. Studies in humans
show that mutations in this gene can lead to short stat-
ure and to different pathological conditions such as
Turner syndrome (TS), Léri-Weill dyschondrosteosis,
and Langer mesomelic dysplasia [73–76]. IGFBP2 has
also been shown to be involved in regulating the estrous
cycle and early pregnancy in cattle [77].
BTA4:114,375,180–114,638,146 contains 16 annotated

genes, as well as microRNA 671, and was found to be
duplicated in more than 1,000 animals and one rese-
quenced individual, and to be deleted in four genotyped
animals. Studies on humans show that cyclin-dependent
kinase 5 (CDK5), which is located in this region, plays
an important role in central nervous system function. It
has also been proposed that CDK5 is important in myo-
gensis, hematopoietic cell differentiation, spermatogen-
esis, insulin secretion, and lens differentiation [78, 79]. A
study with pigs showed that CDK5 is involved in brain
development [80].

BTA6:119,154,914–119,384,691 contains actin binding
LIM protein family member 2 (ABLIM2), actin filament
associated protein 1 (AFAP1), sortilin related VPS10
domain containing receptor 2 (SORCS2), prosaposin-like
1 (PSAPL1), and SH3 domain and tetratricopeptide
repeats 1 (SH3TC1). This CNVR was found to be dupli-
cated in more than 1,000 animals and deleted in 20 ani-
mals. Klimov et al. showed that the ABLIM2 protein is
necessary for normal neuron functioning [81]. SORCS2
was identified as a proneurotrophin receptor and is
expressed as a single-chain protein that is essential for
proBDNF-induced growth cane collapse in developing
dopaminergic processes. Deficiency of SORCS2 in mice
caused reduced dopamine levels and metabolism, and
dopaminergic hyperinnervation of the frontal cortex
[82, 83].
BTA19:48,427,331–48,537,167 harbors angiotensin I

converting enzyme (ACE), WD40 repeat-containing pro-
tein (WDR68), and potassium voltage-gated channel sub-
family H member 6 (KCNH6). The ACE gene encodes
an enzyme involved in catalyzing the conversion of
angiotensin I into angiotensin II, which is a potent vaso-
pressor that controls blood pressure and fluid-electrolyte
balance. Gauthier et al. (2013) demonstrated that ACE
inhibitor-enhanced bradykinin relaxations of bovine cor-
onary arteries occurs through endothelial cell B1 recep-
tor activation and nitric oxide [84].
BTA19:63,507,097–63,735,382 contains protein kinase

C alpha (PRKCA), calcium voltage gated channel auxil-
iary subunit gamma 4 (CACNG4), and calcium voltage-
gated channel auxiliary subunit gamma 5 (CACNG5)
genes, as well as the 7SK misc-RNA and was found
to be duplicated in more than 1,000 animals and de-
leted in 11 animals in the population studied. A
study on cattle showed that 7SK misc-RNA is lo-
cated on a central region of the hexamethylene bis-
acetamide inducible 1 (BHEXIM1) gene and may
play an important role in gene regulation [85]. The
authors proposed that this gene affects the latent life
cycle of the bovine immunodeficiency virus (BIV),

Table 2 Genome coverage of eight resequenced animals

Animal ID Length (bp) # Aligned # Unaligned Total reads mapped reads Seq. X coverage

BINE_01 2512082506 1343863053 48758778 1392621831 96.50 % 53

BINE_02 2512082506 1301229539 15069073 1316298612 98.86 % 52

BINE_03 2512082506 1587268578 17505393 1604773971 98.91 % 63

BINE_04 2512082506 645452383 40423110 685875493 94.11 % 26

BINE_05 2512082506 554921159 5980155 560901314 98.93 % 22

BINE_06 2512082506 554580777 6327041 560907818 98.87 % 22

BINE_07 2512082506 1399071315 16203693 1415275008 98.86 % 56

BINE_08 2512082506 639537955 7497809 647035764 98.84 % 25
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which leads to a lack of clinical signs of the disease
in affected animals. This region may be of interest
for studies on the clinical diagnosis and prevention
of this disease.

Conclusions
This study represents the first comprehensive CNV sur-
vey within the Nelore breed (1,717 animals and ~770 K
SNPs). Obtained results allowed for direct comparisons
of CNV detection results with two distinct platforms
(HD SNP genotyping and NG sequencing), and with
previous reports from independent studies.
The bovine CNV map was significantly enriched, par-

ticularly for the Nelore breed and associated variant fre-
quency estimates enabled the identification of variants
potentially associated with traits under selection, par-
ticularly in genome regions harboring QTLs affecting
production traits.
Obtained results suggest that more extensive studies

using CNV data from divergent breeds with differing
population structures could help identify signatures of
selection using approaches frequently used with SNP
data. The study provides important information that
may inspire or contribute to future studies on the associ-
ation between CNVs and production traits important for
genetic improvement in cattle.

Methods
Animals
DNA was extracted from commercially available semen
samples, and from hair and venous blood samples ob-
tained from animals in production farms, as part of rou-
tine animal handling and testing procedures. Tissues
were processed with standard commercial kits.

Genotyping and resequencing data
A total of 1,717 Nelore (Bos indicus) samples were geno-
typed with the Illumina Bovine HD Genotyping Bead
Chip. DNA was extracted from semen, blood, or hair
samples from registered and production animals from
commercial farms in Brazil. In addition, DNA from eight
unrelated Nelore founding bulls was resequenced using
Illumina HiSeq2000 paired-end reads with a minimum
coverage of 20× (Table 2) [86].

CNV and CNVR detection in genotyping data
Illumina genotyping data was analyzed with PennCNV
[87]. Log R Ratios (LRR), B Allele Frequencies (BAF),
distances between neighboring SNPs, and pedigree infor-
mation were used by the Hidden Markov Model (HMM)
algorithm to detect CNVs. Only autosomal SNPs were
considered in the analysis. Initial analysis of the dataset
with default LRR and BAF cut-off values normally used

in CNV studies on humans [88, 89] resulted in the ex-
clusion of 997 animals (data not shown). Adjusted LRR
and BAF cutoff values were derived for analysis of the
Nelore dataset based on the observed distributions of
these variables in the studied samples. New LRR and
BAF cut off values were identified to independently ex-
clude 10 % of the samples. In addition, a GC content
correction was performed for each SNP in regions lo-
cated 500Kb upstream and downstream from each stud-
ied SNP [32]. Use of new LRR (<0.4) and BAF (<0.04)
cut-off values in conjunction resulted in removal of 208
samples (12 %) from the final dataset. PennCNV default
procedures and parameters were subsequently used in
the analysis.
Overlapping CNVs were grouped into CNVRs using

JM-CNV [48]. CNVs were grouped into closed intervals
of whole numbers. This choice made CNVR definition
more natural and included the set of intervals whose over-
lap did not exceed the average size of the CNV set plus
one standard deviation. Meanwhile, long and infrequent
CNVRs were grouped separately so they would not skew
estimated averages and standard deviations.

CNV detection in NGS data
A previously described strategy for determining high-
resolution CNVs in humans [90] was used to identify
CNVs in Illumina shotgun data from eight key ancestral
Nelore bulls. Paired-end reads were mapped onto the
UMD 3.1 assembly using BWA with default parameters
[91]. CNVs were detected using LUMPY, a novel CNV
discovery framework that uses multiple detection signals
including read depth from split reads and mis-mapped
paired ends [49] (Additional file 4) for CNV identifica-
tion. Only autosomal regions were considered in the
analysis. Overlapping CNVs >1,000 bp were grouped
into CNVRs using JM-CNV [48].

Cross validation of CNVs
CNVs detected with SNP genotyping data were cross-
validated using a combination of information derived
from eight resequenced Nelore bulls and from published
literature, following previously reported strategies [52,
56]. Sequence coordinates from CNVs detected using
genotyping methods (Additional file 8) were initially
compared to coordinates from 179 CNVRs previously
validated in independent studies [26, 27, 30, 92]. Coordi-
nates from CNVs observed with PennCNV and LUMPY
were compared using a script written in Python [53]
(Additional files 6 and 7). All CNVs >50 bp detected
with LUMPY were used in this procedure.

Functional annotation
Automated annotation of genes present within observed
CNVs was performed using the scan_region.pl tool from
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PennCNV and the annotation file of UMD3.1 assembly
[93]. Ensembl Genes 77 database (Bos taurus genes
UMD3.1) and BioMart were used to annotate observed
CNVRs. FASTA sequence files containing annotated
gene regions from observed CNVRs were imported into
Blast2GO [94, 95] for automatic functional annotation.
These files were blasted against the NCBI nr database
using default BlastX parameters (e-value threshold 1e-03
and HSP length cut-off of 100). Sequence mapping for
Gene Ontology (GO) terms was performed using default
parameters (e-value hit filter of 1e-06, annotation cut-off
of 55, and GO weight of 5). Annotations were performed
using the Annex function of the GO Annotation Tool-
box [96]. InterProScan terms were obtained following a
previously reported method [97]. In addition, metabolic
pathway maps were obtained using the method outlined
by the KEEG PATHWAY database [98]. Overlaps be-
tween detected CNVs and CNVRs and previously de-
tected QTLs from the Bovine QTL Database [99] were
identified with a script in Python (Additional file 9).

Additional files

Additional file 1: CNVs detected in Nelore HD SNP genotyping data.
(XLSX 48 kb)

Additional file 2: CNVRs detected in Nelore HD SNP genotyping data.
(XLSX 1160 kb)

Additional file 3: Descriptive statistics of CNVRs per individual bovine
chromosome. (XLSX 5510 kb)

Additional file 4: CNVs detected in Nelore NGS Data. (XLSX 450 kb)

Additional file 5: CNVRs detected in Nelore NGS Data. (XLSX 12 kb)

Additional file 6: CNVs detected in HD SNP genotyping data from the
eight resequenced bulls. (XLSX 648 kb)

Additional file 7: Overlap of CNVs detected with both genotyping and
NGS data from eight key ancestral bulls. (XLSX 196 kb)

Additional file 8: Overlap of all CNVs identified in Nelore cattle with
CNVRs currently listed at DVGarcheive database. (XLSX 57 kb)

Additional file 9: CNVRs overlapping with previously detected QTLs
from the Bovine QTL Database. (XLSX 2973 kb)

Additional file 10: CNVs reported by Xu et. al (2014a) to be associated
with milk production traits in Holsteins also observed in Nelore cattle.
(XLSX 289 kb)

Additional file 11: Gene Ontology annotation in CNVRs detected in
Nelore HD SNP genotyping data. (XLSX 313 kb)
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