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Abstract—This paper studies the use of Convolutional Neural
Networks to automatically detect and classify diseases, nutritional
deficiencies and damage by herbicides on apple trees from images
of their leaves. This task is fundamental to guarantee a high
quality of the resulting yields and is currently largely performed
by experts in the field, which can severely limit scale and add
to costs. By using a novel data set containing labeled examples
consisting of 2539 images from 6 known disorders, we show that
trained Convolutional Neural Networks are able to match or
outperform experts in this task, achieving a 97.3% accuracy on
a hold-out set.

I. INTRODUCTION

Apple fruits have an important role in worldwide nutrition

and commerce with over 80 million tons consumed yearly,

making it one of the most consumed fruits in the world.

The rapid diagnosis of disturbances in apple trees, such

as nutritional imbalance, diseases and plagues, is becoming

increasingly important not only to improve productivity but

also to help define environmentally friendly policies for the

use of fertilizers and agrotoxins.

The diagnosis of apple cultures is most often conducted

by visual inspection of leaves and fruits, typically on site by

an expert. Laboratory analysis can be used in more complex

or new cases. However, this approach bears a high cost, as it

requires experts that demand specialized training. The need for

experts not only limit scale but may also reduce effectiveness

due to human errors since experts are often specialized in a

few types of disorders.

In this paper we report on results of training and applying

machine learning models to automatically classify common

disorders directly from images of apple tree leaves (Malus
domestica Borkh). Our hypothesis is that the current state-

of-the-art models, in particular deep Convolutional Neural

Networks, and related training algorithms are able to attain

performance comparable to or better than human experts.

In order to do so, we built a novel data set of labeled images

containing examples of five of the most common and important

disorders affecting this culture [Valdebenito-Sanhueza et al.,
2008; Nachtigall et al., 2004]: Glomerella, Scab, Potassium

Deficiency, Magnesium Deficiency and Herbicide Damage.

We train Convolutional Neural Networks (CNN) on this data

set, as they are often considered the state-of-the-art in image

classification [Krizhevsky et al., 2012], providing extensive

analysis of the classification results, comparing them to those

provided by other algorithms and by experts. We show that

the trained CNN is able to outperform experts, with a 97.3%

accuracy.

II. RELATED WORK

There are a few commercial systems in use to help with the

diagnosis of disorders in cultures, although not restricted or

applicable to apple trees. For instance, BASF’s Digilab1 and

EMBRAPA’s Virtual Diagnose2 provide tools to work over

digitized images of leaves and compare them to a database

of known disturbances. The comparison is entirely manual.

Simple printed guides containing photos and explanations on

how to diagnose a wide range of issues are also widely in use

[Valdebenito-Sanhueza et al., 2008].

Rumpf et al. [2010] aimed to discriminate healthy from

unhealthy sugar beet leaves, to differentiate between three

types of diseases and to identify diseases even before specific

symptoms became visible. The authors used Support Vector

Machines and as input they used nine spectral vegetation

indexes, as features, resulting in classification accuracies up to

97% when differentiating healthy from unhealthy, 86% when

distinguishing between three diseases and between 65% and

90% for pre-symptomatic detection of diseases. Notably, this

approach requires specialized hardware to obtain the spectral

images and considerable feature selection by the authors.

Al-Hiary et al. [2011] attempted at classifying six diseases

from leaf images. The authors used 32 samples for each

of the six classes of leaves and a Multilayer Perceptron to

perform the classification. Features were manually defined

as 10 texture features extracted from the image, showing a

accuracies between 83% and 94%.

More recently, deep networks are also being applied to this

domain. Revathi and Hemalatha [2014] focused on cotton leaf

spot diseases. The authors used a data set with 270 images

divided into 6 disease classes. Again, features were manually

defined, consisting of leaf edge, color and texture features.

A Cross Information Gain Deep Forward Neural Network

was used to perform the classification, resulting in an overall

1http://www.agro.basf.com.br
2http://www.diagnose.cnptia.embrapa.br/diagnose/
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accuracy of 95%. Tan et al. [2015] uses synthetic infrared

images of diseased and healthy melons to train a CNN, which

is allowed to extract features automatically, resulting in an

accuracy of up to 97.5% when classifying as healthy or not.

III. METHODOLOGY

Our methodology consists of building a data set containing

labeled images of five types of disorders commonly affecting

apple orchards. This data set was randomly partitioned into

training, validation and test subsets. The training and valida-

tion subsets were used to train and optimize a Convolutional

Neural Network and a Multilayer Perceptron (as a baseline).

The test set was then used to assess the performance of the

resulting classifiers and was also presented to experts for

classification in order to allow for a comparison. In what

follows, we detail each of these steps.

A. Dataset

The dataset was built by harvesting leaves from three

species of apple trees (Maxigala, Fuji Suprema and Pink

Lady) and photographing each leaf over a white background.

Each leaf was then subjected to laboratory tests to properly

identify the underlying disorder. The disorder was used to label

the image. Harvesting occurred between January and April

2015 from orchards located in the southern part of Brazil, at

Embrapa Uva e vinho - Estação Experimental de Fruticultura

de Clima Temperado, located in Vacaria, RS, Brazil (28o30’49

”S, 50o52’58” W).

Healthy leaves and five disorders were selected among those

collected, as they are the most prevalent in the region. Selected

symptoms represent two damages caused by nutritional imbal-

ances (deficiency of potassium and magnesium), two diseases

damage (apple scab and Glomerella stains and damage caused

by herbicide (glyphosate). Table I summarizes the data set.

The identification of the disorders was conducted by a

group of professional agronomist researchers specialized in

these symptoms and with ample experience in plant nutrition

and plant pathology. In order to reduce errors and properly

establish a ground-truth, three strategies were employed by

the experts to properly diagnose each issue.

a) For symptoms caused by nutritional imbalances, sam-

ples of normal leaves and leaves with potassium and

magnesium deficiency symptoms were selected, each

consisting of 100 leaves. The samples then were for-

warded to the laboratory for chemical analyzes in order to

quantify the total concentrations of nutrients (potassium

and magnesium). The analysis results show that samples

with symptoms effectively represent the deficiencies of

potassium and magnesium.

b) For symptoms caused by disease damage (apple tree

scab and Glomerella’s stains), leaf samples were selected

with symptoms previously identified for the two diseases.

These samples were incubated for multiplication of the

causative agent (fungus) and after was performed the

isolation of fungi and their characterization and iden-

tification using a microscope, allowing the proof of

Table I
NUMBER OF LEAVES COLLECTED FOR EACH CLASS.

Issue Number of leaves collected

Potassium deficiency 341

Magnesium deficiency 355

Scab damage 391

Glomerella stain 558

Herbicide damage 325

Healthy Leaves 569

Figure 1. Example image of leaf infected by Glomerella.

causal agents and their damage on apple tree leaves.

These images were performed from samples which leaves

presented the proposed symptoms, showing that samples

with diseases symptoms effectively represent the selected

diseases.

c) For symptoms caused by herbicide damage (glyphosate),

it was decided to conduct chemical analysis in order

to quantify the total concentrations of nutrients which

could possibly cause confounding of symptoms in cases

where the nutrients concentrations were below normal.

This decision was due the fact that the analysis of the

herbicide’s active principle is difficult to characterize,

once it is rapidly degraded on the plant after its absorption

and origin of toxicity symptoms. Then, samples with

herbicide damage symptoms were put through the same

protocols for nutritional analysis, which results showed

these samples did not effectively present any nutritional

disorders. Since the samples of leaves with symptoms

caused by the herbicide glyphosate (in three levels of

severity) were not different from the nutrient concentra-

tions of normal leaves, all nutrients are within the range

considered as standards for apple orchards [Nachtigall et
al., 2004].

We used a white background to photograph each leaf

separately, as show in Figure 1. The same camera was used

for all pictures at a resolution of 12MP. A few images which

presented defects or were outside the capture standards used

were discarded.

The complete data set is available at https://www.

dropbox.com/s/b81z064ohynhlgn/DataSet-AppleLeaves.zip

472473473



B. Pre-processing, Training and Evaluation

All images were re-sized to a resolution of 256x256 pixels.

In order to have a balanced data set, we randomly selected

290 examples (labeled images) for each of the five classes

containing symptoms. The resulting 1450 images were divided

into three subsets. A test subset (hold-out set) was created by

randomly choosing 15 images of each class. The remaining

examples were further partitioned in a training set (192 exam-

ples, 70%) and validation set (83 examples, 30%). The test set

size was chosen so as to allow for a comparison with experts,

as a large test set would become exhausting for experts to

classify, possibly resulting in increased human error.

The tested learning algorithms were trained over the training

set using different parameters and configurations and then

applied to the validation set. The best performing parameters

(over the validation set) of each algorithm were then trained

using training and validation sets combined and applied to

the test set. The test set was also shown to experts for

classification, so that a direct comparison was possible. Hence,

all results reported in this paper are for the test set.

Furthermore, in order to analyze the number of samples

needed for a satisfactory classification, smaller training subsets

were created, randomly selecting 5, 10, 20, 50, 100, 150,

200, and 250 samples from each class containing symptoms.

These training subsets were then tested using the test subset

previously created, without any changes in the network con-

figuration after the validation process was finished.

As a final experiment, 275 randomly selected healthy leaves

were added to the train subset and 15 added to the test subset

in order to evaluate the network capacity to distinguish healthy

leaves from the five chosen symptoms. This was conducted as

a separate experiment, as the experts did not have access to

healthy leaves.

We evaluated the results by calculating the overall accuracy

of each classifier and analyzing the resulting confusion matrix

along with recall, precision and kappa statistic [Landis and

Koch, 1977].

C. Convolutional Neural Network

We used Caffe [Jia et al., 2014] and DIGITS [NVIDIA,

2015] tools to help in building, training and testing the

Convolutional Neural Networks. Multiple architectures were

tested, ranging from shallow networks with 4 layers to deep

networks using small (3x3) convolution filters as shown in

[Simonyan and Zisserman, 2014].

The best results over the validation set were obtained

by the AlexNet architecture [Krizhevsky et al., 2012]. This

network consists of five convolutional layers, some of which

are followed by max-pooling layers, and three fully-connected

layers followed by softmax and dropout regularization. The

training parameters were as follows: batch size of 2; a step

learning policy was added with a gamma of 0.2; maximum of

300 epochs.

This network was used to generate the final results over the

hold-out test set, reported in the next section.

Figure 2. Relation between the number of samples used for learning and the
accuracy obtained in the symptoms classification. The solid line represents a
logarithmic best-fit function over the data points (circles).

D. Multilayer Perceptron

In order to provide a baseline comparison to CNNs, we

applied Multilayer Perceptrons to the data set, using the same

training methodology applied for CNNs. Multilayer Perceptron

(MLP) was chosen for being closely related to CNNs. Shallow

MLPs are able to achieve high accuracy on tasks such as

digit recognition [Cho, 1997], image classification [Hara et
al., 1994] and feature extraction [Ruck et al., 1990].

DIGITS was used to build and test the MLPs. Different shal-

low architectures were tested. The best configuration consisted

of two hidden layers with 200 and 500 neurons, respectively,

with one unit for each class at the output layer and 65536

input units (256x256 pixels).

E. Classification by Experts

To collect the classification by experts, we asked 7 volunteer

researchers specialized in apple trees to classify the images

in the test set, including the agronomist who collected the

leaves for the database, since he had greater knowledge on

the chosen disorders. These experts are further specialized in

different fields of research, such as plant pathology or plant

nutrition. Each expert was given a form to choose, for each

image, one of the five classes. Healthy leaves were not shown

to the experts.

Since experts are specialized in different disorders, in ad-

dition to a direct mean accuracy comparison we aggregated

the experts’ choices using a voting model to create a more

reliable diagnosis. This is akin to collecting different opinions

on particular symptoms, which is often conducted in practice.

In this model, the diagnosis was given by the majority choice.

Ties were broken by selecting the choice from the expert with

the highest overall accuracy.

IV. RESULTS

Figure 2 presents the overall CNN accuracy when different

number of images per class are used for training and tested

against the hold-out test set. The graph shows a logarithmic

increase on accuracy when training set is increased. The

curve largely levels off for samples larger than 200 images,

evidencing that the number of samples collected was adequate.
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Table II
CONFUSION MATRIX RESULTING FROM CNN CLASSIFICATION ON THE

HOLD-OUT TEST SET.

CNN
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Glomerella 15 0 0 0 0 100.0% 93.3%

Herbicide 0 15 0 0 0 100.0% 100.0%

Magnesium Def. 0 0 15 0 0 100.0% 100.0%

Potassium Def. 0 0 0 14 1 93.3% 100.0%

Scab 1 0 0 0 14 93.3% 93.3%

Accuracy 97.3%

Kappa 0.97

Table III
FIELD OF RESEARCH AND ACCURACY OBTAINED BY EACH EXPERT WHEN

CLASSIFYING IMAGES IN THE HOLD-OUT TEST SET.

Subject Field of research Accuracy

1 Soil 93.3%

2 Plant pathology 92.0%

3 Post harvest 90.6%

4 Plant pathology 70.6%

5 Plant nutrition 60.0%

6 Crop Science 60.0%

6 Environmental management 37.3%

Average - 71.9%

Table II shows the final CNN confusion matrix when applied

to the hold-out test set. The overall accuracy was of 97.3%,

with only two incorrect classifications. The MLP, applied to

the same test set, resulted in an accuracy of 77.3%.

Table III shows the individual accuracy obtained from

the 7 consulted experts, also showing their specific field of

research. We can observe that accuracy varies considerably

across experts. The best result (93.3%) is worse than the

result obtained by the CNN, but the average (71.9%) was

much worse and below that obtained by the MLP. Table IV

presents the confusion matrix of the experts when aggregated

by voting, where it can be seen that the overall accuracy

improves significantly.

Table V summarizes the results. The best accuracy was

obtained by the CNN, with a 97.3% accuracy, followed by the

voting system with 96.0% accuracy, the best expert with 93.3%

accuracy, and the MLP network with 77.3% accuracy. Figure 3

shows the Confidence interval (IC1−α(p)) for the classifiers,

using a 99% confidence level. It is possible to observe that

all techniques are much better than random choice and that

aggregated experts and the CNN have comparable performance

and both are better than the MLP.

A second experiment was conducted, introducing healthy

leaves to the data set. In this case, only the CNN was tested.

The same distribution of 275 images for training and 15

images for testing was used.

Table IV
CONFUSION MATRIX RESULTING FROM THE AGGREGATION OF THE

CLASSIFICATIONS PROVIDED BY HUMAN EXPERTS.
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Glomerella 15 0 0 0 0 100.0% 100.0%

Herbicide 0 14 1 0 0 93.3% 100.0%

Magnesium Def. 0 0 14 0 1 93.3% 93.7%

Potassium Def. 0 0 0 14 1 93.3% 100.0%

Scab 0 0 0 0 15 100.0% 88.2%

Accuracy 96.0%

Kappa 0.95

Table V
SUMMARY OF THE RESULTS, ORDERED BY ACCURACY.

Technique Accuracy

CNN 97.3%

MLP 77.3%

Voting system 96.0%

Highest Accuracy Expert 93.3%

No changes were made in the configuration of the CNN

network in order to avoid an over fitting to the results. With

healthy leaves in the training and test groups, the CNN was

able to achieve accuracy of 96.67%, as shown in Table VI. It

is possible to observe that the trained CNN is able to attain

perfect accuracy when distinguishing between healthy and

unhealthy leaves. This is expected, as the disorders all display

strong symptoms on the leaves, but an additional classification

error is now made when distinguishing between disorders.

One possibility to improve classification is to train a CNN

to first distinguish between healthy and unhealthy and then

another to further distinguish between disorders. Indeed, a

CNN trained on a binary healthy/unhealthy class is also able to

attain 100% accuracy, hence allowing the use of the disorders-

only CNN.

Figure 3. Confidence intervals with 99% confidence level, with normal
approximation for each share of accuracy.
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Table VI
CONFUSION MATRIX RESULTING FROM CNN CLASSIFICATIONS ON A

HOLD-OUT TEST SET WHEN HEALTHY LEAVES ARE ADDED TO THE DATA

SET.
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Glomerella 15 0 0 0 0 0 100.0% 93.7%

Herbicide 0 15 0 0 0 0 100.0% 100.0%

Magnesium Def. 0 0 15 0 0 0 100.0% 93.7%

Potassium Def. 0 0 0 14 1 0 93.3% 100.0%

Scab 1 0 1 0 13 0 86.6% 92.8%

Healthy Leaves 0 0 0 0 0 15 100.0% 100.0%

Accuracy 96.6%

Kappa 0.96

V. CONCLUSIONS AND FUTURE WORK

Our results show that a CNN based on the AlexNet archi-

tecture is able to significantly outperform the baseline MLP,

showing comparable performance to that of a group experts

and outperforming any single expert. Moreover, perfect accu-

racy was obtained when only distinguishing between healthy

and unhealthy leaves.

We conclude that CNNs compose a viable and useful option

for this task, with more robust classifications than single

human experts. In this sense, an automated system based on

the trained model could contribute towards diagnosis reliability

and cost reduction.

Compared to previous works, our approach does not require

specialized equipment to capture the images or any sort

of feature extraction or engineering. The CNN is able to

learn relevant features from the data, to which we attribute

the improved performance. This also allows for the general

approach to be used in different disorders or even cultures

with changes only to the data set. This is important to allow

for the automatic improvement of the model when more data

is made available.

Although the SVM technique showed high accuracies in the

related work, when applied the same methodology as the other

techniques, using no pre-processing or feature extraction, the

results did not achieve more than 60% accuracies, therefore

they were not included in this article.

Several lines of future work are being planned. We are

expanding the current data set to make available more diverse

examples. While we have shown that more examples obtained

in the same way will only provide marginal improvements, the

introduction of more diversity (e.g. different backgrounds and

light conditions) could allow for better performance. We are

also introducing additional disorders and cultures to test how

the approach scales with these settings.

Different architectures are also being considered. We believe

that a combination of more examples and improved architec-

ture could lead to a system that can consistently outperform

experts. Finally, we aim at integrating our methodology into

working systems that can be used on the field, in less con-

trolled conditions.

REFERENCES

H Al-Hiary, S Bani-Ahmad, M Reyalat, M Braik, and Z AL-

Rahamneh. Fast and accurate detection and classification of

plant diseases. Machine learning, 14:5, 2011.

Sung-Bae Cho. Neural-network classifiers for recognizing to-

tally unconstrained handwritten numerals. Neural Networks,
IEEE Transactions on, 8(1):43–53, 1997.

Yoshihisa Hara, Robert G Atkins, Simon H Yueh, Robert T

Shin, and Jin Au Kong. Application of neural networks to

radar image classification. Geoscience and Remote Sensing,
IEEE Transactions on, 32(1):100–109, 1994.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,

Jonathan Long, Ross Girshick, Sergio Guadarrama, and

Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing
systems, pages 1097–1105, 2012.

J Richard Landis and Gary G Koch. The measurement of

observer agreement for categorical data. Biometrics, pages

159–174, 1977.

Gilmar Ribeiro Nachtigall, C Basso, and C J S Freire.

Nutrição e adubação de pomares. In NACHTIGALL,
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