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ABSTRACT. Water buffaloes (Bubalus bubalis) are quite well adapted 
to climatic conditions in the Amazon, and in this biome, they are noted 
for the considerable amount of meat and milk they produce and how 
hard they are able to work. Because of a lack of research dedicated to 
improving the rearing of buffaloes in the Amazon, the objective of this 
study was to genetically characterize the Murrah and Mediterranean 
breeds, as well as a mixed-breed population, based on polymorphisms 
in the diacylglycerol O-acyltransferase 1 gene (DGAT1), and associate 
the genotypes with milk production. By using the polymerase chain 
reaction-single-strand conformation polymorphism technique, the 
alleles A (0.79), B (0.20), and D (0.01) were found in the Murrah 
breed. In the Mediterranean and mixed-breed buffaloes, we found 
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alleles A (0.69) and (0.77) and B (0.31) and (0.23), respectively. The 
Murrah breed had the genotypes AA (0.63), AB (0.29), BB (0.05), and 
AD (0.03), and the Mediterranean and mixed-breed buffaloes had the 
genotypes AA (0.44) and (0.61), AB (0.50) and (0.31), and BB (0.06) 
and (0.08), respectively. For the Murrah, Mediterranean, and mixed-
breed buffaloes, respectively, the expected heterozygosity values were 
0.34, 0.43, and 0.35, the inbreeding coefficients were 0.78, -0.15, and 
0.17, and the Hardy-Weinberg probabilities were 0.70, 0.67, and 0.52. 
The genotypes evaluated did not have an effect on milk production; 
however, the single nucleotide polymorphisms can be used in studies 
on genetic variability.
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INTRODUCTION

In Brazil, water buffalo (Bubalus bubalis) rearing has been developed on a large 
scale, with an annual increase of 4.3%. Brazil contains 1.3 million buffaloes, and the country’s 
northern region holds 64.1% of the overall population, the northeastern region has 9.7%, the 
southeast has 11.5%, the south has 9.0%, and the center-west has 5.8%. The northern state of 
Pará is the main buffalo-rearing state with 38.5% of the national total, followed by Amapá 
state with 18.1% (IBGE, 2011). The production and commercialization of buffalo milk and 
its derivatives are quite varied (Dias et al., 2012). The production and consumption of buffalo 
milk is increasing, because of an increase in demand for foods derived from it, such as milk 
and cheese. Therefore, the components of buffalo milk, such as fats and total solids, make 
buffalo milk higher quality than cow milk (Rosales and Batalha, 2013).

The use of molecular markers that are associated with zootechnical data significantly 
contributes to animal production, avoids threats to the breeds during breeding control, and increases 
the yield of these animals in Brazil (Mariante et al., 2011). Single nucleotide polymorphism 
(SNP) markers are amongst the most varied molecular markers, and are characterized by a 
change in a unique nitrogenous base, allowing for the detection of two nucleotides in the same 
position and demonstrating codominant inheritance (Vignal et al., 2002).

Among the various genes studied with reference to the production of milk in domestic 
animals, diacylglycerol O-acyltransferase 1 (DGAT1) controls the rate of triglyceride synthesis 
via adipocytes (Yen et al., 2008). DGAT1 in buffaloes is approximately 8.3 kb long, contains 17 
exons, and is located on the 14th chromosome (Yuan et al., 2007). SNP-type polymorphisms 
were found by Raut et al. (2012) at the extension of exon 7 to exon 9 in DGAT1 in buffaloes, 
and they concluded that it would be possible to associate them with milk yield. Another study 
showed that minisatellite markers in DGAT1 are associated with milk constituents in buffaloes 
(Cardoso et al., 2015). Tăbăran et al. (2015) reported the influence of polymorphisms in DGAT1 
on the percentage and profile of milk fat in Romanian Holstein cattle; therefore, they should 
be used in marker-assisted selection (Hill et al., 2016). Lacorte et al. (2006) used polymerase 
chain reaction (PCR)-restriction fragment length polymorphism to reveal that SNPs in DGAT1 
exhibited a high frequency of the A allele in Holstein and Gyr x Holstein F1 cattle. However, 
the A allele has not been found in the Nellore and Guzerat breeds, and is only found at a low 
frequency in the Gyr and Red Sindhi breeds. These findings demonstrate that cattle have low 
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genetic variability. Genetic polymorphisms only occur in some cattle breeds, and in buffaloes, 
they are conserved on the K-allele sequence. Therefore, the objective of this study was to 
identify polymorphisms in DGAT1, and genetically characterize and associate polymorphisms 
with the production of milk in Murrah, Mediterranean, and mixed-breed herds in the Brazilian 
Amazonian region.

MATERIAL AND METHODS

The milk production in one control day (the total milk produced in each milking 
session within a 24-h period) of 83 buffaloes (38 Murrah, 32 Mediterranean, and 13 mixed-
breed) was analyzed. The mixed-breed cattle were between 1/2, 1/4, 7/8, 15/16, 17/32, 25/32, 
and 33/64 of Murrah and Mediterranean. All of the cattle were taken from the PROMEBULL 
project, which was developed in Campo Experimental de Terra Alta in Pará at the Embrapa 
Amazônia Oriental (1°05'37.75''S and 47°54'56.76''W), and from Unidade de Pesquisa Dr. 
Felisberto Camargo in Belém, Pará (1°26'28.29''S and 48°24'20.58''W). A total of 5 mL of 
blood was collected from each animal and preserved in EDTA at 4°C until analysis.

Genomic DNA was extracted according to the protocol developed by Regitano and 
Coutinho (2001). Subsequently, the DNA was quantified on 1.0% agarose gel and compared with 
increasing concentrations of DNA bacteriophage (50, 100, and 200 ng/µL; Invitrogen). The purity 
of the DNA was evaluated using a BioMate™ 3 spectrophotometer (Thermo Scientific, USA) 
within the range A260-A280 nm, and samples with rates equal to or higher than 1.8 were selected.

The PCRs were conducted in a final volume of 20 µL to amplify a 412-bp 
fragment, which included intron 7, exon 8, and intron 8. The primers used were forward 
5'-GCACCATCCTCTTCCTCAAG-3' and reverse 5'-GGAAGCGCTTTCGGATG-3' (Winter 
et al., 2002). The reactions contained 1X buffer (10X), 2 mM MgCl2, 1 mM each dNTP, 2.5% 
bovine serum albumin (Invitrogen), 10 nM each primer (forward and reverse), 1 U Taq DNA 
polymerase (Promega, Brazil), and 25 ng genomic DNA. The reactions were performed using 
a Veriti™ Thermal Cycler (Applied Biosystems, USA), with an initial denaturation temperature 
of 95°C for 5 min followed by 35 cycles with a denaturing temperature of 94°C for 45 s, an 
annealing temperature of 57°C for 1 min and 30 s, an extension temperature of 72°C for 2 min, 
followed by a final extension temperature of 72°C for 5 min.

Polymorphisms were detected using the single-strand conformation polymorphism 
(SSCP) technique, with 2 µL PCR products mixed with 6 µL loading buffer (0.05% xylene-
cyanol, 0.05% bromophenol blue, 0.5 mM EDTA, pH 8.0, and 98% formamide) followed by a 
heating session at 95°C for 10 min for denaturation, and refrigeration in ice for electrophoresis. 
Subsequently, the samples were subjected to electrophoresis on 8% polyacrylamide gel 
(acrylamide:bisacrylamide at a proportion of 29:1) with 1X TBE buffer for 8 h at 600 V. The 
gels were then stained with silver nitrate.

Samples that exhibited different migration patterns were purified using a QIAquick® 
PCR Purification Kit (Quiagen, USA), and were then sequenced in a 3130 Genetic Analyzer 
(Applied Biosystems) using a BigDye® Kit (Applied Biosystems). The sequences were edited 
using Chromas Lite V.2.1.1 (Technelysium Pty Ltd., Australia) and aligned by Clustal Omega 
(McWilliam et al., 2013) with the GenBank reference sequences FJ014704 and DQ182702, in 
order to determine the SNPs.

GENEPOP (Raymond and Rousset, 1995) was used to determine allele and 
genotype frequencies, the observed and expected heterozygosities, inbreeding coefficients 
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(FIS), Hardy-Weinberg equilibrium probabilities, and F-statistic estimates for population 
differentiation. GenAlEx (Peakall and Smouse, 2012) was used to calculate the Shannon 
index. Associations between the different genotypes and milk production were investigated 
by conducting analysis of variance using PROC GLM in SAS/STAT® 9.0 (SAS Institute 
Inc., 2004) with the following model:

where Yijk represents the production of milk, µ represents the average of all observations, 
αi represents the effect of the genotype factor, βj represents the effect of the breed factor, yij 
represents the effect of interactions between the genotype and breed factors, and εijk represents 
the experimental error. The level of significance was set at 0.05.

RESULTS

The PCR products were 412 bp long, and the PCR-SSCP technique was effective in 
finding polymorphisms in buffalo DGAT1. Four patterns of bands were found for this gene, 
which were sequenced and compared with those described by Raut et al. (2012). The allele 
variant A produced cytosine (C) at position 75, C at position 135, C at position 256, and 
guanine (G) at position 277. The allele variant B produced C at position 75, G at position 136, 
thymine (T) at position 256, and G at position 277. The allele variant D produced C at position 
75, C at position 135, C at position 256, and T at position 277. A and B allele variants were 
observed in this study, as well as a new allele variant, variant D (Figure 1).

 ijk i j ij ijkY µ α β γ ε= + + + + (Equation 1)

Figure 1. Alignment of nucleotide sequences, showing evidence for the presence of single nucleotide polymorphisms 
at positions 136, 256, and 277.

Four genotypes were observed in the Murrah breed and three were observed in the 
Mediterranean and mixed-breed groups (Table 1). Allele variant A was the most frequent variant 
in the Murrah, Mediterranean, and mixed-breed groups (0.79, 0.69, and 0.77, respectively) 
(Table 1). AA was the most frequent genotype in the Murrah and mixed-breed groups, while 
AB was the most frequent in the Mediterranean breed (Table 1).

The observed heterozygosities were lower than 0.50 in the Murrah and mixed-breed 
groups and equal to 0.50 in the Mediterranean group, while the expected heterozygosities were 
lower than 0.50 in all of the groups studied. The Shannon index was lower than 1.00 in all of 
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the groups, and the FIS values indicated endogamy in the Murrah and mixed-breed groups but 
not in the Mediterranean group. The Hardy-Weinberg equilibrium did not differ significantly 
(P > 0.05) from the proportions expected in any of the breed groups (Table 1).

MU, Murrah; MD, Mediterranean; ME, mixed; HOob, observed homozygosity; HEob, observed heterozygosity; 
HEexp, expected heterozygosity; SI, Shannon index; FIS, inbreeding coefficient; HWP, Hardy-Weinberg probability. 
Frequencies are in parentheses.

Table 1. Genotypic, allelic, and genetic characteristics of the populations.

Breed Genotype Allele HOob HEob HEexp SI FIS HWP 
MU AA (0.63) A (0.79) 0.68 0.32 0.34 0.56 0.78 0.70 

AB (0.29) B (0.20)       
BB (0.05) D (0.01)       
AD (0.03)        

MD AA (0.44) A (0.69) 0.50 0.50 0.43 0.62 -0.15 0.67 
AB (0.50) B (0.31)       
BB (0.06)        

ME AA (0.61) A (0.77) 0.69 0.31 0.35 0.54 0.17 0.52 
AB (0.31) B (0.23)       
BB (0.08)        

 

Table 2 presents the results for milk production. There were no significant associations 
between genotype and milk production in any of the breed groups studied (P > 0.05).

SD, standard deviation.

Table 2. Milk production performance (kg) of each genotype within the breed groups.

Genotype Breed 
Murrah Mediterranean Mixed 

Average SD Average SD Average SD 
AA 4.55 1.72 4.78 1.89 4.08 2.32 
AB 4.28 0.77 3.77 1.43 4.69 1.63 
BB 4.61 0.33 4.66 2.31 1.95 0.00 
AD 3.76 0.00     
 

DISCUSSION

The sequence obtained included intron 7, exon 8, and intron 8 of DGAT1 (Yuan et al., 
2007), and all of the variations were detected in introns 7 and 8, as described by Raut et al. 
(2012). However, a novel variant was detected (D), which has a different SNP configuration 
according to Raut et al. (2012). The allele variant A was the most frequent in all of the breed 
groups, and, consequently, the genotype AA was found at a high frequency in the Murrah and 
mixed-breed groups. Very similar results were obtained by Raut et al. (2012) when studying 
Murrah and Pandharpuri buffaloes.

Shi et al. (2012) investigated Murrah buffaloes for the presence of SNPs between 
introns 7 and 8 of DGAT1, and detected a polymorphic point at position 256, which was 
observed in our study. The same workers compared the complete 412-bp sequence with that 
in cows, and observed differences in positions 111, 112, and 338, with T, C, and C in cows 
and G, A, and G in buffaloes, respectively. We also found G, A, and G in these positions in the 
three breed groups studied.

Heydarian et al. (2014) investigated 278 bp between introns 7 and 8 in four breeds of 
buffalo (Bhadawari, Mehsana, Murrah, and Surti) that are native to five provinces of Iran. Their 
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sequence corresponds with that found between positions 60 and 337 in our study. However, 
the authors did not observe polymorphisms in positions 75, 136, or 277, and only observed a 
SNP at position 256. The C allele at position 256 was the most frequent in all of the breeds, 
and the CC genotype was the most frequent in two of the breeds; in the other two breeds, the 
genotype frequencies were equal (Heydarian et al., 2014).

In the present study, the different variants and allele frequencies resulted in low genetic 
variability in Murrah, Mediterranean and mixed-breed, despite there being no deviation from 
the Hardy-Weinberg equilibrium, but this low variability indicates that inbreeding has occurred. 
Machado et al. (2016) also observed inbreeding (based on a SNP found on an intron of the 
melatonin receptor gene) in two Amazonian populations of buffaloes that are characterized by 
their systems of rearing (Terra Firme and Varzea); the authors concluded that both populations 
had low to moderate genetic variability.

Regarding associations between genotype and milk production, we found that the 
SNPs had no direct effect on variations in milk production. Some studies have reported that 
SNPs in DGAT1 are significantly associated with milk yield, high milk fat yield, high fat, and 
high protein in dairy cows and buffaloes (Lacorte et al., 2006; Tantia et al., 2006; Hill et al., 
2016). However, the SNPs found in this study were in an intron region, which is not important 
for amino acid chains on proteins, although some polymorphisms found in the intron regions 
of enzyme genes can affect enzyme functionality, as reported by Buraczynska et al. (2004) 
for the endothelial synthase nitric oxide gene and by Sachse et al. (1999) for the cytochrome 
isoenzyme P450 gene (CYP1A2).

In conclusion, buffalo DGAT1 was variable in the region between introns 7 and 8, 
with a new allele variant (D) found, but the allele variant A was more representative, and 
the different genotypes were not associated with milk production. Therefore, these SNPs can 
serve as population markers for studies on genetic variability in buffaloes.
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