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Abstract
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. 
Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that 
are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area 
of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response 
to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant 
in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND 
model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the 
Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED 
model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the 
calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work 
shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field 
data is scarce or non-existent, such as in the Caatinga.

Keywords: Dynamic Global Vegetation Models (DGVM), maximum carboxylation velocity (Vcmax), Caatinga, Gross 
Primary Productivity (GPP), global changes.

Calibração da velocidade máxima de carboxilação (Vcmax), utilizando 
técnicas de mineração de dados e dados de ecofisiologia da região semiárida 

brasileira, para uso em Modelos de Vegetação Globais Dinâmicos.

Resumo
A região semiárida do nordeste do Brasil, a Caatinga, é extremamente importante devido à sua biodiversidade e 
endemismo. Medidas de fisiologia vegetal são cruciais para a calibração de Modelos de Vegetação Globais Dinâmicos 
(DGVMs) que são atualmente usados para simular as respostas da vegetação diante das mudanças globais. Em um 
trabalho de campo realizado em uma área de floresta preservada na Caatinga localizada em Petrolina, Pernambuco, 
medidas de assimilação de carbono (em resposta à luz e ao CO2) foram realizadas em 11 indivíduos de Poincianella 
microphylla, uma espécie nativa que é abundante nesta região. Estes dados foram utilizados para calibrar a velocidade 
máxima de carboxilação (Vcmax) usada no modelo INLAND. As técnicas de calibração utilizadas foram Regressão Linear 
Múltipla (MLR) e técnicas de mineração de dados como Classification And Regression Tree (CART) e K-MEANS. 
Os resultados foram comparados com o modelo INLAND não calibrado. Verificou-se que a Produtividade Primária 
Bruta (PPB) simulada atingiu 72% da PPB observada ao usar os valores de Vcmax calibrado, enquanto que o modelo 
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1. Introduction

The semiarid region in Northeastern Brazil covers 
844,453 km2 (Brasil, 2014) and it is one of the most 
populated in the world and also concentrates the poorest 
population of the country (Brasil, 2010). A great portion of 
the population living in this region relies on agro pastoral 
activities and natural resources for subsistence. These 
activities are highly dependent on rainfall, and suffer 
setbacks due to adverse weather and recurrent drought 
cycles. Due to the scarcity of water, much of the soil 
presents low fertility, particularly regarding the levels 
of nitrogen, phosphorus and calcium. Currently, more 
than 10% of the semiarid area has suffered a very high 
degree of environmental degradation, being susceptible 
to desertification (Oyama and Nobre, 2004; Cunha et al., 
2013; Santos et al., 2014). According to Sampaio et al. 
(2005), the area susceptible to desertification is reasonably 
defined, with a rate of precipitation by evapotranspiration 
less than 0.65. The Caatinga is an exclusively Brazilian 
biome and is extremely important due to a high biological 
diversity and the presence of many endemic species (Brasil, 
2010). The Caatinga is a relatively poorly studied biome, 
compared to the other Brazilian biomes, despite the fact 
that it covers nearly 11% of the Brazilian territory. In 2012 
and 2013 this region experienced one of the most severe 
drought events in 50 years (Santos et al., 2014). Dynamic 
Global Vegetation Models (DGVMs) are important tools 
for projecting environmental risks (potential consequences 
of climate change) and fostering discussions about a more 
sustainable future of the planet, or in this case of the 
Caatinga biome. However, models need calibration in order 
to be able to provide reliable answers. These models have 
a high sensitivity to parameters related to photosynthesis 
(Lebauer et al., 2013; Dietze, 2014).

The carboxylation velocity parameter (Vcmax) is 
considered one of the most critical for changes in vegetation 
in face of global changes. The Vcmax is the measurement 
of process by which Rubisco catalyzes RuBP with CO2 
to produce the carbon compounds that eventually become 
triose phosphates (eg glyceraldeide-3P). Triose phosphates 
are the building block for sugars and starches. Vcmax has 
a direct impact on Gross Primary Productivity (GPP) 
(Bonan et al., 2012; LeBauer et al., 2013; Rogers, 2014; 
Dietze, 2014). Several uncertainties have been observed 
in the results of DGVM simulations and they tend to 
underestimate maximum GPP (Bonan et al., 2012; Dietze, 
2014). This can be attributed to the lack of databases used 
for proper Vcmax calibration and the fact that canopy level 
Vcmax values are used, which are lower than those observed 

at the leaf level (Schaefer et al., 2012; Dietze, 2014). Rogers 
(2014) noted a wide variation in Vcmax used in models 
that had identical PFTs (Plant Functional Types) and they 
sought to represent the CO2 uptake of the same biomes, 
which is critical due to the role of Vcmax in the carbon 
cycle. The use of static parameters implies that DGVMs 
cannot adjust to environmental changes (Smith and Dukes, 
2012). Physiological processes are considered the main 
sources of uncertainties in these models. However, it is 
expected that a plant physiology database will enable the 
calibration and correction of the models and thus reduce 
substantially these uncertainties in the next generation of 
DGVMs (LeBauer et al., 2013; Huntingford et al., 2013; 
Rogers, 2014; Dietze, 2014).

In this work, the objective is to calibrate the value of 
Vcmax used in the INLAND model (Tourigny, 2014) for the 
Caatinga biome using carbon assimilation (CO2 curves) 
from field measurements. INLAND is derived from IBIS 
(Foley et al., 1996; Kucharik et al., 2000). We used the 
Multiple Linear Regression (MLR) technique for fitting 
Vcmax and the Classification And Regression Tree (CART) 
and K-MEANS algorithms to define classifications or 
groups of Vcmax values. The results of simulations of the 
INLAND model using the calibrated Vcmax values were 
compared to simulations using an uncalibrated configuration 
of the model. The goal of this work was to evaluate if the 
use of Vcmax measurements for model calibration would 
improve simulated GPP and NEE.

2. Material and Methods

2.1. Field work
The field work was conducted in a 600 ha area of 

preserved Caatinga forest, located in the headquarters of 
Embrapa Tropical Semiarid in Petrolina, Pernambuco, 
during the rainy seasons of February 2013 and 2014, with 
a purpose of performing CO2 measurements. The Caatinga 
vegetation in this region Petrolina is classified as Savannah 
Steppe trees and shrubs. This type of Caatinga vegetation 
represents 75.72% of the total area of the Caatinga 
biome (Brasil, 2007). The soil of the experimental area is 
classified as Argisol, which is characterized by low water 
retention and poor fertility. Caatinga is characterized by 
low annual precipitation and prolonged drought periods 
(6-8 months each year). The rainy season in Petrolina is 
from December to April and the dry season is from May 
to October. In a data series from CPTEC-INPE covering 
14 years (1997-2011), the monthly mean maximum 
temperatures reach their highest in November (~ 340C) 
and the average monthly minimum temperatures reach 

não calibrado obteve-se 42% da PPB observada. Assim, este trabalho mostra os benefícios de calibrar DGVMs usando 
medidas ecofisiológicas de campo, especialmente em áreas onde os dados de campo são escassos ou inexistentes, 
como na Caatinga.

Palavras chave: Modelos de Vegetação Globais Dinâmicos (DGVMs), velocidade máxima de carboxilação (Vcmax), 
Caatinga, Produtividade Primária Bruta (PPB), mudanças globais.
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their lowest values in July (~ 20°C). The average monthly 
rainfall for this period shows that February is the month 
of highest rainfall (~ 88 mm); and August is the month of 
lowest rainfall (~ 1 mm). The Poincianella microphylla 
species (vulgar name: catingueira falsa) was selected 
because it has a high occurrence in the Caatinga and it 
belongs to the Fabaceae family, which represents 50.63% 
of the species in the area (Drummond et al., 2002). 
Following a direction (125° transect) and a distance of 
~120 m from a meteorological tower (9° 2’ 47.4144” S, 
40° 19’ 16.7154” W, altitude: 364.7), 11 individuals of 
catingueira were selected and geo-referenced using a Global 
Positioning System (GPS). This direction was selected 
following a prior study of the tower footprint, as part of 
Caatinga Flux Project. The heights of these individuals 
varied from 1.7 to 4.5 m. Physiological measurements were 
carried using a photosynthesis and fluorescence analyzer 
LI-6400 (Li-Cor, Nebraska, USA) and were performed on 
fully expanded and sun-exposed leaves (one leaf per plant), 
directly on the standing plants. Temperature of leaves and 
relative humidity of chamber were not controlled and they 
varied according to the environmental conditions. The time 
of measurements was between 7:00 (am) and 3:00(pm) local 
time. In light response curves (A × Photosynthetic Active 
Radiation – PAR) the points were: 800, 600, 400, 200, 100, 
50, 25 and 0 µmol m–2 s–1 performed under Light Emitting 
Diode (LED) source light with blue = 10% and CO2 flux 
fixed in 400 µmol mol–1. Some tests were performed for 
A × PAR curves and we concluded that plants saturate in 
points close to 800 µmol m–2 s–1 (instead 1500 µmol m–2 s–1 
that is the most common saturating light intensity for C3 
species). We understand that even with a high amount of 
available light, water limitation makes this species have 
a more conservative strategy and not “cope well” with 
high radiation especially in times of the year where soil 
moisture is not abundant. The equations used to calculate 
the assimilation of CO2 (A), stomatal conductance (gs) and 
intercellular concentration (Ci) followed Von Caemmerer 
and Farquhar (1981). Applying model of non-rectangular 
hyperbola (Long and Hällgren, 1993) AxPAR curves were 
performed in order to identify the plants’ photosynthetic 
saturation point.

The curves of photosynthetic response to CO2 
intercelullar concentration (AxCi) were performed under 
LED source light (red-blue, 10% blue) set to a PAR of 
800 µmol photons m–2 s–1. CO2 curves were initiated with 
a CO2 air concentration of 400 µmol mol–1 (e.g., 400 ppm) 
and decreased to 300, 200, 100, 50 until 0 µmol mol–1. 
In sequence, we injected increasing CO2 values of 400, 
600, 900 and 1200 µmol mol–1. Carbon assimilation was 
estimated according to models of Farquhar et al. (1980), 
Von Caemmerer and Farquhar (1981), Farquhar and Von 
Caemmerer (1982), Von Caemmerer (2000) and it is expressed 
as a minimum of three main limitations in the plant capacity 
to fix carbon: light limited-rate of photosynthesis (Aj), 
the limited rate Rubisco- for photosynthesis (Ac) and the 
triose phosphate limitation in the using for photosynthesis 
(At) (Equation 1):

A = min (Aj, Ac, At) (1)

It was not considered the triose phosphate limitation, 
thus Ac and Aj are estimated by Equations 2 and 3:

Ac = ([Vcmax (Ci – Γ*)] / [Ci + Kc (1 + O/Ko)]) – Rd (2)

Where Vcmax is maximum velocity of carboxylation; Ci 
is concentration intercellular; Γ* is compensation point of 
CO2, Kc is the Michaelis-Menten constant for CO2, Ko is the 
Michaelis-Menten constant for CO2, O is partial pressure 
of O2 in equilibrium with its dissolved concentration in 
chloroplast stroma; Rd is mitochondrial respiration rate 
in the presence of light.

Aj = ([J max (Ci – Γ*)] / [4Ci + 8 Γ*]) – Rd (3)

Using the initial slope of the net assimilation rate 
in relation to Ci (Ci less than 200), it was calculated 
a maximum speed of Rubisco enzyme carboxylation 
(Vcmax) for the results obtained from the limiting equation 
by the limited rate Rubisco (Ac). The calculation of the 
maximum rate of electron transport (Jmax) was carried 
out by solving the equation that describes the points of 
Aj. The stomatal limitation was quantified by the method 
Farquhar and Sharkey (1982), described in details by Long 
and Bernacchi (2003).

2.2. Modeling work
The INLAND model uses 12 PFTs and the deciduous 

shrub PFT was used for the Caatinga region. Data are 
organized in a database (DB) (see Figure 1) and we used 
some environmental variables that have good (or reasonable) 
correlation (or anti-correlation) with photosynthesis, such 
as leaf-level Vapor Pressure Deficit (VpdL), air temperature 
(Tair) and Photosynthetically Active Radiation (PARout) 
measured in the environment. Despite VpdL being used 
as an indicator of water availability, VpdL and soil water 
content are not always covariant (Beer et al., 2009). We use 
these variables to get a initial value of Vcmax, which is 
modified using a soil water stress factor, following the 
INLAND model (Equation 4):

Vcmax = Vc x stresstl (4)

where Vc is the Vcmax value obtained from learning 
machine (data mining) methods, MLR or UNCALIBRATED 
defined in INLAND for deciduous shrubs; stresstl is a value 
calculated by INLAND model from precipitation, radiation 
and air temperature data (collected in the meteorological 
tower) and it varies from 0 to 1. Using the field samples, 
the inferences were done with MLR and with the CART 
and K-MEANS unsupervised clustering methods. After 
calibration using these methods, the rules of CART and 
K-MEANS and the MLR equations were implemented in 
the INLAND model.

2.2.1. CART
CART is a method to perform a classification through 

categorical or discretized variables regression with average 
values as output (Breiman et al., 1984). This method was 
selected because it allows to supply a discretized real 
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variable (one value of Vcmax) and it solves a multivariate 
regression problem. We used the CART implementation 
in Matlab software version 7.12. This method has other 
advantages such as the easiness to interpret the results; low 
sensitivity to outliers, ability to handle high dimensionality 
data (i.e. data with many attributes), and also to identify the 
more relevant parameters; requires little data preparation, 
whereas other techniques often need the normalization of 
data; as well as fast processing time and high accuracy 
(Sutton, 2005; Lima et al., 2014).

CART input is a set of chained rules such as “IF THEN 
ELSE”, forming a hierarchical structure similar to a 
tree. It  perates on a database and determines the output 
parameter class based on input attributes. The components 
of this structure basically are: nodes - rules that test the 
values (or attributes); leaves - the classification itself. 
Each path in the tree (from root to leaf) corresponds to 
a classification rule. The attribute space (in this case: 
VpdL, air temperature and PAR) were partitioned by 
binary splitting of the input attributes. Each splitting 
corresponds to a rule concerning the value of the output 
attribute, being depicted by a node of the tree. At each 
node, the left or right branch is chosen according to the 

value of the considered input attribute, i.e. according to a 
simple less than (equal) or greater than (equal) rule (value 
comparison rule). In this fashion, at some terminal node 
a “final” discrete value is assigned to the output attribute. 
One of the criteria for choosing the attribute for a node is 
the choice of the attribute which has highest information 
gain that is realized through entropy estimate (more or 
less organized data) (Han and Kamber, 2001). A decision 
tree has many levels and the same attribute may appear 
many times in different nodes/levels. A pruning criteria 
is adopted in order to avoid overfitting, which renders a 
tree that is not able to perform classification/regression in 
a dataset different from the training set (Han and Kamber, 
2001; Witten et al., 2011).

2.2.2. K-MEANS (Clustering)
We used the K-MEANS implementation of Weka 

software version 3.7.1 released under the GNU General 
Public License. First the K parameter, which represents the 
number of groups or cluster to be classified, is determined. 
K points are chosen at random as cluster centroids by 
the algorithm. Instances are assigned to their closest 
cluster centroid according to a distance function (in our 

Figure 1. Illustration of the main parts of this work: data acquisition, database implementation, calibration (CART and 
K-MEANS machine learning approaches) and modeling.
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case, we apply Euclidean distance). Next the centroid, or 
mean, of all instances in each cluster is calculated – this 
is the “means” part. These centroids are taken to be new 
center values for their respective clusters. Finally, the 
whole process is repeated with the new cluster centroids. 
Iteration continues until the same points are assigned 
to each cluster in consecutive rounds, at which point 
the cluster centroids have stabilized and will remain 
the same thereafter (Witten et al., 2011). The data were 
normalized in order to transform values between 0 and 1. 
The normalization purpose in this case is that magnitude 
of the attribute (for example: PARout) could have larger 
weight in the distance calculation.

2.2.3. Uncalibrated approach
We used the INLAND parameterization defined for 

Vcmax of deciduous shrubs PFTs as 27.5×10–6 mol m–2 s–1 
at 15°C (Kucharik et al., 2000), which is uncalibrated 
for Caatinga.

2.2.4. Data input and data for comparison
Additional data sets were used: one as input forcing 

(meteorological data) and another as environmental variables 
for comparison between observed data and modeled data. 
Forcing data were incident short and long wave solar 
radiation (measured with Kipp & Zonen, Inc., pyranometers 
and pyrgeometers facing up and down at a height of 9 m 
from the ground), air temperature and relative humidity 
(measured with Vaisala, Inc., model HMP 45C-L probe 
at the same height as the radiation sensors), horizontal 
wind velocity (measured with R. M. Young Company 
Wind Sentry anemometers) and rainfall data (collected 
with a Hydrological Services, Pty Ltd., TB4 rain gauge). 
The measured data used for the estimation of GPP and 
NEE (as explained in the next section) were hourly time 
series of incoming and reflected photosynthetically active 
radiation (PAR), net radiation (Rn), friction velocity (u), 
sensible heat flux (H), and latent heat flux (LE). PAR was 
measured with a Kipp & Zonen PAR-Lite sensor. Rn was 
acquired with a Kipp&Zonen NR-Lite net radiometer at 
10m above the ground.

2.2.5. Gap-filling of the eddy covariance and 
meteorological data

GPP and NEE were estimated through the Eddy Covariance 
gap-filling and flux-partitioning tool that is provided by the 
Max Planck Institute for Biogeochemistry (Reichstein et al., 
2005; Max Planck Institute for Biogeochemistr, 2014). 
This method allows filling missing values in a time 
series. The gap-filling of the eddy covariance method also 
considers the co-variation of fluxes with meteorological 
variables and the temporal auto-correlation of the fluxes 
(Reichstein et al., 2005). In this algorithm, three different 
conditions are identified: 1) Only the data of direct interest 
are missing, but all meteorological data are available; 
2) Additionally air temperature or VPD is missing, but 
radiation is available; 3) Radiation data is also missing. 
In the final comparison, missing values are not considered 
in the evaluation of the results (Reichstein et al., 2005).

3. Results

In this section we show results of field measurements, 
model calibration using these measurements and simulations 
using the calibration.

3.1. Ecophysiological measurements
CO2 response and light response curves were measured in 

the field to estimate the vegetation responses in catingueira 
falsa during two periods: February 4-8, 2013 and February, 
23-27, 2014, both during the rainy season. Data shows a 
negative correlation between Vcmax and VpdL of –0.78 for 
measurements of CO2 at 400 µmol mol–1.

In the 2014 campaign, four outlying values of Vcmax 
were higher than 200 µmol m–2 s–1 (203, 226.3, 226.4 and 
211) and were discarded from statistical analysis. However 
only four points were discarded, we think it is important 
to register these values because there are few (or quasi no) 
data of Vcmax and CO2 curves for Caatinga for comparison 
(as shown in Table 1).

3.2. Model adjustment of Vcmax

In this section, we show the regression or calibration 
of Vcmax based on simulated values of GPP and NEE.

3.2.1. Calibration with Multiple Linear Regression 
(MLR)

Using MLR we obtained the following fitting Equation 5:

Vcmax = –109.7 – 38.3 VpdL + 9.75 TempAir – 0.03 PARout (5)

It shows that the attribute of highest weight in the 
linear regression was VpdL with –38.3; air temperature 
was second in significance with 9.75 and PARout was very 
small: 0.03. It has reasonable correlation: 0.57 and root 
mean squared error of 38.0 (see Figure 2).

3.2.2. Calibration with CART
The CART decision tree learning technique was used to 

map the value of Vcmax based on rules related to observed 
VpdL and air temperature. The inferred rules are illustrated 
in Figure 3, where each triangle represents a decision level. 
For example, in the first level (the top triangle), we can 
see following decision: – if VpdL is equal or greater than 
3.3, Vcmax is classified as 47.0 µmol CO2 m

–2 s–1. Each 
filled circle is a terminal node, the end of a branch in the 

Figure 2. Dispersion of MLR for Vcmax and bar of standard 
error of mean – (n=33).
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classification. Otherwise, if VpdL is less than 3.3, the 
process flows to next decision level (triangle).

After implementing the rules derived from the CART 
tree in INLAND, we can see (as shown in Table 2) that 
node 2 had a major occurrence (74.9%) of Vcmax of 
94.7 µmol CO2 m

–2 s–1 and node 4 had less occurrence 
(0.11%) for a Vcmax of 159.7 µmol CO2 m

–2 s–1. Two nodes 
(1 and 5) with Vcmax less than 48 µmol CO2 m

–2 s–1 had 

some significance (both summing 24.9%). Three nodes 
(3, 6 and 7) had no classified instances.

3.2.3. Calibration with K-MEANS
We choose five centroids/groups, which allows for a 

good distribution of discretized Vcmax (with a larger number 
of centroids the borders could be very close). Except for 
Vcmax, the attribute values used were normalized centroids 

Table 1. Results of Vcmax estimated through field data and its standard errors of the means (SEM) (n=37).

VpdL 
(kPa) ± Temp.Air 

(°C) ± PARout
(µmol photons m–2 s–1) ± Vcmax

(µmol m–2 s–1) ±
Vcmax (at 

25°C)
(µmol m–2 s–1)

±

4.49720 0.34 38.5 0.80 701.6 8.3 37.7 12.4 13.0 7.5
4.43847 0.33 38.4 0.78 1914.4 207.7 77.3 5.9 26.5 5.3
4.02850 0.26 37.8 0.68 963 51.3 60.6 8.7 22.4 6.0
3.27095 0.13 35 0.22 179.5 77.4 159.1 7.4 71.5 2.0
3.46174 0.16 34 0.06 1304 107.4 34.2 13.0 14.6 7.3
2.30124 0.02 31.6 0.33 652.9 0.3 101.5 1.9 60.1 0.1
1.96733 0.07 30 0.59 647.3 0.5 65.3 7.9 44.2 2.4
2.35285 0.01 32 0.26 524.2 20.7 135.8 3.6 77.1 2.9
3.44329 0.16 35.8 0.35 408.7 39.7 40 12.0 16.9 6.9
3.21498 0.12 35.2 0.26 243.3 66.9 143.9 4.9 64.7 0.9
1.24668 0.19 32.4 0.19 184.9 76.5 226.3 18.5 123.2 10.5
1.21799 0.19 33 0.10 316.6 54.8 160.2 7.6 83.3 3.9
1.09090 0.21 32 0.26 632.7 2.9 167.8 8.9 98.5 6.4
1.40622 0.16 32.6 0.16 197.6 74.4 187.6 12.1 101.2 6.9
1.79958 0.10 35.1 0.24 854.7 33.5 226.4 18.5 96.1 6.0
2.64427 0.03 38.5 0.80 1923.3 209.2 41.9 11.7 14.3 7.3
2.42536 0.00 37 0.55 1533.7 145.1 203.1 14.7 72.9 2.2
3.20736 0.12 38.3 0.77 796.5 23.9 144.4 5.0 46.9 2.0
3.38247 0.15 39.3 0.93 1877.2 201.6 32.5 13.3 10.7 6.0
2.97034 0.08 37.1 0.57 484.7 27.2 141.7 4.6 54.9 0.6
2.97897 0.09 35.9 0.37 201.2 73.8 43.7 11.4 17.3 6.8
3.17688 0.12 36.3 0.44 532.9 19.3 179.3 10.8 70.1 1.8
1.17687 0.20 28.3 0.87 220.1 70.7 107.9 0.9 83.8 7.9
1.38237 0.17 31.6 0.33 254.5 65.1 123.2 1.5 75.4 2.6
1.76653 0.10 34.1 0.08 1014.6 59.8 128.5 2.4 59.2 0.0
2.44282 0.00 37.6 0.65 1871.3 200.6 157.7 7.6 60.2 0.1
1.92229 0.08 27.3 1.03 188.5 75.9 107.7 0.9 85.8 4.3
2.05905 0.06 29.1 0.74 227 69.6 51.8 10.1 37.6 3.5
1.83197 0.09 28.8 0.79 222.9 70.3 89.6 3.9 68.4 1.5
1.85148 0.09 28.5 0.84 187.5 76.1 67.6 7.5 52.1 1.1
1.87569 0.09 29.8 0.62 211.3 72.2 90.1 3.8 65.9 1.1
1.89957 0.08 35.2 0.26 291.2 59.0 92.3 3.4 63.1 0.3
2.07286 0.05 30.8 0.46 506.2 23.7 70.3 7.1 44.9 2.3
2.05267 0.06 30.6 0.49 291.6 59.0 134.8 3.4 84.6 4.1
2.20861 0.03 31.6 0.33 556.5 15.4 211 16.0 119.7 9.9
2.32679 0.01 31.4 0.36 460.2 31.2 54.6 9.6 31.4 4.5
2.44251 0.00 33.1 0.08 491.6 26.1 103 1.7 55.6 0.5
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(between 0 and 1, as shown in Table 3). Thus these values 
are proportional to the highest sample of each attribute. 
We can see that in Group 4 there are high values of VpdL 
(0.7393) and air temperature (0.8312), characterizing a hot 
and dry environment, which is responsible for low Vcmax 
(45.9 µmol CO2 m

–2 s–1). On the other hand, in Group 
5 we can see a low VpdL (0.1524), an intermediate air 
temperature (0.4143) and high Vcmax (148.2 µmol CO2 
m–2 s–1). We implemented the results and rules derived of 
Table 3 and the calculation of distances from instances 
to centroids in the INLAND model. Table 4 shows the 
results for each discretized Vcmax (the number of classified 
instances and percentage for each group). The group with 
highest number of classifications was Group 1, with 70.9% 
of total cases, and the group with less number of cases 
was Group 5, with 1.31% of total cases.

Both algorithms (CART and K-MEANS) had few cases 
with high Vcmax (greater than 154 µmol CO2 m

–2 s–1) with 
3.44% and 0.11% of total cases, respectively. The node 
with major number of occurrences (74.9%) with the CART 
algorithm was Node 2 with Vcmax of 94.7 µmol CO2 m

–2 s–1, 
whereas the group with a major number of occurrences 
(70.9%) using the K-MEANS method was Group 1 with a 
Vcmax of 92.5 µmol CO2 m

–2 s–1. These values are also closer 
to a simple mean value of Vcmax (101.01 µmol CO2 m

–2 s–1) 
obtained from the 2013 and 2014 the campaigns, compared 
to others nodes and groups.

3.2.4. GPP
The CART, UNCALIBRATED, K-MEANS and MLR 

approaches reproduced the GPP variability in comparison 
with observed GPP (see Figure 4). However, the results for 
the UNCALIBRATED case were highly underestimated 
(around 6 µmol CO2 m

–2 s–1 in the peak) when observed 
GPP was around 25 µmol CO2 m

–2 s–1 in the rainy months 
(March-June) (Figure 4a-d). K-MEANS was very reasonable 
when the productivity was around 24 µmol CO2 m

–2 s–1 
in the month of May (Figure 4a-e). For the months of 
November and December, K-MEANS was very accurate 
and GPP reached two peaks with values of ~ 19 µmol 
CO2 m

–2 s–1 and 23 µmol CO2 m
–2 s–1 against observations 

of ~18 µmol CO2 m
–2 s–1 and 24 µmol CO2 m

–2 s–1. Other 
approaches (CART and MLR) also had reasonable results 
for the peaks of November and December, but somewhat 
less accurate than K-MEANS. In these two months, CART 
had peaks of 18 and 19 µmol CO2 m

–2 s–1 (Figure 4c); 
UNCALIBRATED two peaks of 10 µmol CO2 m–2 s–1 
(Figure 4d); MLR 19 and 20 µmol CO2 m

–2 s–1 (Figure 4f). 
All approaches showed reasonable results during the dry 
months. A few pulses of precipitation of 4 mm influenced 
the model between September and October, which 
allowed for peaks of productivity of 11, 10 and 13 µmol 

Figure 3. Vcmax (µmol m–2 s–1) classification tree for the 
CART algorithm.

Table 2. Number and percentage of occurrences for each Vcmax node using the CART calibration.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
Occurrences 4165 17361 0 27 1606 0 0

% 17.9 74.9 0 0.11 6.9 0 0
Vcmax 47.0 94.7 59.0 159.7 41.9 113.0 156.6

Table 3. Results of attribute centroids for the K-MEANS algorithm.
Attribute Group 1 Group 2 Group 3 Group 4 Group 5

VpdL 0.1881 0.5743 0.3117 0.7393 0.1524
Temp. of air 0.1033 0.7736 0.3583 0.8312 0.4143

Vcmax 92.5 154.3 76.9 45.9 148.2

Table 4. Classification results of Vcmax using the K-MEANS algorithm.
Group 1 Group 2 Group 3 Group 4 Group 5

Occurrences 18179 882 2478 3755 338
% 70.9 3.4 9.6 14.6 1.3

Vcmax 92.5 154.3 76.9 45.9 148.2
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CO2 m
–2 s–1 for CART; 8, 6 and 7 µmol CO2 m

–2 s–1 for 
UNCALIBRATED; 11, 10 and 12 µmol CO2 m

–2 s–1 for 
K-MEANS and 10, 11 and 14 µmol CO2 m

–2 s–1 for MLR. 
All approaches showed high values of productivity between 
the months of January and February, when observed 
data show low productivity (~ 5µmol CO2 m

–2 s–1) with 
one peak of ~20 µmol CO2 m

–2 s–1. The reason for this 
initially high productivity is that the stresstl variable 
defined in Equation 4 is initialized to 1.0 in a situation 
of no water stress and evolves through time following 
changes in meteorological data such as precipitation and 
air temperature. None of the approaches produce negative 
values of GPP. The UNCALIBRATED approach reached 
low values of GPP. The Vcmax value (27.5 .10–6 mol m–2 
s–1 at 15°C) used in this approach is low when compared 
to the values reached through the CART, K-MEANS and 
MLR approaches.

We calculated mean GPP during months March-May, 
which is during the rainy season (see Figure 4b), during which 
a major production is expected compared to other periods of 
this year (2011). Notable is the fact that GPP simulated with 
the MLR approach (mean of 4.21 µmol CO2 m

–2 s–1) was 
closer to observed GPP (5.99 µmol CO2 m

–2 s–1) during this 
period. However results for the K-MEANS approach were 
nearest to observed GPP. The UNCALIBRATED approach 

had the lowest values of Vcmax and the production was 
underestimated with a mean value of 2.54 µmol CO2 m

–2 s–1.
In the analysis of bias and correlation of GPP, all 

approaches had a reasonable (good) correlation with observed 
GPP data: CART (r2: 0.69), UNCALIBRATED (r2: 0.702), 
K-MEANS (r2: 0.703) and MLR (r2: 0.716). The totals 
of GPP and NEE were calculated monthly (Figure 5). 
In Figure 5a, it was observed in the productivity peak (April, 
2011) that 3 approaches (MLR, K-MEANS and CART) had 
values of GPP ~3100, ~3000 and ~3000 µmol CO2 m–2 s–1, 
respectively, when observed GPP was of ~4800 µmol 
CO2 m–2 s–1. However UNCALIBRATED simulated 
low productivity in comparison with observed GPP: 
~2000 µmol CO2 m

–2 s–1. In the months of July until October, 
observed GPP was negative, none of approaches reached 
the 0 µmol CO2 m

–2 s–1 value. In the months of November 
and December, three approaches (CART, K-MEANS 
and MLR) agreed with observed data (productivity: 
~1800 µmol CO2 m–2 s–1). Again, UNCALIBRATED 
approach (productivity: ~1100 µmol CO2 m–2 s–1) was 
lower than observed data. In the analysis of correlation 
of GPP monthly totals, all approaches had very good 
correlation with observed GPP data: CART (r2: 0.93), 
UNCALIBRATED (r2: 0.93), K-MEANS (r2: 0.94) and 
MLR (r2: 0.94).

Figure 4. Data  from 2011 - resolution of 1 hour: (a) Observed GPP; (b) Observed precipitation; (c) CART GPP; 
(d) UNCALIBRATED GPP; (e) K-MEANS GPP; (f) MLR GPP.
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Figure 6. Data from 2011 - resolution of 1 hour: (a) observed NEE; (b) PRECIPITATION; (c) UNCALIBRATED NEE; 
(d) CART NEE; (e) MLR NEE; (f) K-MEANS NEEE

Figure 5. Monthly means – 2011: (a) GPP; (b) NEE; 
(c) Precipitation.

3.2.5 NEE
The CART, UNCALIBRATED, K-MEANS and MLR 

approaches reproduced the NEE variability compared to observed 
NEE (see Figure 6). However, all approaches showed a lower 
amplitude of NEE than observed. UNCALIBRATED results 
are more underestimated, with around –5 µmol CO2 m

–2 s–1 
during the rainy period (March-June/2011), whereas 
observed NEE was around -20 µmol CO2 m–2 s–1 (see 
Figure 6a-c). The K-MEANS approach show results closer 
to observed data when the negative amplitude was around 
–13 µmol CO2 m

–2 s–1 in May (see Figure 6a-f). CART, 
MLR and K-MEANS reproduce all seasonal variations 
associated to precipitation throughout the year and the mean 
difference is around –10 µmol CO2 m

–2 s–1 (Figure 6d-f). 
The difference is larger for UNCALIBRATED than for the 
other approaches (–15 µmol CO2 m

–2 s–1). All approaches 
reproduce the negative peaks in November and December 
(2011). Similar to GPP results, a few precipitation events 
between September and October influenced the model and 
negative peaks are observed between the months June and 
September (2011). All approaches reproduce both phases 
of amplitude (positive and negative) as observed NEE.

In the analysis of NEE bias and correlation, all approaches 
had a reasonable (good) correlation with observed NEE 
data. CART (r2: 0.704), UNCALIBRATED (r2: 0.66), 
K-MEANS (r2: 0.71) and MLR (r2: 0.72). Figure 5b shows 
that the monthly totals of NEE for CART, K-MEANS and 
MLR reached negative values in the months of March until 
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May when observed data were negative since January until 
May. The extreme negative values for approaches CART, 
K-MEANS and MLR were in May: –695, –720, –844 µmol 
CO2 m–2 s–1, respectively. UNCALIBRATED approach was 
negative only in May (–136 µmol CO2 m

-2 s-1), Observed 
data had negative peak in April (~2000 µmol m–2 s–1) and 
in May reached ~-1270 µmol CO2 m

-2 s-1. In the analysis 
of correlation of NEE monthly totals, UNCALIBRATED 
approach had low correlation and CART, K-MEANS 
and MLR had good correlation with observed GPP data: 
CART (r2: 0.73), UNCALIBRATED (r2: 0.27), K-MEANS 
(r2: 0.77) and MLR (r2: 0.82).

4. Conclusion

We showed that field measurements of ecophysiological 
data can contribute to the calibration of model parameters. 
We used data mining techniques to cope with a reduced 
data sample. Thus, we proposed a discretized Vcmax value, 
inferred through data mining according to environmental 
conditions (dry or wet). After calibration of GPP, the 
results reached 72% of observed total GPP. CART and 
K-MEANS approaches had good agreement when the 
majority of classification cases were using node (74.96%) 
and group (70.92%) that had nearest mean values of Vcmax 
(94.7 µmol m–2 s–1 and 92.58 µmol m–2 s–1, respectively). 
Also both algorithms (CART and K-MEANS) had few 
cases with high Vcmax (greater than 154 µmol m–2 s–1) with 
3.4 and 0.1% of total cases, respectively. To our knowledge, 
this is the first work in Brazil that uses ecophysiological 
data collected at semiarid environment for calibration of a 
DGVM. This work represents a significant contribution as 
a database for the Caatinga biome. We believe that it will 
be necessary to expand this database with future works. 
This task will enable the refinement of the calibration of 
DGVMs/Earth system models, since GPP could be affected 
directly by changes in atmospheric CO2.
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