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ABSTRACT – Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce.
This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories
are key sources of information on the occurrence of such species. However, areas with approved forest management
plans are mostly located near access roads and the main industrial centers. The present study aimed to assess
the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential
species distribution models. The occurrence data of a group of six forest tree species were divided into four
geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum
entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference
vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence
data from only one geographical area with unique environmental characteristics increased both model overfitting
to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold
values led to improved model performance. Forest inventories may be used to predict areas with a high probability
of species occurrence, provided they are located in forest management plan regions representative of the
environmental range of the model projection area.
Keywords: MaxEnt; NDVI; HAND.

EFEITO DA ESCALA ESPACIAL DE AMOSTRAGEM NA INTERPOLAÇÃO DE
MODELOS DE DISTRIBUIÇÃO DE ESPÉCIES NA AMAZÔNIA SUL-

OCIDENTAL
RESUMO – O conhecimento sobre a distribuição geográfica de espécies florestais madeireira na Amazônia,
principalmente em escala local, ainda é pequeno, limitando ações de gestão dos recursos naturais. Os inventários
florestais são fonte de informações importantes sobre a ocorrência dessas espécies, porém a localização de
áreas com planos de manejo licenciados estão concentrados em regiões próximas as vias de acesso e aos
principais pólos de industrialização. O objetivo desse estudo é avaliar o efeito da escala espacial dos inventários
florestais como fonte de dados de ocorrências aplicados a interpolação dos modelos de distribuição potencial
de espécies. Na modelagem, os dados de ocorrência de um grupo de seis espécies florestais foram divididos
em quatro regiões geográficas e testados vários esquemas de amostragem com aplicação do algoritmo de
máxima entropia, usando como variáveis preditoras: altitude, declividade, orientação do terreno, índice
de vegetação por diferença normalizada (NDVI) e distância vertical à drenagem mais próxima (HAND).  A
utilização de dados de ocorrência de apenas uma região geográfica com características ambientais singulares
aumentou tanto o sobreajustamento dos modelos aos dados de entrada como os erros de omissão. O esquema
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de amostragem em diagonal e o uso de valores mais baixos de limiar influenciaram na melhoria do desempenho
dos modelos. Os inventários florestais podem ser utilizados para predizer regiões com alta probabilidade
de ocorrência de espécies, desde que estejam localizados em planos de manejo florestal que representem
a amplitude ambiental da área de projeção dos modelos.
Palavras-chave: Maxent; NDVI; HAND.

1. INTRODUCTION
Species distribution models(SDM) correlate the

distribution of species occurrence points at known
sites with a multivariate environmental dataset. Using
computer algorithms, these can be used to predict the
points in geographic space at which species occurrence
is likely (PHILLIPS et al., 2006; PEARSON et al., 2007).
All SDMs are affected by the spatial scale of predictive
environmental variables and the location and distribution
of species presence records in the landscape (ELITH;
LEATHWICK, 2009; RÖDDER; LÖTTERS, 2010).

Studies evaluating the predictability of SDM in
regions without species presence or absence data remain
scarce. These are usually aimed at assessing the effects
of climate change on potential species distribution
or invasion potential and expansion of exotic species
(VANREUSEL et al., 2007; TOWNSEND PETERSON
et al., 2007; PHILLIPS, 2008; RÖDDER; LÖTTERS, 2010).
The performance of SDMs is most commonly evaluated
by testing the area in which the model was developed
(VANREUSEL et al., 2007). This is usually because the
number of species occurrence data is small (KUMAR;
STOHLGREN, 2009). Thus, assessing the effectiveness
of such models in independent areas (VANREUSEL
et al., 2007; GRAY et al., 2009) becomes increasingly
more important in conservation studies (HEIKKINEN
et al., 2012).

Considering the limited availability of data and
information on forest tree species in the tropics, especially
the Amazon, forest inventories conducted according
to procedures of the Digital Model of Forest Exploitation
– Modeflora (FIGUEIREDO et al., 2007) are an alternative
method for increasing the knowledge of these species
and may be used as a data source in studies involving
SDMs.

In the state of Acre, Brazil, private forest
management plans are commonly located in areas near
access roads and main industrial centers. Within this
state, nature conservation units and indigenous lands
occupy 46% of the territory (ACRE, 2007). These are

comprised mostly of long corridors with minimum forest
surveys. Of interest to this study were the effects of
the geographical distribution of forest inventories on
the performance of SDMs. We aimed, therefore, to assess
the effects of geographical distribution and number
of species occurrences on the sampling of SDM using
data collected from forest inventories. This was at a
local scale in order to make predictions in independent
areas within a specific geographical region.

2. MATERIAL AND METHODS
2. 1.Study area

The studies were conducted in eastern Acre,
Brazil, where four geographical areas were defined using
parallels and meridians separated by one degree as
a reference (Figure 1). The total area was 48,460 km².
2.2. Forest tree species data

Modeling was performed using six forest tree
species (Table 1), which were selected using the following
criteria: occurrence in all specific geographical areas
and matching common and scientific species names.
Collection of botanical material was performed by
herborization and confirmation of the scientific species
name. The dried specimens were deposited in the
UFACPZ herbarium of the Zoobotanical Park at the
Federal University of Acre (Universidade Federal do
Acre - UFAC).

The occurrence records of the timber tree species
of interest were derived from forest censuses in areas
with a Sustainable Forest Management Plan (SFMP),
which was approved by the state environmental agency.

Forest inventories were conducted using the
techniques recommended by the Digital Model of Forest
Exploitation (Modeflora). Modeflora is asset of
procedures aimed at precision tropical forest management
using methods, such as high-sensitivity GPS and
Geographic Information System (GIS), in forest planning.
This model was developed by the Brazilian Agricultural
Research Corporation (Empresa Brasileira de Pesquisa



619

Revista Árvore, Viçosa-MG, v.40, n.4, p.617-625, 2016

Spatial scale effects of sampling on the...

Agropecuária - Embrapa) Acre and Embrapa Forestry
(Embrapa Floresta) (FIGUEIREDO et al., 2007). The
database was provided by Embrapa Acre and by the
Acre Environmental Institute (Instituto de Meio Ambiente
do Acre - IMAC).
2.3. Environmental variables

The following predictive environmental variables
were used: elevation, slope, aspect, Normalized Difference
Vegetation Index (NDVI) and Height Above the Nearest
Drainage (HAND).Topographic variables were collected
from Shuttle Radar Topographic Mission (SRTM) data
at 90m resolution. The NDVI was assessed using Landsat

Thematic Mapper (TM) images of the dry season of
2011 (before exploiting the managed areas),which show
little cloud cover. All HAND data were processed
according to the methodology reported by Rennó et
al. (2008).These data are indirectly related to the water
table depth, which, in turn, indicates the soil water
availability. Such variables may be used as predictive
measures in species distribution models (FIGUEIREDO
et al., 2015) because species occurrence may be affected
by its adaptive characteristics and habitat preferences.
This is regardless of whether or not it is in wetter or
well drained soil areas.
2.4. Model construction

The maximum entropy algorithm (MaxEnt), which
is recognized as an efficient method and often used
in biodiversity studies (ARANDA; LOBO, 2011;
WARREN; SEIFERT, 2011), was employed to construct
the species potential distribution model. MaxEnt estimates
the probability of habitat suitability in which the species
may occur. It calculates the maximum entropy probability
distribution (closest to uniform) subjected to a set
of constraints, in which the expected values of each
environmental variable should correspond to their
observed sample means (PHILLIPS et al., 2006;
PEARSON et al., 2007; ELITH et al., 2011). All models
were run with Maximum Entropy Modeling of Species
Geographic v. 3.3.3k (<www.cs.princeton.edu/~schapire/
maxent/>).

Only environmental variables with a Pearson
correlation coefficient lower than 0.7 were included
in the MaxEnt algorithm application. This was to avoid
highly correlated variables.

The data-partitioning scheme was tested in four
different geographical management areas, termed
quadrants (Figure 1), to assess the spatial scale effects.
Data collected from forest inventories in one or more
geographical areas were used to perform the interpolation
of the other areas to evaluate the generality of using

  
     

Figure 1 – The study area was divided into four geographicalareas or quadrants (Q1, Q2, Q3, and Q4). This
figure shows the gray scale elevation map used
in modeling.

Figura 1 – Os retângulos (Q1, Q2, Q3 e Q4) representam
a divisão da área de estudo em regiões geográficas
ou quadrantes. A figura em tons de cinza mostra
a variável altitude utilizada na modelagem.

Table 1 – Forest species selected for modeling.Tabela 1 – Relação das espécies florestais selecionadas para a modelagem.
Id Scientific name Family Total no. of occurrences
1 Apuleia leiocarpa (Vogel) J.F.Macbr. Fabaceae 960
2 Aspidosperma parvifolium A.DC. Apocynaceae 640
3 Astronium lecointei Ducke. Anacardiaceae 420
4 Castilla ulei Warb. Moraceae 1.080
5 Ceiba pentandra (L.) Gaertn. Malvaceae 560
6 Clarisia racemosa Ruiz & Pav Moraceae 560
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a model constructed with data from one management
area to predict the distribution in another geographical
area. Records near to more than one quadrant were
excluded from occurrence data to minimize the
geographical dependence between samples. The same
number of occurrences was then randomly selected
per species from each quadrant. Thus, the higher the
number of quadrants used for training samples or
algorithm calibration, the higher the number of occurrence
records used in modeling.

Three partitioning schemes of training samples
covering 25%, 50%, and 75% of the study area were
used to test the geographical distribution effects of
forest inventories on model performance. Occurrences
in one (25% area), two (50% area) and three (75% area)
quadrants were used in all possible combinations. This
represented different sampling efforts, for the algorithm
training sample, in partitioning schemes 1, 2, and 3,
respectively.
2.5. Model evaluation

The values of Area Under the Curve (AUC) and
the omission error rates of the individual models, which
are considered a key AUC auxiliary measure by Jiménez
Valverde et al. (2008) and Lobo et al., 2008, were analyzed
to assess sampling scheme effects on model performance.

The AUC is often used because it is an overall
performance measure independent of cutoffs (FIELDING;
BELL, 1997). The analysis of external test sample AUC,
and its difference from the training sample AUC, termed
AUCdifference (AUCdif = AUCtraining – AUCtest),
were calculated. Such a difference is used to assess
model overûtting to the data (RÖDDER; LÖTTERSE,
2010; RADOSAVLJEVIC; ANDERSON, 2013).

A threshold or cutoff must be used to calculate
the omission error rate of the model. Its choice should
maximize the agreement between the observed and
predicted species distribution and meet the research
goals (LIU et al., 2005). The conversion of continuous
probability maps into binary maps of possible species
presence (1) or absence (0) was performed using a
threshold (value).

The following effects of both thresholds on the
omission error rates of the models were tested: the
lowest probability value associated with the training
dataset of the algorithm, or Minimum Training Presence
(MTP) logistic threshold, and the lowest probability

value associated with training data excluding the 10%
lowest predicted values, or 10 Percentile Training Presence
(10PTP) logistic threshold. Both thresholds are commonly
applied in studies involving SDM (PEARSON et al.,
2007; KUMAR; STOHLGREN, 2009; ARANDA; LOBO,
2011).

A Kruskal-Wallis (K), Mann-Whitney (U) and paired
T test (t) were used to assess the significance (á=0.05)
of the variation of the values of AUC, omission error
rate of the models resulting from different data sampling
schemes, experimental design, and threshold selection.

3. RESULTS
Exploratory analysis of occurrence data revealed

the environmental gradient of the variables elevation
and NDVI occupied by the species in the forest
management plans, according to the sampling quadrants
(Figure 1). The elevation ranged from 145 to 285 m, while
the NDVI values ranged from 0.2 to 0.7 for the occurrences
in quadrants Q1, Q2, Q3 and Q4 (Figure 2).

The gradient of the NDVI associated with species
occurrence was similar in all sampling quadrants, as
the management plans are located in forest areas. Variation
results from the forest type. NDVI values in open forests
with bamboo are lower than in dense forests.

The greatest elevation range occurred in quadrant
Q1, with spot elevation ranging from 159 to 267 m.
Occurrences located in quadrant Q2 were concentrated
in an area closer to the Acre and Andirá rivers and
their tributaries. This was the lowest spot elevation
(145 to 201 m) of the study area. Species occurrence
sites located in quadrant Q3 exhibited the highest spot
elevation, reaching 285 m. Thus, this area has different
environments from other forest management areas.

The test AUC value ranged from 0.51 to 0.71. This
was based on the one-quadrant scheme for training.
The AUC ranged from 0.56 to 0.70 and from 0.48 to
0.74 when using two and three quadrants, respectively.
Figure 3 shows the results of the statistical test of
model performance according to the number of
occurrences or number of quadrants used in modeling.

The AUCdifference averaged 0.29, 0.20, and 0.16
when using occurrences located in one, two, and three
quadrants in model construction, respectively. Greater
differences between AUCtest and AUCtraining resulted
in greater model overfitting to input data.
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The omission error rates of the models using MTP
threshold were, on average, four times lower than using
the 10PTP threshold (paired t test, p<0.001, Figure 4).
Using 10PTP generated a map that underestimated the
predicted distribution area of the study species, with
a 47% mean error.

Using the MTP threshold, 64% of the models
exhibited omission error rates of up to 10%. The omission
error rates averaged 3% when applying the sampling
scheme using three quadrants. These were significantly
different from the schemes with one or two
quadrants(Figure 4A).

4. DISCUSSION
Model performance was strongly affected by the

geographical distribution of occurrence data in areas
where the environmental gradient was different from
that of the forest management plan areas in which the

models were interpolated. This was revealed when using
the records of species found in quadrant Q3. The model
generated using occurrence data from this quadrant
had the highest omission error rate, which was
significantly affected by the means of environmental
variables associated with species occurrence.

The results from the models constructed using
occurrence records, either for training or testing, and
located in a narrow geographical area with a unique
environmental gradient, adversely affected the spatial
prediction of species distribution. This was because
any prediction calculation for other sites was based
on the environmental space occupied by the species
instead of geographical space (ELITH; LEATHWICK,
2009).

Such negative effects were minimized when using
quadrants in a diagonal systematic sampling scheme.
Models using this approach produced a mean AUC of

Figure 2 – Environmental gradient of the variables elevation and normalized difference vegetation index (NDVI) associatedwith occurrence sites of the forest species, according to the partitioning scheme of the data into quadrants:
A(Q1), B(Q2), C(Q3) and D(Q4).

Figura 2 – Gradiente ambiental das variáveis altitude e índice de vegetação por diferença normalizada (NDVI) associado
aos locais de ocorrência das espécies florestais, de acordo como o esquema de particionamento de dados em
quadrantes: A(Q1), B(Q2), C(Q3) e  D(Q4).
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0.7 and 2% omission error rate. This was due to the
environmental restrictions applied to the models, which
had a wider range of environmental characteristics. These
results are consistent with the findings of Townsend
Peterson et al. (2007), who also tested the diagonal
systematic sampling scheme and obtained models with
AUC, when applying MaxEnt, ranging from 0.6 to 0.9.

Models using three quadrants in the training
sample performed significantly better than the other
models evaluated. The model using the occurrences

in quadrant Q1 for algorithm training performed
similarly to a model with three quadrants. Given that
the representativeness of environmental variables
associated with occurrences in this quadrant, it shows
that using forest inventory data from a geographical
area may help predict potential forest management
areas in other regions.

The AUC value tended to increase with the number
of species occurrences of the MaxEnt training sample,
albeit with a non-significant difference. Anderson

Figure 3 – Mean area under the curve – AUC (A) and AUC difference (B) between models. Vertical lines indicate the standarddeviation from the mean. Columns followed by the same letter are not significantly different from each other
at 5% probability, according to the Mann-Whitney U test.

Figura 3 – Média da área sob a curva - AUC (A) e AUC diferença (B) dos modelos. Linhas verticais indicam o desviopadrão da média. Colunas seguidas por uma mesma letra não diferem entre si ao nível de 5% de probabilidade
pelo teste U de Mann-Whitney.
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Figure 4 – Mean omission error rate applying the Minimum Training Presence – MTP (A) and 10 Percentile TrainingPresence – 10PTP (B) thresholds. Vertical lines indicate the standard deviation from the mean. Columns followed
by the same letter are not significantly different from each other at 5% probability, according to the T test.

Figura 4 – Média da taxa de omissão aplicando o limiar Minimum Training Presence – MTP (A) e 10 Percentile Training
Presence – 10PTP (B). Linhas verticais indicam o desvio padrão da média. Colunas seguidas por uma mesma
letra não diferem entre si ao nível de 5% de probabilidade pelo teste T.



623

Revista Árvore, Viçosa-MG, v.40, n.4, p.617-625, 2016

Spatial scale effects of sampling on the...

and Gonzalez (2011) also reported there was no
improvement in model performance associated with
an increased number of species occurrences.

Conversely, we observed an inverse and significant
relationship between the number of quadrants and the
difference between the test and training AUC. That
is, the higher the number of quadrants used in constructing
the model, the smaller the AUCdifference was, thereby
minimizing the effects of sampling bias. Townsend
Peterson et al. (2007) and Kramer-Schadt et al. (2013)
reported similar results.

A higher omission error rate was associated with
the 10PTP threshold. This occurred when comparing
both thresholds tested for the transformation of the
continuous probability map into a binary map. This
was also reported by Pearson et al. (2007) and
Radosavljevic and Anderson (2013).

The omission error rate of the models varied
significantly with the number of occurrences used in
modeling, regardless of threshold (MTP or 10PTP).
The decrease in the number of occurrences increased
the omission error rates of the models, albeit without
significantly affecting the AUC, which was also reported
by Pearson et al. (2007) and Feeley and Silman (2011).
Using the highest possible number of training data
to reduce the omission error rates of the models is,
therefore, highly recommended.

Thus, we emphasize the importance of obtaining
a high number of occurrence data to more accurately
map potential species distribution areas. The number
of data are not, however, the only issue. The results
reported herein indicate the existence of an environmental
bias effect on model predictability, as Phillips (2008)
and Aranda and Lobo (2011) also noted in their studies.

5. CONCLUSIONS
Species distribution models are strongly affected

by the limited range of occurrence observed in
geographical areas with unique environmental
characteristics of the landscape in which they are
projected, thereby resulting in maps that underestimate
the area occupied by the species.

Using a higher value of 10PTP threshold to convert
the probability map into a binary map, and a lower
number of training occurrence data, also increased
the omission error rate of the models.

Environmentally suitable areas with low omission
error rates, and the likely presence of the forest tree
species of interest, may be determined using presence
records from forest inventories that cover geographical
areas representative of the environmental gradient range
of the model projection area.
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