Porta-enxertos e Diferenciação da Qualidade da Uva 'BRS Magna' no Submédio do Vale do São Francisco: Primeiro Ciclo de Avaliação

Rootstock and Distinguishing the Quality of 'BRS Magna' Grapes at Sub-middle of São Francisco Valley: First Evaluative Cycle

Renata Leal Cipriano¹; Maria Auxiliadora Coêlho de Lima²; Patrícia Coelho de Souza Leão³; Débora Tamara Felix⁴

Resumo

O estudo foi realizado com o objetivo de determinar a influência de porta-enxertos sobre a qualidade da uva 'BRS Magna', em primeiro ciclo de avaliação, nas condições de produção do Vale do São Francisco. Foram estudados sete porta-enxertos: 'IAC 313', 'IAC 572', 'IAC 766', 'SO4', 'Paulsen 1103', 'Harmony' e 'Freedom', em delineamento experimental em blocos ao acaso, com quatro repetições. A influência dos porta-enxertos sobre as características das uvas 'BRS Magna' foi associada a atributos químicos, sendo que o uso de 'Freedom' resultou em maiores teores de antocianinas, associados a valores de polifenóis extraíveis totais, flavonoides amarelos, sólidos solúveis e açúcares solúveis totais que diferenciam sua qualidade.

Palavras-chave: composição química, manejo da planta, uvas para suco.

¹Estudante de Ciências Biológicas, Universidade de Pernambuco (UPE), bolsista Pibic/CNPq, Petrolina, PE.

²Engenheira-agrônoma, D.Sc. em Tecnologia e Fisiologia Pós-Colheita, pesquisadora da Embrapa Semiárido, Petrolina, PE, auxiliadora.lima@embrapa.br.

³Engenheira-agrônoma, D.Sc. em Melhoramento/Fitotecnia, pesquisadora da Embrapa Semiárido, Petrolina, PE.

⁴Tecnóloga em Alimentos, bolsista BFT Facepe, Petrolina, PE.

Introdução

O Submédio do Vale do São Francisco é reconhecido pela vitivinicultura, que inclui a produção de uvas para consumo in natura, para vinho e suco. A região, segunda major produtora de frutas do Brasil, mostra-se competitiva, mesmo em mercados que possuem critérios de qualidade mais rigorosos.

Complementando a produção de frutas, o investimento em agroindustrialização resultou em crescimento recente da produção de uvas para suco. Uma das cultivares de maior interesse para esse segmento é a 'BRS Magna por possuir ciclo intermediário e ampla adaptação climática, ter cachos médios e levemente compactos e as bagas medianas, ovaladas, de coloração preto-azulada e com alto teor de acúcares (RITSCHEL; MAIA, 2012).

Áreas de cultivo com 'BRS Magna' têm sido implantadas na região com registros de produção superiores àquelas obtidas nos nas condições em que foi desenvolvida, o Sudeste do Brasil. Porém, é necessário definir um sistema que expresse todo o seu potencial produtivo e de qualidade. Uma das decisões iniciais e mais importantes para a cultura é a escolha do porta-enxerto que, de acordo com Leão et al. (2009), deve reunir características como vigor; resistência a pragas e doenças; fácil enraizamento e cicatrização no local da enxertia: resistência a condições adversas de solo; além de afinidade com a cultivar copa. Reconhece-se, também, a influência do porta-enxerto sobre características das bagas.

Apoiando a perspectiva de crescimento do cultivo de uvas para a elaboração de sucos no Submédio do Vale do São Francisco, este estudo foi realizado com o objetivo de determinar a influência de diferentes porta-enxertos sobre a qualidade da uva 'BRS Magna', em primeiro ciclo de avaliação.

Material e Métodos

O estudo foi realizado com a cultivar BRS Magna, em área instalada no Campo Experimental de Bebedouro, da Embrapa Semiárido, em Petrolina, PE, e utilizando-se como tratamentos os porta-enxertos IAC 313, IAC 572, IAC 766, SO4, Paulsen 1103, Harmony e Freedom. O ciclo de produção avaliado teve início em maio de 2015 e a colheita foi realizada no dia 17 de setembro de 2015.

Na colheita, cinco cachos representativos de cada parcela foram amostrados e analisados para: massa do cacho; massa da baga; diâmetro da baga; resistência da baga à força de compressão; cor da casca, determinada por meio dos atributos luminosidade (L), a* e b*; teor de sólidos solúveis; acidez titulável, utilizando-se NaOH 0,1 M; teor de açucares solúveis totais, determinado usando o reagente antrona (YEMN; WILLIS, 1954); teores de flavonoides amarelos e de antocianinas da casca, determinados segundo Francis (1989); teor de polifenóis extraíveis totais, usando o reagente Folin-Cioucalteau, com leitura em espectrofotômetro (LARRAURI et al., 1997); e atividade antioxidante, determinada pela captura do radical ABTS (2,2'-azinobis 3-etilbenzeno-tiazolina-6-ácido sulfônico), segundo Miller et al. (1993).

O estudo seguiu o delineamento experimental em blocos ao acaso, com quatro repetições. Os dados foram submetidos à análise de variância e as médias, quando exibindo diferenças significativas, comparadas pelo teste de Tukey (p≤0,05).

Resultados e Discussão

Não se observou diferenças significativas para as variáveis massa do cacho, massa e diâmetro da baga, resistência da baga à força de compressão, L, a* e b* da casca, em função dos sete porta-enxertos (Tabela 1).

As diferenças observadas têm relação com a composição química (Tabela 2). Para a acidez titulável, destacaram-se as uvas colhidas de plantas enxertadas sobre 'IAC 766' e 'SO4' com valores maiores que os observados com o tratamento 'Harmony' (Tabela 2). Sobre o porta-enxerto IAC 766, as uvas tiveram os menores teores de sólidos solúveis e de açúcares solúveis (Tabela 2). Os valores observados superam os teores de sólidos solúveis característicos da cultivar, segundo Ritschel e Maia (2012), indicados como sendo de 17-19 °Brix. Os autores também citaram que a acidez titulável média da cultivar é de 0,90 g ácido tartárico.100 mL-1.

Os maiores teores de antocianinas foram encontrados nas cascas das uvas cultivadas sobre o porta-enxerto 'Freedom', que não diferiu do tratamento 'Paulsen 1103' (Tabela 2). Para os teores de flavonoides amarelos, apenas as uvas produzidas sobre o porta-enxerto SO4 apresentaram valores baixos. Mesmo com as diferenças nesses compostos, que têm natureza bioativa, a atividade antioxidante não diferiu entre os tratamentos, no ciclo em análise (Tabela 2).

Tabela 1. Características físicas das uvas 'BRS Magna' cultivadas sobre diferentes porta-enxertos, durante o ciclo do segundo semestre de 2015. Campo Experimental de Bebedouro/Embrapa Semiárido, Petrolina, PE. 2015

Porta-enxerto	Massa do cacho(g)	Massa da baga(g)	Diâmetro da baga (mm)	Resistência à compressão (N)	L	a*	b*
IAC 313	231,83 ^{ns}	2,28 ^{ns}	14,78 ^{ns}	3,71 ns	26,94 ^{ns}	0,01 ^{ns}	-1,35 ^{ns}
IAC 572	258,62 ^{ns}	2,82 ^{ns}	15,29 ^{ns}	3,52 ^{ns}	27,72 ^{ns}	0,19 ^{ns}	-1,63 ^{ns}
IAC 766	256,69 ^{ns}	2,73 ^{ns}	15,06 ^{ns}	4,02 ^{ns}	26,97 ^{ns}	-0,08 ^{ns}	-1,69 ^{ns}
SO4	196,51 ^{ns}	2,79 ^{ns}	15,24 ^{ns}	4,06 ^{ns}	28,33 ^{ns}	0,00 ^{ns}	-1.65 ^{ns}
Paulsen 1103	256,92 ^{ns}	2,56 ^{ns}	14,74 ^{ns}	3,27 ^{ns}	27,98 ^{ns}	-0,05 ^{ns}	-1,72 ^{ns}
Harmony	202,44 ^{ns}	2,69 ^{ns}	14,92 ^{ns}	3,93 ^{ns}	26,78 ^{ns}	-0,09 ^{ns}	-1,42 ^{ns}
Freedom	263,24 ^{ns}	2,71 ^{ns}	14,86 ^{ns}	3,28 ^{ns}	27,80 ^{ns}	-0,29 ^{ns}	-1,59 ^{ns}
CV (%)	15,08	6,83	3,55	19,57	3,21	19,05	19,32

ns = não significativo pelo teste F ($p \le 0.05$).

Tabela 2. Características químicas de qualidade e potencial antioxidante, ava radical de captura de radicais livres ABTS, das uvas 'BRS Magna' cultivadas so durante o ciclo do segundo semestre do ano de 2015. Campo Experimental de I Petrolina, PE. 2015

Porta-enxerto	AT (g ácido tartárico.100 mL ⁻¹)	SS (°Brix)	AS (g.100g ⁻¹)	ANTO (mg 100 g ⁻¹)	FLAV (mg.100g
IAC 313	0,61ab	23,5a	22,08a	875,83b	77,00a
IAC 572	0,62ab	22,9a	21,91a	834,27b	73,85a
IAC 766	0,65a	21,1b	19,96b	756,31b	73,16a
SO4	0,65a	23,0a	22,01a	723,68b	45,27b
Paulsen 1103	0,62ab	23,1a	22,06a	972,86ab	76,86a
Harmony	0,53b	23,5a	22,18a	697,13b	82,48a
Freedom	0,58ab	23,8a	22,74a	1093,53a	74,08a
CV (%)	8,14	5,11	5,28	16,85	16,74

ns = não significativo pelo teste F ($p \le 0.05$).

Médias seguidas pela mesma letra, na coluna, não diferem entre si pelo teste de Tukey (p≤ 0,05)

A uva 'BRS Magna' origina suco de cor violácea intensa, que pode ser utilizado puro ou em corte com o de outras cultivares. Neste caso, agrega cor, doçura, aroma e sabor a produtos de cultivares que não têm teores destacados de compostos que determinam aquelas características (RITSCHEL; MAIA, 2012).

Para o teor de polifenóis extraíveis totais, as uvas cultivadas sobre o porta-enxerto Harmony se destacaram por valores maiores, não diferindo de SO4 e Freedom (Tabela 2). Além do fator porta-enxerto, Farhadi et al. (2016) destacaram diferenças marcantes nos teores de polifenóis entre cultivares copa, regiões de cultivo e partes da uva bem como a associação destes compostos com a atividade antioxidante dos tecidos.

Conclusão

No primeiro ciclo estudado, a influência dos porta-enxertos sobre as características das uvas 'BRS Magna' foi associada aos atributos químicos, sendo que o uso de 'Freedom' resultou em maiores teores de antocianinas nas bagas, em conjunto com valores de polifenóis extraíveis totais, flavonoides amarelos, sólidos solúveis e açúcares solúveis totais que diferenciaram sua qualidade.

Referências

FARHADI, K.; ESMAEILZADEH, F.; HATAMI, M.; FOROUGH, M; MOLAIE, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chemistry, [Maryland Heights], v. 199, p. 847-855, 2016.

FRANCIS, F. J. Analysis of anthocyanins. In: MARKAKIS, P. (Ed.). **Anthocyanins as food colors**. New York: Academic Press, 1982. p. 181-207.

LARRAURI, J. A.; RUPÉREZ, P.; SAURA-CALIXTO, F. Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. **Journal of Agriculture and Food Chemistry**, [Ontario], v. 45, p. 1.390-1.393, 1997.

LEÃO, P. C. de S.; SOARES, J. M.; RODRIGES, B. L. Principais cultivares. In: SOARES, J. M; LEÃO, P. C. de S. (Ed.). A vitivinicultura no Semiárido brasileiro. Brasília, DF: Embrapa Informação Tecnológica; Petrolina: Embrapa Semi-Árido, 2009. p. 149-214.

RITSCHEL, P.; MAIA J. D. G.; CAMARGO, U. A.; ZANUS, M. C.; SOUZA, R. T. de; FAJARDO, T. V. M. **BRS Magna**: nova cultivar de uva para suco com ampla adaptação climática. Bento Gonçalves: Embrapa Uva e Vinho, 2012. Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/71803/1/cot125.pdf . Acesso em: 15 maio 2016.

YEMN, E. W.; WILLIS, A. J. The estimation of carbohydrate in plant extracts by anthrone. **The Biochemical Journal**, London, v. 57, p. 508-514, 1954.