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Abstract
The biggest challenge for jatropha breeding is to identify superior genotypes that present

high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of

this study was to estimate genetic parameters for three important traits (weight of 100 seed,

oil seed content, and phorbol ester concentration), and to select superior genotypes to be

used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic

parameters estimated under the Bayesian multi-trait approach were used to evaluate differ-

ent selection indices scenarios of 179 half-sib families. Three different scenarios and eco-

nomic weights were considered. It was possible to simultaneously reduce toxicity and

increase seed oil content and weight of 100 seed by using index selection based on geno-

typic value estimated by the Bayesian multi-trait approach. Indeed, we identified two fami-

lies that present these characteristics by evaluating genetic diversity using the Ward

clustering method, which suggested nine homogenous clusters. Future researches must

integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build

accurate selection indices models.

Introduction
Jatropha (Jatropha curcas L.) has many economically interesting characteristics, and nowadays,
it has been considered as the most important shrub for biodiesel production, mainly due to the
large amount of oil content it produces [1]. Additionally, jatropha stands out due to premature
production period, when it is compared with other palms commonly used for biofuel produc-
tion [2]. Moreover, this culture presents drought resistance [3], low seed cost [4], high seed oil
content [5], and easy adaptation [2].
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Approximately 35% of seeds’ content is composed of oil, of which 24.6% is crude protein
and 47.2% is crude fat [6]. Moreover, jatropha’s oil presents higher oxidation stability than soy-
bean’s oil; lower viscosity than castor’s oil; and lower pour point than other palms [7].

Despite the large amount of oil and crude protein content, consumption of seeds can repre-
sent a risk for animal health [8]. Indeed, the use of jatropha’s cake (by-product of seeds indus-
trial processing) as animal feed, and consequently the crop cultivation economic viability are
conditioned by the low toxicity content [9]. Phorbol ester has been considered as the main sub-
stance for jatropha’s seeds toxicity [10], and has been differently reported in toxic genotypes (2
to 6 mg/g of dry matter) and in non toxic genotypes (0 to 1.8 mg/g) [9]. Thus, there is the need
to achieve highly productive genotypes with respect to high seed oil content and low level of
toxicity. Therefore, the use of breeding techniques must be adopted in order to identify supe-
rior genotypes aiming at the improvement for these traits.

Bayesian multi-trait models have become useful statistics method for plant and animal
genetic evaluations. Many authors have shown that this model is more flexible and effective
than the least squares method, since it is not only based on the likelihood function, but it also
allows a priori knowledge assumption when defining prior distribution [11].

Many previous studies have estimated variance components and genetic parameters under
different statistical methods in jatropha [12–15]. However, none of them carried out multi-
trait analysis using a Bayesian approach for seed oil content (SOC, %), weight of 100 seeds
(W100S, g), and phorbol ester concentration (PEC, mg/g). Therefore, the Bayesian multi-trait
analysis was carried out in order to estimate variance components and genetic parameters,
which were used to evaluate genetic diversity and selection indices, aiming to identify superior
genotypes for SOC,W100S and PEC traits.

Materials and Methods

Experimental design
The experiment considered the evaluation of 179 jatropha half-sib families from the Embrapa
Cerrados germplasm bank [samples were collected in different Brazilian regions (S1 Table)]. It
is settled in the experimental field of Embrapa Cerrados, Planaltina, Distrito Federal, Brazil
(15°35’30”S and 47°42’30”W; 1007 m asl). The experiment was implemented in November,
2008, in a complete randomized block design with 2 replications, and 5 plants per plot,
arranged in rows, spaced 4 m between rows, and 2 m between plants. All management practices
were based on Dias et al. [16], and they were adapted according to recent research advances
regarding jatropha in Brazil [17–19]. The half-sib families were evaluated over 5 crop years
(2010 to 2014) forW100S, while SOC and PEC were evaluated only in 2014. All data used in
this study are available in Table in S2 Table.

Phorbol ester was extracted according to procedure described by Makkar et al. [20]. Milled
seeds was carried on in accelerated solvent extraction equipment called Dionex (model ASE
350). Tetrahydrofuran was used as solvent, and posteriorly, it was evaporated under nitrogen
flow. The Oily residual was transferred to a test tube (10 mL), and extracted repeatedly (four
times) using methanol (once using 2mL and three using 1mL). Finally, the oily residual was
transferred to volumetric flask (5 mL). The work solution was filtered using VertiPure PTFE
Syringe (13 mm, 0.2 μm) and 1oo mL of this solution was injected into High Performance Liq-
uid Chromatography (HPLC). A typical column (C18 250 x 4.6 mm) was used, with the tem-
perature around 25°C. A UV detector allowed on-column detection operated from 200 nm to
340 nm. The standard curve was built using 12-myristate 13—phorbol Acetate.

The oil extraction was performed crushing seeds and albumens, and weighing epicarp and
mesocarp separately. Analyses were performed according to Adolfo Lutz Institute protocols.
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Sample (200 g of seeds) for each plant and replicated twice. Soxhlet was used to extract the oil
and the hexane was used as solvent.

Despite the five consecutive years of evaluations ofW100S, only the records of 2014 were
used because SOC and PEC traits were recorded only in this specific year. Additionally, mean
phenotypes were used forW100S, and these records were adjusted according to the number of
replications within genotypes and blocks. Also, all analyses were carried out using 358 pheno-
typic records for each trait of the 179 half-sib families.

Statistical model and analysis
Variance components and genetic parameter estimates were obtained under the Bayesian
approach, via Gibbs sampling, using the Gibbs2f90 software, as described by Misztal et al. [21].
We considered a total of 100,000 cycles after discarding the 40,000 initial samples used for
burn-in and thinned every tenth iteration, resulting in a total of 6,000 samples. The conver-
gence of Markov Chain Monte Carlo (MCMC) was tested by the Geweke criterion [22], using
two packages: boa [23], and CODA [24], implemented in the R software [25]. Posterior means,
key percentiles and standard deviations (SD) for estimated parameters were obtained from
MCMC samples. Multi-trait mixed model was:

yijkl ¼ mi þ bik þ gij þ eijkl ½1�

where yijkl is the l
th = {1,2,. . .,358} phenotypic value of ith = {1,2,3} trait, on jth = {1,2,. . .,179}

genotype, within kth = {1,2} blocks; μi is the overall mean of ith trait; and eijkl is the residual term.
Under the Bayesian approach, the following joint distribution of data (likelihood function) were:

yijjβ; g;G0;R0 � Nðx0 ijβþ z0 ijg;s
2
e Þ ½2�

where β is the vector of a prior probability of systematic effects (overall mean and blocks for each
trait from Eq [1]); g = {gij}*N(0,I⊗G0) is the vector of a prior probability of genotypic values,

where I is the identity matrix and G0 ¼
s2
a1

sa12
sa13

sa21
s2
a2

sa23

sa31
sa32

s2
a3

2
664

3
775 is the genotypic variance matrix; e = {eijkl}*

N(0,I⊗R0) is the vector of a prior probability of residual values with normal independent identical

distribution; where R0 ¼
s2
e1

se12
se13

se21
s2
e2
se23

se31
se32

s2
e3

2
664

3
775; x0ij and z0ij are incidence rows that relates systematic and

genotypes effects within traits to the respective phenotypic value; and s2
e is residual variance

assumed as homogeneous.
The following a priori probability distributions for the location parameters of interest were

given by:

β � Nðb0;VbÞ ½3�

where Vb is a diagonal matrix of the a priori variance of β, assuming Vb !1;
Three-dimensional scaled inverted Wishart distributions are assigned as prior process for

each of the G0 and R0 covariance matrices:

G0 � W�1
3 ðΣg; nÞ ½4�

R0 � W�1
3 ðΣe; nÞ ½5�
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Where Sg and Se are scale matrices, and n = 5 is the degree of freedom parameter.
The joint posterior density of all parameters, which are dependent on the genotypic effects

of the corresponding matrix, but which take over prior independence, is given by

pðβ; g;G0;R0jyÞ / pðyjβ; g;G0;R0Þpðβjb0;VbÞpðgjI��G0ÞpðG0jΣg; nÞpðR0jΣe; nÞ ½6�

Clustering and genetic diversity
A cluster analysis was carried out aiming to understand the genotypic relationship between
traits, and to identify genotypes that expressed genetically similar performance. Hence, we
intended to cluster homogeneous genotypes. The first step of cluster analysis is to calculate dis-
similarity (D) matrix. In this study, we adopted the Mahalanobis distance, which can be
defined as follows:

d2ðg1; g2Þ ¼ ðg1 � g2ÞTCðg1 � g2Þ ½7�

Where g1 and g2 are genotypic values for SOC,W100S or PEC traits;C = S−1 is the Mahala-
nobis generalized distance; and S−1 is the three-dimensional inverse of variance matrix. This
metric was used to consider the covariance between genotypes evaluated in different blocks.

Thus, the Ward cluster hierarchy method was applied, and it was chosen aiming to maxi-
mize the homogeneity within clusters so that the sum of square of error (SSE) is minimum.
SSE of each cluster can be achieved as follows:

SSEcs¼
Pnm

s¼1ðgðmÞ
s � �g ðmÞ

: ÞTðgðmÞ
s � �g ðmÞ

: Þ ½8�

where nm is the number of individuals onmth cluster; and n ¼ Pt
m¼1 nm

Mojena criteria was used to set the optimal number of clusters, and the method is based on
computing the highest amplitude between clusters that maximizes the quality of the clustering
[26].

aj > �a þ oSa ½9�

where j = (1,2,. . .,n) is the number of clusters; αj is the correspondence joint point to n − j + 1
clusters; �a and Sα are the mean and the standard deviation of α0s; and ω is a constant equal to
1.25, as suggest by [27].

Selection index calculations
Selection indices procedures were constructed according to Hazel [28]. Overall genetic gain
can be achieved by selecting individuals by the sum of its several genotypes for each trait
weighted by its relative economic value. This aggregate genotype (H) can by defined as:

H ¼ g1w1 þ g2w2 þ � � � þ gnwn ½10�

Where gi, i = {1,2,. . .,n} is the vector of genotypic values for the nth trait; and wi, i = {1,2,. . .,
n} is the relative economic value.

In this study, three different scenarios were used, and they included different traits in the
selection indices. Additionally, three different weights (w) of the traits in the breeding goal
were taken into account. In the first situation, all traits had weight of 1 monetary unit per
genetic standard deviation. In the second situation, SOC received weight of 2 and 1 monetary
units for the other traits. Finally, we set weight of 4 monetary units for SOC, 2 forW100S, and
1 for PEC, in the third scenario. Traits contemplated in these scenarios were defined to depict
a situation in which an established breeding program already working on selection for SOC
intends to incorporateW100S and PEC in its breeding goal. As a trait of major importance,
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only SOC was used as target in the first scenario. The next two scenarios gradually included
W100S and PEC in selection indices.

The set up matrices P, G and C contains phenotypic (co)variance between all components
in a given scenario; covariance between traits of selection index and additive genetic values for
traits of the breeding goal; and genetic (co)variance between traits in the breeding goal, respec-
tively. Selection indices coefficients were calculated by b = P−1Gw, where w is the vector of rela-
tive economic weights expressed in monetary units per measurement units of the traits.
Variances of the index (I) and of the H were calculated by s2

I ¼ b0Pb and s2
H ¼ w0Cw. Correla-

tion between the index and the genotypic aggregate (accuracy of the index) was calculated by
RIH ¼ sI

sH
.

Monetary overall genetic gain per generation was calculated by ΔG = (i)RIHσH, and the
response to selection per generation (S) for each trait was calculated by:

S ¼ i
sI

b0G ½11�

where i is the selection intensity assumed to be 1.75, considering the selection of the 10% supe-
rior genotypes.

Results
In this study, we evaluated 179 genotypes for the three important traits in jatropha breeding
program: seed oil content (SOC), weight of 100 seeds (W100S) and phorbol ester concentra-
tion (PEC) aiming to identify superior half-sib families under a Bayesian multi-trait model,
using selection indices procedures.

Phenotypic evaluation
We observed that there are no differences between blocks within traits (Fig 1). The highest
standard deviation value was observed forW100S, followed by SOC and PEC. We observed a
few outlier records for each trait.

Convergence criterion
Geweke convergence criterion indicates convergence for all dispersion parameters when gener-
ating 100,000 MCMC chains, 40,000 samples for burn-in and a sampling interval of 10, totaling
6,000 effective samples used for variance component estimate. Similar posterior mean, median
and mode estimates were obtained for variance components, suggesting density with normal
shape appearance. Effective sample size (ESS) estimated the number of independent samples
with information equivalent to that contained within the dependent sampling. Thus, it was
observed that the length of the generated chain was adequate since the smallest ESS was 1991.

Variance components and genetic parameters
Genotypic variance estimated under the Bayesian multi-trait model forW100S (s2

g1
) was about

43 times greater than for SOC (s2
g2
), or for PEC (s2

g3
) (Table 1). The genotypic variances for

SOC and PEC were approximately of the same magnitude. We observed negative covariance
betweenW100S and PEC, which is a desirable relationship. Covariance betweenW100S and
SOC was positive, and HPD interval evidences statistical significance of this parameter.

W100S presented the highest residual variance (lower certainty), possibly due to a scale
effect, followed by SOC and PEC, respectively (Table 1). Residual covariance estimates among
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all traits can be considered as not statistically significant when analyzing HPD interval; thus,
residual correlations can be considered as absent.

W100S and PEC presented higher estimated heritabilities than SOC. Despite the higher cer-
tainty in these estimates being associated toW100S, amplitude of HPD intervals was relatively
close for all traits (Table 1).

We verified desirable association between SOC andW100S (positive correlation) for phe-
notypic and genotypic correlation, being the latter stronger than the former (Table 2). Besides
the moderate genotypic association between SOC andW100S, all the other correlations were
of low magnitude for both genotypic and phenotypic correlations. Additionally, desirable

Fig 1. Phenotypic trait evaluation using the Boxplot analysis. Vertical bars are second and third quantiles, and the dots outside the
bars are outliers. Each block was evaluated separately, allowing their individual evaluation.W100S –weight of 100 seeds; SOC–seed
oil content; PEC–phorbol ester concentration.

doi:10.1371/journal.pone.0157038.g001
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negative genotypic correlation was observed between PEC and SOC, and between PEC and
W100S.

Genetic diversity
Genetic diversity analysis aimed to evaluate how the genotypes were distributed between the
clusters. In this analysis we used the Ward clustering method based on the Mahalanobis dis-
tance, which was calculated using the genotypic values estimated under a Bayesian multi-trait
mixed models.

Nine clusters were suggested according to the Ward method: six big clusters with 35, 31, 28,
23, 24 and 22 half-sib families; one cluster with 13 half-sib families; and two small clusters with
3 and 1 half-sib families (Fig 2).

Phenotypic and genotypic distribution of the nine clusters suggested by the Ward clustering
method can be verified in Fig 3. We observed that the use of genotypic values enables a well-
defined clustering of genotypes, which is not observed when evaluating the phenotypic values
using the clusters suggested by the clustering method. In other words, despite the high

Table 1. Variance components and genetic parameters estimated under the Bayesian multi-trait analysis via Gibbs sampling of weight of 100
seeds (W100S), seed oil content (SOC) and phorbol ester concentration (PEC) traits.

Parameter1 PM2 PMD PMO PSD HPD Z ESS

s2
gW100S

15.522 15.390 14.708 2.061 11.73, 19.65 0.19 5200

sgW100S;SOC
0.891 0.884 0.823 0.408 0.10, 1.69 -0.07 4187

sgW100S;PEC
-0.319 -0.318 -0.305 0.247 -0.80, 0.17 0.13 5706

s2
gSOC

0.359 0.337 0.299 0.132 0.15, 0.63 0.15 1991

sgSOC;PEC
-0.004 -0.003 0.003 0.067 -0.13, 0.13 0.18 3175

s2
gPEC

0.373 0.369 0.386 0.059 0.26, 0.49 0.03 6000

s2
eW100S

7.498 7.446 7.430 0.799 5.95, 9.02 -0.04 6000

seW100S;SOC
0.008 0.004 0.113 0.317 -0.62, 0.63 -0.07 5426

seW100S;PEC
-0.080 -0.079 -0.063 0.116 -0.32, 0.13 -0.21 5203

s2
eSOC

2.416 2.409 2.452 0.214 1.98, 2.82 -0.11 4190

seSOC;PEC
0.016 0.015 0.020 0.016 -0.11, 0.14 -0.02 4790

s2
ePEC

0.312 0.310 0.305 0.033 0.25, 0.37 -0.08 5995

h2
W100S 0.672 0. 674 0.684 0.040 0.586, 0.745 0.131 6000

h2
SOC 0.129 0.122 0.105 0.045 0.059, 0.232 0.679 2055

h2
PEC 0.545 0.544 0.551 0.052 0.436, 0.640 -1.573 6000

1 Genetic variance of ith trait (s2
gi
); genetic covariance between traits i and j (sgij

); residual variance of ith trait (s2
ei
); residual covariance between traits i and j

(seij
); and heritability of ith trait (h2

i ).
2 Posterior mean (PM), posterior median (PMD), posterior mode (PMO), posterior standard deviation (PSD), posterior high density interval (HPD),

Z-Geweke (Z) and effective sample size (ESS).

doi:10.1371/journal.pone.0157038.t001

Table 2. Heritability (diagonal), genotypic (above) and phenotypic (below) correlation between traits.

Trait SOC W100S PEC

Seed oil content (SOC) 0.129 0.544 -0.010

Weight of 100 seeds (W100S) 0.113 0.674 -0.130

Phorbol ester concentration (PEC) 0.009 -0.101 0.545

Phenotypic variance ðs2
pÞ 2.774 23.019 0.685

doi:10.1371/journal.pone.0157038.t002

Superior Jatropha’s Families Selected by Bayesian Multi-Trait Model

PLOS ONE | DOI:10.1371/journal.pone.0157038 June 9, 2016 7 / 14



heritability, selection of plants based only on phenotypic information could not provide genetic
gain for all traits simultaneously.

Genetic gain and genotype selection based on selection index
After the study of trait’s behavior and after verifying that simultaneous genetic gain will hardly
be achieved for all traits, we evaluated several different selection index scenarios (Table 3) aim-
ing to select superior genotypes.

Table 4 shows the results of response to selection per generation (S), accuracy of the index,
and overall genetic gain among different scenarios and weights. The highest accuracy values
were achieved under scenario 3 (all traits were used in selection criteria) regardless of the
assessed weights. A different trend was observed for the monetary overall genetic gain per gen-
eration (ΔG), which was higher when adopting w3 (quadruple for SOC, double forW100S,
and one for PEC) strategies. Additionally, it was possible to obtain simultaneous economically
interesting response to selection in scenarios 1 and 2, considering different weighting
strategies.

Fig 2. Ward cluster method based on the Mahalanobis distance, calculated using genotypic values
estimated by the Bayesian multi-trait analysis.

doi:10.1371/journal.pone.0157038.g002
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Discussion

Phenotypic evaluation
Boxplot analysis was carried out to verify how phenotypic data were distributed among blocks.
Previous phenotypic analyses are always important for the understanding of each trait, and it
helps the researcher in choosing the best way of data evaluation.

Phenotypic variance estimates for seed oil content (SOC) and phorbol ester concentration
(PEC) presented low magnitudes. Different authors have shown the absence of genetic diver-
sity between accessions [13, 29, 30], suggesting that traits’ improvement could be restricted.

Fig 3. Genotypic values (above diagonal) and phenotypic values (below diagonal) distributions
between seed oil content (SOC, g), weight of 100 seed (W100S, %) and phorbol ester concentration
(PEC, mg/g).

doi:10.1371/journal.pone.0157038.g003

Table 3. Scenarios with the respective traits considered by the selection criteria.

Scenario Traits considered in the selection index1

1 SOC

2 SOC + W100S

3 SOC + W100S + PEC

1 Weight of 100 seeds (W100S, g), Seed oil content (SOC, %), and phorbol ester concentration (PEC) in

seeds (mg/g)

doi:10.1371/journal.pone.0157038.t003
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The success of the evaluation of a breeding program is related to the accurate prediction of
genotypic values, which is closely related to the adoption of proper models. Thus, in this
research, we applied a novel statistic approach for variance components estimate under plant
breeding schemes. Implementation of the Bayesian multi-trait models is straightforward, and
nowadays it has been widely used due to the possibility of considering a prior knowledge when
modeling. Despite its wide application in animal breeding [31, 32], Bayesian multi-trait analy-
sis has never been reported in plant breeding.

Variance components and genetic parameters
Genetic and environment parameters estimated under the Bayesian multi-trait approach were
similar to SOC estimates reported by Peixoto et al. [33], while carrying out analysis of variance
(ANOVA). Rosado et al. [30] used information of molecular markers and reported low genetic
variance estimates among jatropha families. These authors argue that a possible cause would
be a common ancestor origin and the selection pressure that this species has suffered in recent
years. Indeed, these causes would explain the low genotypic variance observed for SOC, and
consequently its low heritability. Thereby, selecting superior genotypes based on phenotypic
values would not provide an expected overall genetic gain since approximately 83% of the phe-
notypic variance is not genetic. Thus, it is necessary the adoption of appropriate methodologies
to accurately predict genetic effects. Therefore, based on these results and on previous
researches, we suggest that the Bayesian multi-trait analysis is more appropriate than ANOVA
to perform analysis and select superior genotypes for jatropha breeding, since the Bayesian
model can capture minor genetic differences between families, while ANOVA cannot.

The success of a breeding program, which usually aims to improve multiple traits simulta-
neously, is influenced by the correlation between traits, and mainly by the breeding goal. We
observed a non-significant difference for all covariance estimates, except for SOC andW100S
(Table 1), which suggests that selection based on information of a specific trait will not provide
correlated gain to another trait (Table 2). However, it is expected and necessary that multiple
traits are improved simultaneously due to the large generation interval of jatropha. Thus, it is

Table 4. Response to selection per generation (S), accuracy of the index (RIH), andmonetary overall genetic gain per generation (ΔG) for weight of
100 seeds (W100S, g), seed oil content (SOC, %) and phorbol ester concentration in seeds (PEC, mg/g) using selection index.

S for each trait

Scenario1 RIH ΔG SOC W100S PEC

w1

1 0.2641 0.8647 0.37806 0.94490 -0.00377

2 0.5866 1.9206 0.42677 5.43193 -0.10412

3 0.7064 2.3128 0.36474 4.45593 0.34990

w2

1 0.3172 1.4959 0.37806 0.94490 -0.00377

2 0.5631 2.6559 0.45034 5.16525 -0.09691

3 0.6288 2.9657 0.41157 4.58196 0.26170

w3

1 0.3319 2.9980 0.37806 0.94490 -0.00377

2 0.6058 5.4716 0.44750 5.20812 -0.09802

3 0.6241 5,6372 0.43881 5.03137 0.09332

1 In scenario 1 only SOC was used as selection criteria. W100S was incorporated into the selection index in scenario 2, and PEC was added to scenario

3. Economic relative weights (w) were defined as w1 = same, w2 = double for SOC, and w3 = 4(SOC), 2(W100S) and 1(PEC).

doi:10.1371/journal.pone.0157038.t004
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necessary the use of statistics techniques that would help breeders to select superior families,
and consequently result in reasonable overall gain. Thereby, the use of selection index strategies
seems to be a good alternative.

Genetic diversity
To evaluate the diversity between Jatropha half-sib families, the Ward method was used for
clustering, resulting in nine clusters. Singh et al. [34] reported that one of the main problems of
jatropha breeding programs is the little genetic variability between genotypes. Moreover, it was
reported that the genetic variance is high within families and low between families [29, 35].

We observed low correlation estimates betweenW100S and SOC with PEC, which is simi-
lar to the reports of Peixoto et al. [33]. They estimated correlation based on ANOVA and
BLUP results, and observed that there was only significant correlation betweenW100S and
SOC. Thus, these results mean that when we select forW100S we are also selecting for SOC,
and vice versa. Otherwise, when we select forW100S and SOC, we are not selecting for PEC.
Thereby, an option to improve all traits simultaneously is the use of selection index
procedures.

Genetic gain and genotype selection based on selection index
Genotypic values estimated under the Bayesian multi-trait analysis was used to apply selection
index procedures, and superior genotypes were selected based on different scenarios.

Despite the low correlation estimates observed between SOC,W100S and PEC, it was possi-
ble to achieve overall genetic gain for all traits simultaneously by using selection index. Peixoto
et al. [33] used different selection index methods and concluded that a multiplicative index
provided genetic gain for all the evaluated traits. Therefore, our work confirms that it is possi-
ble to increase SOC and reduce PEC. This is an important result for jatropha’s breeding,
mainly because PEC is a limiting factor to the cultivation of this crop.

Simultaneous genetic gain can be achieved by correlated response, which can be maximized
with several crossing cycles in order to increase the frequency of favorable alleles for all traits
[33]. In this study, we presented a different strategy to achieve simultaneous genetic gain when
using the Bayesian multi-traits analysis to estimate genotypic values, and we used them to
build a selection index aiming to select superior genotypes.

Implications and future perspectives
Jatropha is a perennial plant which has been used to produce biofuel, and it has been reported
that it is possible to increase its performance by selecting plants based on genetic information.
Indeed, the use data of traditional jatropha breeding techniques, novel statistics methods, and
molecular markers (i.e. single nucleotide polymorphism, SNP) would be the key to improve
the accuracy of selection, to reduce the time per cycle, and to decrease the costs per cycle.

In future researches, the use of SNP should be exploited aiming to improve prediction accu-
racy. Recent developments in next-generation sequencing have enabled researchers to quickly
and cost-effectively carry out genotyping-by-sequencing of entire breeding populations to dis-
cover genetic markers of an entire genome. Therefore, the use of molecular markers for the
selection of the best genotypes in breeding populations under field evaluation has recently
emerged as the foundation of plant breeding, mainly forest species, since the cycle is too long
[36]. Based on theoretical studies and on practical considerations, genomic wide selection
(GWS) is likely to increase efficiency of breeding programs by shortening the duration of the
breeding cycle. Today, progeny testing phase could potentially be omitted, since breeders are
able to carry out early selection for yet-to-be observed phenotypes at seedling stage. This early
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selection would then allow selected individuals being immediately propagated, if micropropa-
gation protocols are available for the immediate establishment of optimized clonal trials with
several years of anticipation, compared to the classical breeding scheme [37].

Integration between genomic selection and multi-trait Bayesian approach can increase pre-
diction accuracy. Therefore, selection indices will be more powerful and reliable. Moreover, the
identification of chromosome regions that are related to genetic control of multiple traits
(pleiotropic genes) would be a useful tool aiming to increase the overall genetic gain during
selection. Additionally, the use of molecular data will provide the realized genetic diversity
among families since the evaluation will be based on the identical by state (IBS) information
[38].

Conclusion
The Bayesian multi-traits analysis integrated with selection indices allowed obtaining selection
gain for all traits simultaneously, i.e., it is possible to reduce Jatropha seeds toxicity caused by
phorbol ester concentration (PEC) and to increase seed oil content (SOC).

Based on the estimated genotypic values under the Bayesian multi-trait approach, and on
the evaluation of genetic gain when applying the selection index methods, 169 and 170 half-sib
families presented high genotypic values forW100S and for SOC, and low estimates for PEC.
Thus, these families should be used in future diallel crossings.
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