

18° ENCONTRO NACIONAL DE QUÍMICA ANALÍTICA

FLORIANÓPOLIS, SC, 2016

QUANTIFICAÇÃO DE SACAROSE, GLICOSE E FRUTOSE EM CALDO DE SORGO SACARINO POR ESPECTROSCOPIA NO INFRAVERMELHO PRÓXIMO (NIR)

Maria Lúcia F. Simeone^a* (PQ), Rafael A. da C. Parrella^a (PQ), Robert E. Schaffert^a (PQ), Cynthia M. B. Damasceno^a (PQ), Michelle C. B. Leal^a (TC), Celio Pasquini^b (PQ).

^aEmbrapa Milho e Sorgo, Sete Lagoas, MG, Brasil, 35701-900 ^b Universidade Estadual de Campinas, Instituto de Química, Campinas, SP, Brasil, 13083-970 *e-mail: marialucia.simeone@embrapa.br

O sorgo sacarino é uma das culturas alternativas à cana-de-açúcar mais promissoras para a produção de etanol¹. O caldo do sorgo sacarino é rico em acúcares fermentescíveis, tendo como principal carboidrato a sacarose, seguido pela glicose e frutose². Para a avaliação da composição química dos açúcares presentes no caldo de sorgo, técnicas cromatográficas são comumente empregadas. Entretanto, para o uso dessas técnicas há a necessidade de preparo da amostra, utilização de produtos químicos, o que exige um grande trabalho de laboratório. O objetivo desse trabalho foi desenvolver um método mais rápido e alternativo aos métodos cromatográficos utilizando a espectroscopia no infravermelho próximo (NIR) associada ao desenvolvimento de modelos de regressão multivariados visando à determinação do teor de sacarose, glicose e frutose em caldo de sorgo sacarino. O experimento foi conduzido na Embrapa Milho e Sorgo, em Sete Lagoas - MG empregando-se cultivares de sorgo sacarino do Programa de Melhoramento Genético. O caldo de sorgo sacarino obtido após prensagem foi armazenado a -4 ºC para posterior análise por HPLC (coluna RCM-Ca e detector índice de refração). Para a realização da leitura dos espectros no equipamento NIRFlex 500, Buchi, as amostras de caldo foram adicionadas em placas de Petri com o acessório de transflectância para a coleta dos espectros na região 1000-2500 nm. O software Unscrambler® 10.3 foi utilizado para todos os pré-tratamentos dos dados. Todos os espectros foram centrados na média e pré-processados utilizando variação normal padrão (SNV) e primeira derivada. Utilizou-se o método mínimos quadrados parciais (PLS) para a construção dos modelos em um conjunto de 160 amostras, sendo 100 para calibração e 60 para validação externa. Para avaliação do desempenho dos modelos foram utilizados os parâmetros estatísticos descritos na tabela 1.

Tabela 1 – Parâmetros estatísticos dos modelos obtidos

	Faixa	٧L	R ² cal	R ² val	RMSEC	RMSECV	RMSEP	RPD
Sacarose	26,50 a 169,52	7	0,98	0,96	4,63	6,02	5,66	5,75
Glicose	6,6 a 36,16	6	0,96	0,94	0,97	1,14	1,33	3,94
Frutose	4,25 a 17,59	9	0,97	0,93	0,53	0,71	0,79	4,07

Faixa de trabalho (mg.mL⁻¹); VL= variáveis latentes; R²=coeficiente de determinação; RMSEC, RMSECV e RMSEP= raiz quadrada do erro quadrado médio da calibração, calibração cruzada e predição, respectivamente; RPD= relação de desempenho do desvio.

Foram obtidos modelos com uma ampla faixa de calibração para os teores de sacarose, glicose e frutose em caldo de sorgo. A escolha do melhor modelo de regressão baseou-se na análise do menor erro padrão associado à calibração e validação, e do coeficiente de determinação (R²) entre os resultados do método de referência e aqueles previstos pelo modelo. Baixos valores de RMSEP e altos valores de RPD também são indicativos do bom desempenho e da boa linearidade dos modelos. Os resultados indicam que o modelo de calibração multivariada PLS-NIR foi capaz de fornecer resultados confiáveis e que possibilitam a realização de um grande número de amostras por dia, tornando possível à sua implantação em rotina laboratorial.

¹ Parrella RAC, Rodrigues JAS, Tardin FD, Damasceno CMB, Schaffert RE, Boletim de Pesquisa e Desenvolvimento, Embrapa Milho e Sorgo, 28, 2010.

² Jia F, Chawhuaymak J, Riley MR, Zimmt W, Ogden K, Journal of Biological Engineering, 7, 2013,1 Agradecimentos: Os autores agradecem à Fapemig e ao Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas – INCTAA