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Abstract

Backgound: Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic
losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new
fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for
developing new fungicides, a critical step is the identification of new targets against which innovative chemicals
weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways
critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium
growth and therefore to prevent food contamination.

Results: In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to
the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for
developing new fungicides was selected. Searching for new compounds blocking this particular target requires the
knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model
was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics
simulations. Two stable conformations representative of the conformational families of the protein were extracted
from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was
checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening
step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model.
Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally
tested to validate the in silico simulation.

Conclusions: This study provides an integrated process merging genomics, structural bioinformatics and drug
design for proposing innovative solutions to a world wide threat to grain producers and consumers.
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Background
The ascomycete Fusarium graminearum (FG) is a fila-
mentous fungus dwelling on and in a wide range of plant
species, on crop debris and within soil. This fungus
causes Fusarium head blight (FHB) disease on wheat,
barley. FG is also responsible for various corn and rice
diseases [1]. FG is a highly destructive pathogen of ce-
reals reduces grain quality rather than grain production.
FG causes two main problems: first, seed quality is re-
duced, and secondly, infection produces mycotoxin-
contaminated grains. Among the various sesquiterpenoid
trichothecene toxins produced by FG, deoxynivalenol,
also known as vomitoxin, is one of the most important
[2]. Deoxynivalenol contaminated grains are often con-
sidered unfit for animals and/or human consumption
leading to considerable economic losses [3, 4].
Fungicide applications are only moderately effective at

controlling FHB and often intrinsic resistance problems
have been encountered [5, 6]. The identification of new
fungicides is urgently required to limit FG development.
In the search for new, efficient and selective fungicides
able to control the development of the pathogen, the
first step is to find relevant targets [7, 8].
G-protein coupled receptors (GPCRs) are the starting

point for the control of several signaling pathways and
are therefore considered a potentially rich source of
innovation as drug targets and for drug design to allevi-
ate many human diseases of genetic and / or biotic ori-
gins [9]. GPCRs, which are activated by a large panel of
factors ranging from light, small amines to hormones
and chemokines, initiate signaling cascades resulting in
multiple cell responses. GPCRs constitute a large family
of proteins, the signature of which consists of a trans-
membrane domain embedded within the plasma mem-
brane and possess seven transmembrane helices. Their
functions are to detect extracellular signals and to acti-
vate intracellular mediated signal transduction pathways
and appropriate cellular responses. GPCRs classically
transmit a signal via the activation of heterotrimeric G
proteins. The sustained stimulation leads to the activa-
tion of G protein-coupled receptor kinases and the re-
cruitment of arrestin proteins, which engage alternative
signaling pathways [10].
In fungi, GPCRs are known to be implicated in bio-

logical processes including vegetative growth, sporulation,
stress responses and pathogenicity [11]. GPCRs have been
the subject of numerous bioinformatics studies to explore
their potential suitability as drug targets [12]. As a result,
the entire set of GPCRs encoded by various fungi has been
predicted for several fungi including Saccharomyces cere-
visae, Schizosaccharomyces pombe, the saprobes Aspergil-
lus spp., Neurospora crassa, and Trichoderma spp., the
plant pathogens Magnaporthe grisea and Verticillium spp.,
and the human/animal infecting pathogen Cryptococcus

neoformans [13–21]. Ma et al. previously explored the
GPCRs repertoire for Fusarium species, but only sequence
alignments were used for these predictions [22]. As
GPCRs are known not to share a high sequence similarity,
such predictions may increase the risk of occurrence of
false positives [23, 24].
The primary goal of this study was to detect GPCR s

in the predicted FG proteome, to select the best candi-
dates for potential use to control this pathogen and to
identify potential inhibitors. Several in silico predictive
filters were used leading to the selection of one of the
most relevant GPCR target. Prior to the rational screen-
ing of putative active compounds, the three-dimensional
structure of this GPCR should be known. As no FG
GPCRs’ 3D structures are presently available, we used
homology modeling and molecular dynamics simulations
in order to obtain a convincing model for the selected
GPCR candidate. Then, stable conformations of this
model were used to identify potential inhibitors using
the virtual screening approach [25, 26].

Results and discussion
Identification of putative GPCRs
The 13,321 predicted protein sequences of Fusarium
graminearum (Version 32) were submitted to the be-
spoke GPCRpipe, and only nine sequences were identi-
fied as putative GPCRs. After checking for the number
of their transmembrane helices by TMHMM, HMMtop,
and Phobius, only six proteins among the nine were
found to contain the necessary 7 transmembrane helix
(TM) feature confirmed by all three programs (Table 1).
For the three others, as at least two programs predicted
7 TMs, we finally considered all the nine as putative
GPCRs. Furthermore, all these predicted GPCRs pre-
sented an extracellular N-terminus and an intracellular
C-terminus like other known GPCRs, strengthening,
therefore, this selection. In the group of nine candidates,
seven are in common with the previous annotation by

Table 1 Number of transmembrane helices determined by
TMHMM, HMMtop and Phobius

Protein ID # Helices

TMHMM HMMtop Phobius

FGSG_01861 7 7 7

FGSG_02655 6 7 7

FGSG_02942 7 7 5

FGSG_03023 7 7 7

FGSG_05006 5 7 7

FGSG_05239 7 7 7

FGSG_05404 7 7 7

FGSG_07270 7 7 7

FGSG_07716 7 7 7
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Ma et al. (2010). Among them two (FGSG_02942 and
FGSG_05404) are novel GPCR candidates coming from
the stringent structural/function prediction (Table 1).

Functional classification and final selection
As fungal GPCRs are associated with different functions,
identification of these functions for the nine putative
GPCRs was used as a first step to select the best target to
inhibit fungal growth. Zheng et al. (2010) proposed a new
classification of fungal GPCRs and classified 40 GPCRs
from the ascomycete pathogens Verticillium dahliae and
Verticillium albo-atrum, and we used these sequences to
build the phylogenetic tree of the nine putative GPCRs
(Fig. 1). FGSG_05239, FGSG_07716, FGSG_03023 and
FGSG_01861 are present in the same branch as class V
GPCRs. FGSG_05006 and FGSG_02942 are grouped into
class III GPCRs. FGSG_02655 and FGSG_07270 are both
pheromone receptors belonging respectively to class I
and class II. The last GPCR, FGSG_05404, is similar to
class X. To confirm this phylogeny relationship, a do-
main composition of each protein was determined
using Pfam (Table 2) showing that all extracted do-
mains are coherent with GPCRs functions: STE2 and
STE3 are mating type pheromone receptor domains,
Git3 is a glucose receptor, 7tm_1 and 7tm_2 are re-
spectively rhodopsin and secretin receptors, dicty_CAR
is a cyclic AMP receptor, and Lung_7-TM_R is a known
seven transmembrane helix domain.

To identify potential new fungicide targets, an import-
ant step is to verify that the identified targets are not
present in host organisms (principally wheat and corn)
and humans. As shown in Table 3, for eight of the nine
identified GPCRs, no similar protein was found in Homo
sapiens, Zea mays or Triticum species. For the putative
GPCR FGSG_05404 similar was found to a protein oc-
curring in the three different tested species. As a conse-
quence, FGSG_05404 was discarded from any further
analyses.
From the eight remaining possible GPCR targets, only

FGSG_02655, predicted to code for a class I pheromone
receptor, was retained for entering into the molecular

Fig. 1 Phylogeny of nine putative GPCRs identified in Fusarium graminearum and 40 GPCRs identified by Zheng et al. in Verticillium dahliae
and Verticillium albo-atrum. The unrooted tree with bootstrap value (10,000 repetitions) shown in every branch was constructed using the
neighbor-joining method

Table 2 Classes of the retained GPCRs identified in FG and
Pfam domains

Protein ID Conserved Pfam domain Class [17]

FGSG_02655 STE2 (PF02116) I. Ste2-like pheromone receptor

FGSG_07270 STE3 (PF02076) II. Ste3-like pheromone receptor

FGSG_02942 Git3 (PF11710) III. G protein-coupled glucose
receptor regulating Gpa2

FGSG_05006

FGSG_05239 7tm_1 (PF00001) V. cAMP receptor like

FGSG_01861 7tm_2 (PF00002)

FGSG_03023 Dicty_CAR (PF05462)

FGSG_07716

FGSG_05404 Lung_7-TM_R (PF06814) X. PTM1-like GPCR
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modeling pipeline. This protein contains a mating type
pheromone receptor domain (PF02116). In fungi, one of
the first steps in sexual reproduction is sexual phero-
mone reception by a mating type receptor. As sexual
reproduction is a fundamental part of the FG disease
cycle, FGSG_02655 is therefore considered a good
choice for developing as a fungicide target [27]. Using a
reverse genetics approach, FGSG_02655 has already
been shown to be required for sexual mating and viru-
lence in F. graminearum. Single gene deletion strains ex-
hibit reduce female fertility and fewer mature perithecia
were produced when strains were selfed [28, 29]. In
addition, a separate study [30] confirmed the sexual mat-
ing defects and also showed the reduced ability of a delta
FGSG_02655 strain to cause disease on wheat ears and
maize cobs. Therefore, the selection of FGSG_02655 as a
candidate fungicide target could be used to restrict F.

graminearum growth and development at two distinct
phases in its predominately monocyclic disease cycle.

Homology modeling of FGSG_02655
The first step in homology modeling is to identify the
most suitable templates to use to build the query 3D
model. The sequence similarity between FGSG_02655
and known GPCRs’ PDB was found to be very low.
Therefore, no structure could be used as a template. In-
stead the FGSG_02655 transmembrane helices were pre-
dicted using several tools (Table 4). Firstly, sequence
similarity was not used to build the models as it is usu-
ally done in homology modeling. The 7 TM helices posi-
tions were used, aligning the TM sequences predicted
for the FGSG_02655 query with those observed in the
PDB templates. Moreover, we used supplementary infor-
mation concerning the third transmembrane helix: in

Table 3 Similarity with other species

Protein ID Blastp best results

Zea mays Homo sapiens Triticum.

E-value Query-Cover Ident E-value Query-Cover Ident E-value Query-Cover Ident

FGSG_02655 – – – – – – – – –

FGSG_07270 – – – – – – – – –

FGSG_02942 – – – 8e-03 46% 26% – – –

FGSG_05006 – – – 5e-02 26% 25% – – –

FGSG_05239 – – – 7e-03 41% 24% – – –

FGSG_01861 4e-06 39% 26% 2e-04 41% 24% – – –

FGSG_03023 – – – 2e-02 44% 24% – – –

FGSG_07716 6e-05 85% 24% 3e-04 43% 25% – – –

FGSG_05404 6e-33 70% 30% 9e-21 51% 28% 6e-29 73% 27%

Blastp best results: the nine identified GPCR vs Homo sapiens, Zea mays & Triticum (nr database). Only best results with an E-value lower than 1e-01 are displayed

Table 4 Transmembrane helix predictions for FGSG_02655

Prediction method TM1 TM2 TM3 TM4 TM5 TM6 TM7

DAS 49–63 74–93 126–136 155–174 193–220 241–258 271–285

PRED-TMR 45–63 71–93 156–178 192–214 240–258 269–187

HMMTOP 46–63 72–93 116–134 155–177 200–219 240–258 269–286

TMHMM 42–64 71–93 113–135 156–178 198–220 241–263

GPCRHMM 41–63 72–93 114–135 152–171 192–214 232–258 263–283

PredictProtein 44–61 76–95 123–143 155–179 202–219 241–259 269–286

TOPCON 43–62 72–92 120–140 156–176 200–220 240–260 268–298

MINNOU 39–62 71–105 118–147 152–185 192–224 243–257 269–289

SOSUI 117–138 146–168 193–215 225–247 268–290 310–332 340–362

SPLIT 122–138 147–170 198–213 227–251 264–296 312–338 350–368

TMpred 127–146 155–175 198–216 237–256 277–296 322–338 350–368

Model 1 39–61 86–109 129–156 176–197 230–252 275–299 312–333

Model 2 39–61 95–118 129–156 173–195 225–247 263–287 311–337

Model 3 39–61 86–109 129–156 176–197 225–247 263–287 307–328
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Fig. 2 (See legend on next page.)
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the structures used as templates as well as in the major-
ity of PDB GPCR structures [31], a cysteine forms a di-
sulfide bond with the second extracellular loop [12].
After analyzing these different transmembrane helix pre-
dictions, three models of FGSG_022655 were finally
retained. The corresponding TM helices are highlighted
in Table 4, and the corresponding sequence alignments
are presented in Fig. 2a–c. As quality score determined
by DOPE (discrete optimized protein energy) were simi-
lar (Table 5) for the 3 selected models, they were sub-
mitted to molecular dynamics (MD) simulations to
check their stabilities.

Checking the stability of the models by molecular dynamics
The three protein models of FGSG_02655 selected from
the previous step were subjected to a ten ns MD simula-
tion to determine their stability as a GPCR. Evaluation of
stability was realized by analyzing secondary structure
evolution during the dynamics. The main focus of this
analysis was the transmembrane helices: if the seven
transmembrane helices were not broken during the Mo-
lecular Dynamics, then we consider the model as stable.
The analysis of secondary structure evolution shows that
for two protein models (model 1 and 2), transmembrane
helices were not retained during the simulation. In model
2, the third transmembrane helix broke during the equili-
bration and after 4 ns TM helix 7 was broken. Both helices
did not re-form during the MD. Concerning model 1,
helix 4 was broken at the beginning of the Molecular
Dynamics and did not reform during the simulation.
These observations indicate that model 1 and model 2
were not stable and were not considered further.
For model 3 (Fig. 3), all the secondary structures were

stable during the original simulation. As this model ap-
peared to be stable, we prolonged the MD simulation
until 100 ns.

Choice of the final model
The timeline analysis of the secondary structures during
the 100 ns of MD simulation showed that the third model
is stable during the whole trajectory and especially the
transmembrane helices (Fig. 4). Then, each frame of the
trajectory was aligned to the first one based on the protein
backbone. Root-mean-square deviation (RMSD) analysis
was performed for both the whole protein and its seven
transmembrane helices (Fig. 5). It appears from these sim-
ulations that a very stable conformational regime was ob-
tained after 42 ns, mostly due to a rearrangement of the
TM helices within the palmitoyloleoylphosphatidylcholine
(POPC) bilayer. During the remaining 58 ns, the protein
conformation fluctuates between two quite similar con-
formational families (Fig. 6). Concerning these two confor-
mations, three of their transmembrane helices had the
same positions (helices three, five and seven), two were
shorter in the first conformation (helices one and six) and
two others were shorter in the second conformation (heli-
ces two and four) (Fig. 7). For the first family, the distance
between the α carbon of the N-terminal residue and the
nearest POPC atom was around 28 Å and 20 Å for the C-
terminal side. For the second conformation, these same
distances were both 13 Å, showing that the first conform-
ation family was the outermost of the membrane. The
representative 3D structures of each of these families can
be used for performing a structure-based virtual chemical
screen using the ensemble docking procedure.

Virtual screening
From the ensemble docking campaign using these two
main conformers, we retained only the top 30 com-
pounds from the complete GOLD score list to further
analysis. After removing possible toxic molecules and
compounds outside the pocket, we retained only 10
molecules (Table 6) for possible biological testing. It
should be noted that the majority of the compounds
bound the first conformation. The chemical formulas
and names of these molecules are shown on Additional
file 1: Table S1. The positioning of the 3 best-score
retained compounds within the binding site is presented
on Fig. 8. Looking at the protein/ligand interaction found,
it appears that each ligand had specific interactions with
the protein: for example, compound F0514-4158 interacts
with Phe214 Lys217 and Ser231, while the molecule F0514-
3978 interacts only with Ser292.

(See figure on previous page.)
Fig. 2 a Alignment of FGSG_02655 with a sequence of human glucagon G-protein coupled receptor (4L6R). This alignment was used to build
the model 1. b Alignment of FGSG_02655 with sequences of human G protein-coupled metabotropic glutamate receptor 1 (4OR2) and human
metabotropic glutamate receptor 5 (4OO9). This alignment was used to build the model. c Alignment of FSG_02655 with sequences of G
protein-coupled metabotropic glutamate receptor 1 (4OR2), the human dopamine D3 receptor (3PBL) and human glucagon G-protein coupled
receptor (4L6R). This alignment was used to build the model 3. Red squares correspond to transmembrane helix positions

Table 5 DOPE score of the 3 selected models

Model DOPE score

1 −34,627.5

2 −34,211.42

3 −34,766.89

Scores were calculated by the assess_dope function of Modeller
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Conclusion
For this study we have used a bespoke analysis pipeline
called GPCRpipe followed by a stepwise funnel strategy
to identify, select and model one putative GPCR protein
that could be of possible use as drug target to design
new compounds active against Fusarium graminearum.
This iterative search procedure is innovative because it
has combined the use of genomics and molecular pro-
tein modeling approaches. Considering the 117 GPCRs
candidates previously predicted in the FG genome se-
quencing [22] and nine sequences initially obtained by
our strategy, we anticipated that a few false positives
were retained. Therefore, we used additional filters based
on structural and functional criteria to predict the most
authentic GPCR candidates. Our selection of the nine
resulting FG GPCR candidates was based not only on
sequence similarity but on Molecular Dynamic model-
ling of the 3D protein structure. In addition, literature
mining and a phylogeny analysis was used to explore the
potential biological processes associated/proposed for
each GPCR. For the final sequence retained, namely
FGSG_02655, the molecular dynamics simulations
proved to be an efficient method to choose between sev-
eral alignments between the putative FG GPCR query
and the template used in the homology modeling
process as only one of the three predicted models came

through the extended 100 ns MD stimulation intact.
Furthermore, a method developed to model GPCR was
recently published [32] and may be interesting to use in
future studies.
The receptor conformational flexibility highlighted by

the MD simulation on the retained final robust model
was used for running next an efficient ensemble docking
structure-based virtual screening which provides inter-
esting hypothetical hits to be now proposed for experi-
ments. The whole in silico selection funnel presented in
this study provide an example of an integrated process
merging genomics, structural bioinformatics and drug
design and leading to propose valuable and innovative
solutions to a world-wide threat to grain producers and
consumers.

Methods
Our in silico experimental approach was composed of
three main steps as illustrated in Fig. 9. The first step was
related to the identification of GPCRs in the FG genome
using several GPCRs prediction tools. Next, having identi-
fied putative GPCRs, these were classified according to
their function to select a limited set of possible targets for
designing new and innovative compounds against FG. The
third step of this funnel consisted of a molecular modeling
approach to building the three-dimensional models of

Fig. 3 The appearance of the initial Model 3. The red color indicates the GPCR, the olive green color indicates the membrane lipids and the grey
color indicates the water box
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these targets. The last step corresponds the virtual screen-
ing. Binding pockets were detected in stable models iden-
tified in the previous step. Then, a large compound library
was used with a docking program to find putative in-
hibitors. All calculations were performed on a 64 cores
computer.

Step 1: GPCR identification in FG proteome.
The Fusarium graminearum genome was firstly
published in 2007 [33]. The complete proteome of
Fusarium graminearum PH-1 assembly FG3 (13,321
proteins) was downloaded from the BROAD Institute
Fusarium comparative database [34].

Fig. 5 Root mean square deviation (RMSD) values for the whole FGSG_02655 protein compared with RMSD values from the seven
transmembrane helices

Fig. 4 Evolution of model 3 secondary structure during the 100 ns of Molecular Dynamics simulation. Turns are represented in green, α helices in
pink, 3–10 helices in blue and coils in white
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Fig. 6 Root mean square deviation (RMSD) map showing the conformational behavior of the protein during the 100 ns MD. The color scale is
given below, the black color corresponding to dissimilar conformations (RMSD > 3.5 Å) and white corresponds to identical conformations
(RMSD = 0 Å). The two conformational families 1 and 2 found as stable structural states are highlighted by the white squares

Fig. 7 Structural alignment of the conformational families. The first conformation is in yellow and the second in red. The center of the binding
pocket is in blue
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FG putative GPCRs were firstly detected using the
GPCRpipe program [24]. Two methods in GPCRpipe
were used for the detection of GPCR. Based on Hidden
Markov Model, the first step was designed for the
detection of GPCR. The second one is a library that
consists of 39 Pfam profile HMMs (specific to different
families of GPCR). We used the GPCRpipe “AND”
method, meaning that a GPCR was predicted only if
the two methods confirmed the prediction. This choice
resulted in a reduced number of GPCRs predictions
and limited the number of false positive predictions.
The next step, to validate the GPCRpipe predictions,
involved using three transmembrane prediction
softwares namely HMMtop [35], TMHMM [36] and
Phobius [37]. The first two are the best-known trans-
membrane prediction methods, and Phobius was re-
ported to perform comparably [37, 38].
Step 2: GPCR characterization, selection, and annotation.
The functional classification of the GPCRs identified in
Fusarium graminearum was realized using a PfamA
analysis [39]. In parallel, the phylogenetic tree of these
GPCRs and the 40 identified GPCRs in Verticillium
dahliae and Verticillium albo-atrum [17] was built.
This tree was built by Mega 6.0 using the Neighbor-
Joining method and 10,000 repetitions.
Step 3: 3D Model Building.
Homology modeling
The construction and validation of the various
homology models of GPCRs is still a challenge [40]
and requires not only the sequence alignments but
would also include structure-based alignments. This
approach has been proved successful in many studies

[41, 42]. Nowadays, the structure of 20 different class
A, two class B, two class C, and one frizzled GPCRs
are available in the PDB [43], providing a reasonable
set of possible templates to be used.
The choice of the proper template is crucial for
ensuring the validity of the homology model. For
that, several strategies are proposed, and many
questions still remain [44]: for example, do we have
to choose a single template, and in this case how to
select it, or a set of templates? Such a decision can
be difficult as contradictory results were obtained
such as the ones claiming that a single well-chosen
template is better than a set [45] versus the ones
with opposite conclusions [46]. Moreover, it appears
clearly from recent studies that the accuracy of the
model greatly depends on the phylogenetic tree
proximity of the template and the target [47].
Consequently, when considering (i) the remarks
above, (ii) the conservation of the 7TM bundles in
all GPCRs and the observed deformation of its helices
[48], and (iii) the sequence conservation of several
motifs [49] we decided to start our homology
modeling phase using both phylogenetic data (for
selecting the most suitable template) and helix
predictions information (to align the TM helices
sequences between the template and the target). Next
the loops connecting the TM helices were added to
the models obtained this way, considering also the
constraint of the possible disulfide bridges [50, 51].
To build our models, transmembrane helix positions
were determined by 11 transmembrane helix predictors
(Additional file 2: Table S2 [23, 35, 52–59]). Then, our
models were constructed by aligning transmembrane
helices instead of similar amino acids. Moreover, crystal
structures of several GPCRs, as well as experimental
evidence, have shown the presence of a disulfide bond
linking transmembrane helix 3 (TM3) to the second
extracellular loop (ECL2) [60] and we used this
additional information positioning this cysteine
residue at the top of TM3. Finally, the position of
the conserved motifs was also used for our selection
process [61]. The homology modeling task was
performed using the MODELLER program with its
default settings [62]. Additionally, the automatic
loop refinement method available in MODELLER
was used. The DOPE score from MODELLER was
used to estimate model quality.
Molecular dynamics (MD)
The next steps using Molecular Dynamics
simulations were required to refine the preliminary
crude models and then analysis the stability of the
GPCR within the membrane [63]. MD is now
commonly used to validate homology models,
especially in the GPCRs field [64–67].

Table 6 GOLD scores for the finally selected compounds (in bold)

Rank Score (PLP) ID dataset #Atoms outside Frame Toxicity

1 110.31 F1044-0055 25 525

2 109.35 F1044-0055 18 840

3 107.46 F0514-4158 10 525

4 106.61 F0514-3978 4 525

5 106.59 F0514-5375 18 525

6 105.88 F0514-4003 8 525

7 105.7 F0617-0172 16 840

8 105.67 F0520-1906 0 840 +

9 105.66 F3407-3991 0 840

10 105.57 F0514-4846 12 525

11 105.5 F0514-0510 10 525

12 105.35 F0514-3894 5 525

13 105.27 F0514-5342 13 525

14 105.24 F0514-4074 0 840

15 105 F0514-3894 8 525

Molecules in italics are not selected because of their high number of atoms
outside the pocket
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For this purpose, we used molecular dynamics
simulation on the receptor homology models that
were embedded in a fully hydrated POPC bilayer
[68]. No ligand was positioned within the receptor at
this level as it has been shown [47] that the presence
of a ligand does not change the accuracy of the
structure produced. Initially, the receptors models
were positioned across the equilibrated bilayer while
seeking to match the hydrophobic protein segments
with the layer formed by the lipid hydrocarbon tails.
Lipids overlapping with the protein complex were
deleted, leaving a bilayer consisting of 357 POPC
molecules. To ascertain that the cytoplasmic and
extracellular loops did not interact, an amount of
35,479 water molecules was added, as well as 10
counterions to make the whole system-neutral, thus
making a total number of atoms equal to 159,461.
The complete system, represented in Fig. 3 was
replicated periodically in the three directions of
space, with a repeat distance of∼ 120 Å.

The MD simulations were carried out in the isobaric-
isothermal ensemble, maintaining the pressure and
the temperature of 1.0 atm and 300.0 K, respectively,
using Langevin dynamics and the Langevin piston
approach. The MD program NAMD [63] was
employed in conjunction with the CHARMM27 force
field [69] to describe the receptor, the lipid bilayer,
and the water molecules. Coulomb forces were
evaluated with the particle-mesh Ewald method. The
equations of motion were integrated with a 1-fs time
step, using the r-RESPA algorithm to update short-
and long-range contributions at different frequencies.
Each system was energy minimized and then
equilibrated (3 ns) before recording trajectories. All
MD trajectory frames were recorded at 1 ps intervals,
for a total of 10 ns simulation. Model stabilities were
then checked by analyzing secondary structure
evolution during the MD simulation. If at least one
transmembrane helix broke, then the model was not
considered stable. For the stable models obtained, the

Fig. 8 Interactions found between the protein and the ligands for the 3 highest GOLD score retained compounds
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simulations were extended to reach a 100 ns
simulation time.
MD simulation analysis
Once the MD simulation was completed, all the
frames were aligned by only take into account the
protein backbone. RMSDs were calculated by the
“RMSD trajectory tool” plugin from Visual Molecular
Dynamics (VMD) [70]. RMSD maps were built using
a previously developed in-house Tool Command
Language (TCL) script.

Step 4: Virtual screening
Ligand library
The chemical libraries used for the virtual screening
were the GPCR Targeted Libraries (11,571
compounds) from Life chemicals. These libraries
contained compounds for sixteen types of GPCRs.
Pocket detection and analysis
For each stable conformer detected thanks to the
MD simulation, the coordinates of the binding
pocket center were identified using LigSite [71].
Ensemble docking
For the docking, we used the docking program
GOLD [72] which has been considered as one of the
best docking software [73]. Because several stable
conformations were identified, we used the ensemble
docking possibility available in GOLD. The use of
such conformational ensembles was considered as
an improved strategy in structure-based docking
calculations [74]. For each docking, 100 starting
ligand conformers were used in GOLD. All target
conformers used were aligned in a common reference
system and the center of the pocket cavity is an average
of the individual centers found in each conformation.
A sphere of 15 Å was selected to define the binding
region around this center.
Toxicity
In order to remove probable toxic molecules, the
side effects of the finally identified compounds were
detected using toxicity predictors such as PAINS-
remover, Badapple and Protox webservers [75–77].

Additional files

Additional file 1: Table S1. Name and 2D structure of the 10 retained
compounds (PDF 108 kb)

Additional file 2: Table S2. Programs used for detecting
transmembrane helix positions (PDF 34 kb)
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