Relações entre caracteres avaliados na fase juvenil e produtividade de grãos em pinhão-manso

Erina Vitório Rodrigues (Embrapa Agroenergia, erina.rodrigues@colaborador.embrapa.br), Bruno Galvêas Laviola (Embrapa Agroenergia, bruno.laviola@embrapa.br), Paulo Eduardo Teodoro (UFV, eduteodoro@hotmail.com), Rhayanne Dias Costa (Embrapa Agroenergia, rhdico@gmail.com), Helio Gustavo Ramos Lopes (helioagropecuaria@hotmail.com), Laise Teixeira da Costa (Embrapa Agroenergia laise.costa@embrapa.br), Alexandre Alonso Alves (Embrapa Agroenergia, alexandre.alves@embrapa.br)

Palavras Chave: Jatropha curcas L., correlações canônicas, seleção indireta.

1 - Introdução

O pinhão-manso (*Jatropha curcas* L.) é uma oleaginosa perene da família *Euphorbiaceae*, com produtividades potenciais de 1.200 a 1.500 kg ha⁻¹ de óleo a partir do 4º ano (Laviola et al., 2014). Por se tratar de uma oleaginosa perene de ciclo longo, é necessário estabelecer critérios para auxiliar nas etapas de seleção de genótipos superiores, possibilitando estimar qual o menor ciclo de seleção possível para alocar recursos humanos e financeiros à pesquisa.

Dentre as técnicas baseadas em biometria, as correlações canônicas são apropriadas para estimar a relação entre dois grupos de caracteres agronômicos. Esta análise consiste na obtenção de funções canônicas, sendo que cada função é composta por um par de variáveis estatísticas, representando as variáveis dependentes e independentes. O número máximo de funções canônicas que pode ser obtido é igual ao número de variáveis do menor conjunto de dados. O primeiro par canônico é obtido de forma a ter-se a maior associação possível com os grupos de variáveis. O segundo par canônico também é obtido para exibir a maior relação entre os grupos de variáveis analisadas, mas que não foi explicada pelo primeiro par e, assim, sucessivamente (Cruz et al., 2012).

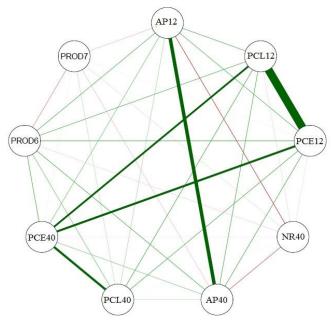
Desse modo, o objetivo desse trabalho foi empregar as correlações canônicas para verificar a associação entre caracteres avaliados na fase juvenil em pinhão-manso e a produtividade no sexto e sétimo ano após o plantio.

2 - Material e Métodos

O experimento foi instalado na área experimental da Embrapa Cerrados, Planaltina, DF situada a 15°35'30" S e 47°42'30" W, a 1.007 m altitude. O clima é tropical com inverno seco e verão chuvoso (Aw) segundo a classificação de Köppen, com temperatura média anual de 22 °C, umidade relativa de 73% e precipitação pluvial média de 1.100 mm. O solo predominante no local foi classificado como Latossolo Vermelho com alto teor de argila.

Utilizou-se o delineamento em blocos ao acaso com duas repetições e cinco plantas por parcela no

espaçamento 4 x 2 m. O manejo baseou-se em Dias et al. (2007), com adaptações de acordo com os resultados de pesquisa com pinhão-manso no Brasil e no mundo.


Os caracteres avaliados foram: altura de planta aos 12 (AP12) e 40 (AP40) meses após o plantio (MAP); projeção da copa na linha aos 12 (PCL12) e 40 (PCL40) meses após o plantio; projeção da copa na entrelinha aos 12 (PCE12) e 40 (PCE40) meses após o plantio; número de ramificações aos 40 (NR40) meses após o plantio; produtividade de grãos em 2014 (PG6) e 2015 (PROD7), que correspondem ao sexto e sétimo ano após o plantio, respectivamente. Os caracteres altura de plantas, projeção da copa na linha e entrelinha foram mensurados em m, enquanto a produtividade de grãos foi estimada em kg ha-1.

Após verificar efeito significativo (p<0,05) entre genótipos para todos os caracteres avaliados, foram estimadas as correlações fenotípicas. Para expressar graficamente a relação funcional entre as estimativas de correlações fenotípicas entre os caracteres foi utilizada a rede de correlações, em que a proximidade entre os nós (traços) é proporcional ao valor absoluto da correlação entre esses nós. A espessura das bordas foi controlada por aplicação de um valor de corte igual 0,60, o que significa que apenas $|\mathbf{r}_{\mathrm{Fij}}| \geq 0,60$ têm as suas arestas em destaque. Finalmente, correlações positivas foram destacadas na cor verde, enquanto as negativas foram representadas em vermelho.

Posteriormente foi realizado o diagnóstico de multicolinearidade da matriz de correlações X'X, que revelou multicolinearidade fraca. Para a análise de correlações canônicas, foram estabelecidos dois grupos de caracteres: grupo I constituído por caracteres agronômicos avaliados na fase juvenil (AP12, AP40, PCL12, PCL40, PCE12, PCE40 e NR40) e grupo II por caracteres produtivos na fase adulta (PROD6 e PROD7). A significância entre as correlações canônicas foi avaliada pelo teste qui-quadrado. Todas as análises estatísticas foram realizadas com o auxílio do *software* GENES (Cruz, 2013) e seguiram os procedimentos recomendados por Cruz et al. (2012).

3 - Resultados e Discussão

Houve correlações positivas e significativas (p<0,05) entre AP12 x AP40 (0,718), PCE12 x PCL12 (0,9077), PCE12 x PCE40 (0,6627), PCL12 x PCE40 (0,6506) e PCE40 x PCL40 (0,6664) (Figura 1). Essa interrelação entre esses caracteres sugere que os mesmos podem ser avaliados em um único período, o que possibilita reduzir custos nos programas de melhoramento genético de pinhãomanso. As demais correlações não foram significativas pelo teste t.

Figura 1. Rede de correlações fenotípicas entre os caracteres avaliados.

Somente a primeira correlação canônica entre o grupo de caracteres avaliados na fase juvenil e o grupo contendo a produtividade dos genótipos em idade avançada foi significativo (p<0,01) pelo teste qui-quadrado. Pelo primeiro par canônico é possível verificar que os caracteres AP, PCE e PCL avaliados aos 12 meses após o plantio podem ser adequados para predizer a produtividade de grãos dos acessos no sexto ano.

Tabela 2. Correlações e cargas nos pares canônicas entre os caracteres avaliados no período juvenil (Grupo I) altura de planta aos 12 (AP12) e 40 (AP40) MAP, projeção da copa na linha aos 12 (PCL12) e 40 (PCL40) MAP, projeção da copa na entrelinha aos 12 (PCE12) e 40 (PCE40) MAP e número de ramificações aos 40 (NR40) MAP e os caracteres produtividade no sexto (PROD6) e sétimo (PROD7) ano após o plantio (Grupo II).

Caráter —	1°	2°
	Grupo I: caracteres juvenis	
AP12	0,6770	-0,4656
PCE12	0,7238	0,1460
PCL12	0,7456	0,0741
AP40	-0,1205	0,3459
NR40	0,7158	-0,3750
PCE40	0,5619	0,7574
PCL40	0,8221	0,3416
	Grupo II: caracteres produtivos	
PROD6	0,9817	-0,1904
PROD7	-0,0845	0,9964
r	0,6358	0,2281
p-valor	0,01545	0,7755

Tendo em vista que o pinhão-manso é uma cultura perene e que são necessárias várias avaliações (medições) para prever com acurácia a superioridade dos genótipos, essas informações são relevantes para os programas de melhoramento genético, pois possibilitam estabelecer critérios para realizar a seleção nas fases precoces.

A falta de significância para o segundo par canônico possivelmente ocorreu devido às variações que ocorrem na produtividade de grãos nos diferentes anos, ou seja, devido à magnitude da interação genótipos x medições.

4 – Conclusões

A seleção de genótipos com maior porte e maior volume durante o período juvenil promove aumento da produtividade de grãos em pinhão-manso.

5 – Agradecimentos

Embrapa, CNPq, Capes e Finep.

6 - Bibliografia

- ¹ Cruz, C. D. GENES a software package for analysis in experimental statistics and quantitative genetics. *Acta Scientiarum Agronomy* **2013**, 35, 271-276.
- ² Cruz, C. D.; Regazzi, A. J.; Carneiro, P. C. S. Modelos biométricos aplicados ao melhoramento genético. Editora UFV: Viçosa (2004).
- ³ Dias, L. A. S.; Leme, L. P.; Laviola, B. G.; Pallini Filho, A.; Pereira, O. L.; Carvalho, M.; Manfio, C.E.; Santos, A. S.; Sousa, L.C.A.; Oliveira, T.S.; Dias, D.C.F.S. *Cultivo de pinhão manso (Jatropha curcas)*. Viçosa: UFV, 2007. 40p.
 ⁴ Laviola, B. G.; Silva, S. D. A.; Juhász, A. C. P.; Rocha, R. B.; Oliveira, R. J. B.; Albrecht, J. C.; Alves, A. A.; Rosado, T. B. Desempenho agronômico e ganho genético pela seleção de pinhão-manso em três regiões do Brasil. *Pesquisa Agropecuária Brasileira* 2014, 49, 356-363.