Manejo da adubação potássica de cobertura no sorgo biomassa

Guilherme Moura Ferreira Júlio¹, Flávia Cristina dos Santos², Alexandre Martins Abdão dos Passos², Manoel Ricardo de Albuquerque Filho², Maria Lúcia Ferreira Simeone²

¹ Estudante do Curso de Agronomia da Univ. Fed. de São João del-Rei, Bolsista PIBIC (ou BIC JR) do Convênio Fapemig/CNPq/Embrapa/ FAPED, guilhermemoura15@hotmail.com

Introdução

A demanda mundial por energia e combustíveis renováveis tem crescido de forma acentuada, e atualmente, se tornou uma das maneiras mais eficientes para alcançar o desenvolvimento sustentável (GOLDEMBERG, 2007; PARRELLA, 2009). As vantagens do uso de combustíveis renováveis são a redução do volume de emissões de gases do efeito estufa, menor custo, redução das incertezas a respeito da disponibilidade futura de recursos não renováveis e diminuição das tensões geopolíticas em regiões produtoras do combustível fóssil, entre outras (PARRELLA, 2009).

Neste sentido, a utilização da biomassa é uma opção natural e viável para a sociedade. Dessa forma, o Centro Nacional de Pesquisa em Milho e Sorgo, uma Unidade da Embrapa localizada em Sete Lagoas, MG, vem trabalhando na obtenção de híbridos de sorgo biomassa para a geração de energia, muitos destes trabalhos desenvolvidos em parceria com a iniciativa privada.

O sorgo biomassa [Sorghum bicolor (L) Moench] apresenta-se como uma interessante matéria prima para produção de bioenergia por sua versatilidade, por sua maior tolerância ao déficit hídrico, quando comparado ao milho, por apresentar menor incidência de pragas e por apresentar altas produtividades para fins energéticos, com relatos de produtividade de mais de 100 t ha⁻¹ de matéria verde (VINUTHA et al., 2014).

Entretanto, muitas vezes estas características mais rústicas do sorgo favorecem seu cultivo em áreas marginais, ou muitas vezes o manejo da adubação é negligenciado. Desta forma, pesquisas que contemplem o manejo do sorgo podem trazer uma importante contribuição ao setor produtivo, sabendo-se que o mesmo responde à adubação (Resende et al., 2009) e que a exploração para fins de produção de biomassa propicia uma elevada exportação de nutrientes do solo, uma vez que toda planta é colhida.

Diante do exposto, o objetivo desse trabalho foi avaliar o manejo da adubação potássica de cobertura no sorgo biomassa.

Material e Métodos

Foi conduzido experimento no ano de 2016, em área experimental da Embrapa Milho e Sorgo, em Sete Lagoas, MG, sob irrigação. O experimento foi instalado em Latossolo Vermelho distroférrico típico, com as seguintes características químicas e físicas antes da instalação da pesquisa (camada 0-20 cm): pH $H_2O = 5.4$; Al = 0.07; Ca = 4.4; Mg = 1.1; T = 12.2 (cmol_c dm⁻¹)

² Pesquisador da Embrapa Milho e Sorgo, flavia.santos@embrapa.br, alexandre.abdao@embrapa.br, manoel.ricardo@embrapa.br, marialucia.simeone@embrapa.br

 3); P = 5,5; K = 31,8 (mg dm $^{-3}$); V = 45,4 %; teor de matéria orgânica e argila = 3,9 e 76,0 (dag kg $^{-1}$), respectivamente.

O delineamento experimental utilizado foi em blocos casualizados, com quatro repetições. Os tratamentos consistiram de três doses de K₂O (80, 160, 240 kg ha⁻¹) em cobertura, fonte cloreto de potássio, aplicadas em dose única no estádio de desenvolvimento V3, ou dose única aplicada em V5, e doses parceladas, aplicadas metade em V3 e a outra metade em V5, mais o tratamento adicional, sem aplicação de K, totalizando 10 tratamentos.

O genótipo de sorgo utilizado para o experimento foi o híbrido BRS 716, sensível ao fotoperíodo com alto potencial produtivo, ciclo de seis meses, cultivado com um estande de 110.000 plantas por hectare. O plantio foi realizado em 02/02/2016, com adubação no sulco de semeadura de 400 kg ha⁻¹ do formulado 08-28-16 + 50 kg ha⁻¹ de FTE BR12. Em cobertura foram aplicadas as doses de K₂O conforme tratamentos propostos (estádios V3 e/ou V5) e em V3 foram aplicados 160 kg ha⁻¹ de N, fonte ureia. Os adubos foram aplicados em linha à distância de 20 cm da fileira das plantas.

As parcelas foram constituídas por quatro linhas de cinco metros de comprimento e espaçadas de 0,7 m. A parcela útil foi composta pelas duas linhas centrais de três metros de comprimento, eliminando-se um metro de bordadura em cada extremidade.

Na maturação das plantas, no dia 14/06/2016 foi realizada a medição da altura das plantas (medida da superfície do solo até a ponta da panícula de 5 plantas da parcela útil), a medição do diâmetro do colmo (medição com paquímetro do diâmetro do colmo na altura do peito de 5 plantas da parcela útil) e realizada a colheita das plantas, com pesagem da matéria verde por parcela (coleta de todas as plantas da parcela útil) e transformação do peso da parcela útil para toneladas por hectare.

Os dados foram submetidos à análise de variância (p<0,05), e quando os fatores apresentaram significância as médias foram analisadas pelo teste Tukey (p< 0,05) para comparação dos tratamentos nas formas de aplicação em cobertura do K. O programa estatístico utilizado foi o Sisvar.

Resultados e Discussão

Os resultados do resumo da análise de variância apresentados na tabela 1 mostram que, em relação aos tratamentos propostos, houve efeito apenas da forma de aplicação da adubação de cobertura com K para o diâmetro do caule.

Tabela 1. Significância da análise de variância para altura de plantas (Alt), diâmetro do caule (Diam) e produtividade de massa verde (MV) do sorgo biomassa.

FV	GL	Alt	Diam	MV
Tratamentos	9	ns	*	ns
Fatorial	8			
Forma (F)	2	ns	***	ns
Dose (D)	2	ns	ns	ns
F x D	4	ns	ns	ns
Fatorial x adicional	1	ns	ns	ns
Bloco	3			
Erro	27			
Total	39			

^{***, *} e ns - significativo a 0,1 e 5 % de probabilidade e não significativo, respectivamente.

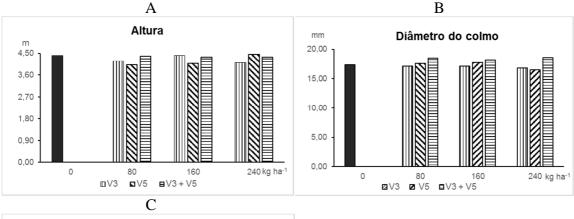

Os resultados da análise do efeito simples pelo teste de Tukey são apresentados na tabela 2 e mostram que, em relação as formas de aplicação do potássio quando este foi aplicado parcelado na cobertura metade em V3 e outra metade em V5 o diâmetro do colmo foi maior que a adubação em doses únicas e que o tratamento testemunha.

Tabela 2 – Efeito simples das formas de aplicação de potássio em sorgo biomassa.

Formas	AP	MV	Diâmetro	
V3	4,23	42,77	17,00	В
V5	4,18	40,53	17,24	В
V3 + V5	4,35	44,08	18,40	A
Médias	4,26	42,46	17,55	
Test	4,41	38,22	17,30	

As médias seguidas de mesma letra na mesma coluna, não se diferem entre si pelo teste de Tukey (<0,05).

Este resultado pode ser importante no sentido de se evitar o acamamento, de acordo com resultados de Andreotti et al. (2001) (milho) e Uchôa et al. (2011) (girassol), ou quebra das plantas de sorgo, uma vez que estas podem atingir alturas bem elevadas, conforme pode-se verificar nos resultados apresentados na figura 1 A (valor máximo de 4,7 m), e dados de outros trabalhos que mostram que as plantas de sorgo podem atingir quase 6 m de altura (PARRELLA et al., 2011).

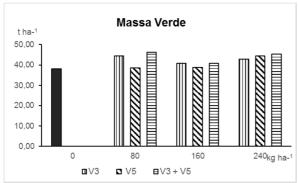


Figura 1. Altura de planta (A), diâmetro do colmo (B) e produtividade de massa verde (C) em função das doses e formas de aplicação de K em cobertura no sorgo biomassa.

O teor de K no solo é classificado como médio (VILELA et al., 2004) e, desta forma, seria bem provável obter resposta em produtividade de massa verde às doses de K aplicadas, o que não ocorreu; bem como não houve diferença na produtividade de massa verde entre a testemunha, sem aplicação de cobertura com K, e os tratamentos do fatorial. Contudo, é

comum verificar falta de resposta à adubação potássica em solos com média a baixa disponibilidade desse nutriente. Explicações para esse fato estão relacionadas com o aproveitamento do K não-trocável pelas plantas (MELO et al., 2005).

Além disso, a falta de resposta em produtividade de massa verde, principalmente em relação às doses de K aplicadas, pode ser explicada pelos seus baixos valores obtidos (média de todos os tratamentos de 42 t ha⁻¹ e valor máximo atingido de 57 t ha⁻¹), sendo que outros resultados de produtividade de massa verde de híbridos de sorgo biomassa, cultivados em Sete Lagoas, ultrapassaram o valor de 100 t ha⁻¹ (Pereira et al., 2012); e Castro (2014) em cultivo do sorgo BRS 716 em Lavras obteve produtividade de 97,6 t ha⁻¹. No entanto, este mesmo autor em cultivo do mesmo material em Sete Lagoas, atingiu produtividade de massa verde muito similar à deste trabalho, com valor de 44,7 t ha⁻¹. Essa baixa produtividade de massa verde, em relação a outros cultivos e ao de Lavras, pode ser justificada pelo plantio tardio, devido questões ambientais e operacionais que envolveram este trabalho, pois resultados de pesquisas mostram que a época mais indicada para o plantio do sorgo biomassa é de setembro a outubro, quando o sorgo tem condições de permanecer mais tempo na fase vegetativa e acumulando massa verde, uma vez que este é sensível ao fotoperíodo (PARRELLA et al., 2010). Como no trabalho de Castro (2014) o sorgo cultivado em Sete Lagoas foi semeado em novembro de 2013, mesma data do plantio de Lavras, outros fatores de produção podem ter atuado na resposta da planta em produtividade.

Conclusão

Nas condições avaliadas e para as produtividades de massa verde obtidas, não é necessário adubar o sorgo biomassa com o potássio.

Quando houver necessidade de adubação, esta pode ser realizada em dose única no estádio V3.

Agradecimentos

À Finep-Pluricana pelo financiamento das pesquisas.

Referências

ANDREOTTI, M.; RODRIGUES, J. D.; CRUSCIOL, C. A. C.; SOUZA, E. C. A.; BULL, L. T. Crescimento do milho em função da saturação por bases e da adubação potássica. **Scientia Agricola**, Piracicaba, v. 58, n. 1, p. 145-150, jan./mar. 2001.

CAMACHO, R.; MALAVOLTA, E.; GUEIREIRO-ALVES, J.; CAMACHO, T. Vegetative growth of grain sorghum in response to phosphorus nutrition. **Scientia Agricola**, Piracicaba, v. 59, n. 4, p. 771-776, 2002.

CASTRO, F. M. R. **Potencial agronômico e energético de híbridos de sorgo biomassa**. 2014. 84 f. Dissertação (Pós Graduação) - Universidade Federal de Lavras, Lavras.

- GOLDEMBERG, J. Ethanol for a sustainable energy Future. **Science**, Washington, v. 315, n. 5813, p. 808-810, 2007.
- MELO, V. F.; CORRÊA, G. F.; RIBEIRO, A. N.; MASCHIO, P. A. Cinética de liberação de potássio e magnésio pelos minerais da fração areia de solos do Triângulo Mineiro. **Revista Brasileira de Ciências do Solo**, Campinas, v.29, p. 533-545, 2005.
- PARRELA, R. A. C. Sorgo sacarino desponta como alternativa promissora na produção de etanol. **Jornal Eletrônico da Embrapa Milho e Sorgo**, Sete Lagoas, ano 3, n. 14, 2009.
- PARRELLA, R. A. C.; RODRIGUES, J. A. S.; TARDIN, F. D.; DAMASCENO, C. M. B.; SCHAFFERT, R. E. **Desenvolvimento de híbridos de sorgo sensíveis ao fotoperíodo visando alta produtividade de biomassa**. Sete Lagoas: Embrapa Milho e Sorgo, 2010. 25 p. (Embrapa Milho e Sorgo. Boletim de Pesquisa e Desenvolvimento, 28).
- PARRELLA, R. A. C.; SCHAFFERT, R. E.; MAY, A.; EMYGDIO, B.; PORTUGAL, A. F.; DAMASCENO, C. M. B.. **Desempenho agronômico de híbridos de sorgo biomassa**. Sete Lagoas: Embrapa Milho e Sorgo, 2011. 19 p. (Embrapa Milho e Sorgo. Boletim de Pesquisa e Desenvolvimento, 41).
- PEREIRA, G. de A.; PARRELLA, R. A. da C.; PARRELLA, N. N. N. L. D.; SOUSA, V. F.; SCHAFFERT, R. E.; COSTA, R. K. Desempenho agronômico de híbridos de sorgo biomassa. In: CONGRESSO NACIONAL DE MILHO E SORGO, 29. 2012, Águas de Lindóia. **Diversidade e inovações na era dos transgênicos**: resumos expandidos. Campinas: Instituto Agronômico; Sete Lagoas: Associação Brasileira de Milho e Sorgo, 2012. p. 82-88.
- RESENDE, A. V. de; COELHO, A. M.; RODRIGUES, J. A. S.; SANTOS, F. C. Adubação maximiza o potencial produtivo do sorgo. 2009. 8p. (Embrapa Milho e Sorgo. Circular técnica 119).
- UCHÔA, S. C. P.; IVANOFF, M. E. A.; ALVES, J. M. A.; SEDIYAMA, T.; MARTINS, S. A. Adubação de potássio em cobertura nos componentes de produção de cultivares de girassol. **Revista Ciência Agronômica**, Fortaleza, v. 42, n. 1, p. 8-15, 2011.
- VILELA, L.; SOUSA, D. M. G.; SILVA, J. E. Adubação potássica. In: SOUSA, D. M. G.; LOBATO, L. (Ed,). **Cerrado**: correção do solo e adubação. Brasília: Embrapa Informação Tecnológica, 2004. p. 169-183.
- VINUTHA, K. S.; RAYAPRLU L.; YADAGIRI, K.; UMAKANTH, A. V.; PATIL, J. V.; RAO, P.S. Sweet sorghum research and development in India: status and prospects. **Sugar Technology**, v. 16, n. 2, p. 133-143, 2014.