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Arbuscular mycorrhizal fungi (AMF) play a key role in the maintenance of the balance of terrestrial
ecosystems, but little is known about the biogeography of these fungi, especially on tropical islands. This
study aims to compare AMF community structure along a transect crossing a fluvial-marine island and
relate these communities with soil and vegetation parameters to shed light on the forces driving AMF
community structure on a local scale. We tested the hypothesis that the composition of AMF commu-
nities changes across the island, even within short distances among sites, in response to differences in
edaphic characteristics and vegetation physiognomies. We sampled roots and soils in five different
natural and degraded habitats: preserved mangrove forest (MF), degraded mangrove forest (MD), natural
Restinga forest (RF), and two regeneration Restinga forests (RR1 and RR2) on Ilha da Restinga, north-
eastern Brazil. We determined the mycorrhizal colonization rate and AMF community structure based on
morphological spore identification. The island soils were sandy with pH varying from acid to neutral;
higher levels of organic matter were registered in RF and lower in MF; other chemical and physical soil
attributes differed along the habitat types on the island. In total, 22 AMF species were identified, without
any difference in species richness. However, the diversity and composition of AMF communities, spore
abundance per families, and mycorrhizal colonization were statistically different among the habitats. The
composition of AMF communities was strongly related to soil characteristics, especially the sum of
exchangeable bases. Our results indicate that the different habitat types have diverse AMF communities
even within short distances among habitats. In conclusion, islands with high spatial heterogeneity in soil
parameters and diverse vegetation are potential refuges for the diversity conservation of AM fungi.

© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Several factors may affect species community structure and
distribution along spatial and temporal scales (Gotelli and Graves,
1996; Chase, 2003). On a local scale, environmental heterogene-
ity, abiotic, edaphic and micro-climatic factors are responsible for
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the maintenance of biological communities, while at larger scales,
the historical-geological processes and regional climatic conditions
are the main factors affecting community structure and influencing
speciation, colonization and extinction of species (Buckley and Jetz,
2007; Dobrovolski et al., 2012).

Islands have been considered key environments to perform
studies on ecological and evolutionary aspects of species. Terres-
trial (or continental) islands are separated from the mainland en-
vironments by geographic barriers, decreasing accessibility and
connection between island and mainland biological communities
(MacArthur and Wilson, 1967; Walter, 2004). These islands
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sometimes have connections to the mainland, which contribute to
sharing species between these environments; however, the species
richness in islands is lower due to less diversity of niches, which can
influence the establishment of some taxa (Triantis et al., 2012).

Arbuscular mycorrhizal fungi (AMF), ubiquitous mutualists of
terrestrial plants, promote several benefits and ecosystem services
that aid to maintain ecosystem balance, contributing to edaphic
quality and providing nutritional and non-nutritional benefits to
plant communities (Smith and Read, 2008; Gianinazzi et al., 2010).
AMF also contribute to the maintenance of plant diversity, partic-
ipate in successional ecological processes and promote plant
colonization in different habitats including island environments
(Allen and Allen, 1988; Koske and Gemma, 1990; Francis and Read,
1994),

Traditionally, AMF taxa have been identified based on spores
morphology extracted directly from field samples. However,
considering that sporulation is a part of AMF life-cycle, the estab-
lishment of trap cultures represents a strategy to recover spores
from previously undetected taxa as well as to obtain healthy spores
which can contribute to species identification (Morton et al., 1993;
Douds and Millner, 1999).

Regarding ecological aspects of these microorganisms, some
studies have indicated that AMF are influenced by the host plant
(Kawahara and Ezawa, 2013; Pagano et al., 2013; Soteras et al.,
2016) and abiotic characteristics, such as soil attributes and cli-
matic factors (Bennett et al., 2013; Hazard et al., 2013; Pellissier
et al., 2014). However, there is no consistent conclusion about
factors shaping AMF communities (Xu et al., 2016), mainly because
more information on distribution and diversity of these fungi is still
needed.

Only a few studies on AMF diversity have been carried out in
island environments and those have mainly been performed in
large environments, for instance, in the Galapagos (Schmidt and
Scow, 1986), Hawaii (Koske, 1988; Koske and Gemma, 1995,
1996a), and Great Nicobar, India (Kothamasi et al., 2006). In
Brazil, research of this type has only been performed in two sites:
Ilha do Cardoso, in the Southeast (Trufem et al., 1989, 1994; Trufem,
1990) and the island of Santa Catarina, in the South region (Stiirmer
and Bellei, 1994; Stiirmer et al., 2013). Thus, information on AMF
occurrence and distribution collected in other island environments
can contribute to broaden knowledge about the biogeographical
and ecological patterns of these fungi, especially in poorly studied
environments such as tropical areas (Rodriguez-Echeverria et al.,
2017).

This study aims to determine mycorrhizal colonization and to
compare the AM fungi community structure along a transect
crossing a fluvial-marine island, characterized by different envi-
ronments in an area of only 530 ha, and relate the data to vegeta-
tion types and soil parameters to shed light on the forces driving
AMF community structure. Considering that plant hosts and envi-
ronmental factors are important drivers of AMF communities on a
local scale (Li et al., 2010; Kawahara and Ezawa, 2013; Silva et al.,
2015a), we tested the hypothesis that AMF community composi-
tion changes across the island, even within short distances among
sites, in response to differences in the edaphic characteristics and
vegetation physiognomies, with AMF community composition be-
ing more strongly determined by soil characteristics than by
physiognomic conditions.

2. Material and methods
2.1. Study area

The study was performed on the Ilha da Restinga (‘Restinga Is-
land’, 07°0'10.60”S and 34°51'32.01”"W), located at the mouth of the

Northern Paraiba River, in the municipality of Cabedelo, Paraiba,
northeastern Brazil. With 530 ha and a relatively flat topography,
ranging from O to 11 m above sea level, the island is part of the
Atlantic Forest domain and the vegetation consists primarily of
mangroves in flooded regions and sandbank woods, estuaries and
lagoons (Farias, 1980). The formation of the island occurred through
soil accumulation brought by the Paraiba River (Oliveira, 2012). The
average annual temperature is 25 °C, the climate is As' - tropical hot
and wet, according to the Koppen classification, and the average
annual precipitation is 1764 mm (Alves, 2011).

A transect of approximately 1500 m was established across the
island in the east-west direction, due to the impossibility to
establishing north-south transect, because the island has lagoons
and Atlantic Forest areas (Alves, 2011). At approximately every
350 m, we established a sampling area, which corresponded to a
distinct vegetation type (Fig. 1 - Google Earth, 2016).

The transect went across the following habitats: 1 —a mangrove
forest (MF; 07°0’'15.66"S; 34°51'50.49"W; 5 m asl) representing a
conserved mangrove forest area located in the west side of the is-
land, which is frequently flooded; 2 — a regeneration Restinga forest
1 (RR1; 07°0'14.99”S; 34°51’40.93"W; 8 m asl), a Restinga forest
area which was devastated and is currently still under a recover
process; 3 — a natural Restinga forest (RF; 7° 010.60"S;
34°51/32.01”"W; 8 m asl); 4 — a second regeneration Restinga forest
2 (RR2; 07°0'9.19”S; 34°51'19.30"W; 10 m asl), which was also
devastated and is currently in a recovering process; 5 — a degraded
mangrove forest (MD; 07°0'14.30”S; 34°51'2.35"W; 5 m asl),
characterized by a mangrove area degraded for two years and
currently presenting some exotic plant species. More information
about the habitats can be found in Guedes (2002) and Alves (2011).

2.2. Soil and roots samplings

Soil and root sampling was conducted in August 2011 (end of
wet season). We delimited three plots of approximately 3 m? at
each habitat. In each plot, two subsamples were collected to form a
composite sample, totaling three composite samples per habitat
type. Each composite sample (about 3 kg) was placed in plastic bags
and transported to the laboratories of the Department of Mycology
(UFPE). About 300 g of soil were used to determine the soil
chemical and physical attributes, 2 kg of soil were used to set up
AMF trap cultures, and 100 g of soil were used for AMF spore
extraction for morphological species identification. Samples of field
roots were used to determine rates of mycorrhizal colonization.

2.3. Soil attributes

Three soil samples of each habitat type were used to determine
the physical and chemical attributes of the soil. The analyses were
performed at the “Estacao Experimental de Cana-de-agiicar da
Universidade Federal Rural de Pernambuco” in Carpina,
Pernambuco.

The chemical attributes were evaluated following the methods
described in Silva et al. (1999): the pH was measured in water
(1:2.5; weight:volume); Ca?* and Mg?* were extracted with 1 M
KCl and quantified by atomic absorption; K*, Na*, P, Cu, Zn and Mn
were extracted using Mehlich 1 reagent (0,05 of HCl + 0,0125 of
H,S04), for the analysis of Cu, Zn, Mn and Fe a soil:reagent pro-
portion of 1:5 was used, while for macronutrients a proportion of
1:10 was used. K* and Na were determined by flame photometry, P
by colorimetry, and Cu, Zn, Mn and Fe by atomic absorption spec-
trophotometry; organic carbon was evaluated by oxidation in po-
tassium dichromate and titration of the excess potassium
dichromate by ferrous ammonium sulfate; H* and AI’* were
determined by the calcium acetate method and alkaline titration;
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SB is the sum of bases (Na*, K*, Ca®* and Mg®*); CEC is the cation
exchange capacity (SB + potential acidity H + Al); V is the base
saturation (percentage of SB/CEC); m% is the percentage of
aluminum saturation. The physical attributes (coarse sand, fine
sand, silt and clay) were determined by the pipette method
(EMBRAPA, 1997).

2.4. Mycorrhizal colonization rate

Fine roots were separated from the soil samples to estimate root
colonization by AMF. The roots were washed in tap water, clarified
with KOH (10%) and stained with Trypan blue (0.05%; Phillips and
Hayman, 1970). Samples with highly pigmented roots were
treated with H,0, for 10 min before staining.

The mycorrhizal colonization rate was assessed using the
magnified gridline intersection method (McGonigle et al., 1990 —
modified) considering 250 intersections per sample to estimate the
percentage of root length colonized by AMF. An intersection was
considered colonized if intraradical hyphae, arbuscules, vesicles
and/or spores were present. Many studies that have analyzed
mycorrhizal colonization have not reported the presence of spores
inside roots; however, in this study, we also considered these
propagules since some AMF species sporulate within roots
(Mergulhao et al., 2014; Sieverding et al., 2014).

2.5. Trap cultures

Trap cultures were prepared with 2 kg of soil samples from the
field (three pots for each habitat type), using maize (Zea mays L.) as
a host, due to its wide-ranging association with AMF and the

production of large root biomass, and maintained in the green-
house of the Department of Mycology (UFPE). These cultures were
watered every other day and fertilized every fortnight with Hoag-
land solution (Hoagland and Arnon, 1950), as modified by Jarstfer
and Sylvia (1992). At the end of the vegetative cycle (eight
months), the plants were subjected to water stress during two
weeks to favor sporulation of the fungi, and soil samples were
collected for spore extraction and AMF species identification.

2.6. Glomerospore and sporocarp extraction, quantification and
AMF species identification

Glomerospores and sporocarps were extracted from 100 g of soil
samples by wet sieving (Gerdemann and Nicolson, 1963), and water
and sucrose centrifugation (50%) (Jenkins, 1964 — modified), using
sieves with openings of 850 pm and 45 pm. Glomerospores and
sporocarps were quantified with the aid of a stereomicroscope
(40x); sporocarps were counted as one unit. After quantification,
the spores and sporocarps were separated according to spore size
and color and mounted on glass slides using polyvinyl alcohol
lactoglycerol (PVLG) and PVLG + Melzer's reagent for subsequent
species identification based on spore morphology using identifi-
cation manuals (e.g. Btaszkowski, 2012) and the most recent liter-
ature, following the classification proposed by Oehl et al. (2011) and
updates (Goto et al., 2012).

2.7. Ecological and statistical analysis

We calculated spore abundance (N), AMF species richness (S),
and the Shannon-Wiener diversity index (H') for all samples.

'.Google Earth

Fig. 1. Map of the habitats studied across Ilha da Restinga (MF - Mangrove forest, RR1 - regeneration Restinga forest 1, RF - Restinga forest, RR2—regeneration Restinga forest 2, and

MD - degraded mangrove forest), northeastern Brazil. Google Earth (2016).
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Relative abundance of AMF spores per family was determined for
each habitat. AMF species richness was determined as the number
of species present in each sample and the first-order Jackknife in-
dex (Jackknife 1) was calculated to estimate the number of species.
The Shannon-Wiener diversity index (H') was calculated based on
the equation H’ = ->"(Pi In (Pi)), where Pi = ni/N, ni = number of
individuals of the species i, N = total number of individuals of all
species (Shannon and Weaver, 1949). For statistical purposes, the
values of H’ were converted into Exp (H’).

Permutation multivariate analysis of variance (PERMANOVA),
using Euclidean distance, was applied to test whether soil
composition differs along the habitat types on the island. Before
analysis, the data were relativized in the column to eliminate dif-
ferences among measured units of each edaphic attribute.

The multivariate analysis of AMF communities was performed
using the relative abundance of AMF species. To investigate
whether the habitat types of the island harbor distinct AMF com-
munities, PERMANOVA analysis was applied using Bray-Curtis
distance. Canonical correspondence analysis (CCA) was performed
to test whether there is a relationship between the AMF commu-
nity composition and soil variables. In addition to CCA, BIO-ENV
was applied to investigate the relationship of the AMF commu-
nity composition with soil parameters, and select which soil attri-
butes have maximum correlation with the dissimilarities of the
AMF communities (Clarke and Ainsworth, 1993).

Indicator species analysis (Dufréne and Legendre, 1997) was
performed to detect possible AMF species/habitat and AMF family/
habitat relationships. Indication values (IndVal) were calculated for
each species and the significance determined by the Monte Carlo
test; a species was considered an indicator for a habitat type when
it presented p < 0.05 and IndVal >25%.

Data of soil attributes, mycorrhizal colonization rates (total,
arbuscules, vesicles, hyphae and spores), AMF species richness,
spore abundance and diversity indices (Shannon-Wiener) of each
sample over the five habitats along the transect were subjected to
analysis of variance (ANOVA) followed by means of comparisons,
when appropriate, using the Tukey test at 5% probability. We
assessed relationships between soil variables and AMF data by
calculating the Pearson's correlation coefficients. The univariate
analyses (ANOVA) were performed using the Assistat software
(Silva, 2014). Calculations of ecological indexes, species accumula-
tion curves and BIO-ENV were determined with the aid of Primer
6.0 program (Clarke and Gorley, 2006). Indicator species analysis,
CCA and PERMANOVA were performed using the PC-ORD 6.0 pro-
gram (McCune and Mefford, 2011).

3. Results
3.1. Pedological attributes

The chemical characteristics of the soil differed significantly
among the different habitats, especially between the natural Rest-
inga (e.g. pH 4.0 and 47 g kg~ ! soil organic matter) and the natural
mangrove forest (e.g. pH 7.0 and 3 g kg~' soil organic matter)
(Table 1). The sandy soils differ to a lesser degree in terms of soil
texture, with clay content ranging from 2 to 6% and <1% silt. Based
on PERMANOVA analyses, soil composition differed among all
sampled habitats (F = 23.65; P < 0.001). The sum of exchangeable
bases, as well as sodium, copper and iron concentrations were
higher in MF. The highest organic matter, Al-values, CTC were
registered in RF, which represents the most developed soil of all five
habitats. In general, the soils were eutric, but RF and RR2 were
dystric (V%<50%). The phosphorus content was low (<10 mg dm?)
in all sampled habitats.

3.2. AMF root colonization

The AM root colonization differed in the collected root frag-
ments from 1% in MF to 74% in RF (Table 2). The percentage of
intraradical hyphae also differed greatly among the five habitats
and was also highest in RF (63%), while it was only 2% in MF
(Table 2). There was a significant difference also in vesicle forma-
tion, which was not detected in roots from MF, but in the other
habitats it ranged from 4 to 11% (Table 2). Arbuscule formation was,
as expected for field soil collected roots, generally low, and was
higher in MD (6%), while it was 0—1% in the other habitats (Table 2).
Intraradical spores were also found in the roots, with the exception
of those collected from MD (Table 2).

There were positive correlations between percentage of arbus-
cules and Zn content (r = 0.85, P<0.01), H" (r = 0.58, P < 0.05), and
CEC (r = 0.55, P < 0.05); percentage of vesicles and carbon content
(r = 0.54, P < 0.05), and organic matter (OM) (r = 0.54, P < 0.05),
and between the total colonization with carbon content (r = 0.64,
P < 0.01) and OM (r = 0.64, P < 0.01). Negative correlations were
registered between the percentage of hyphae and availability of soil
Fe (r = —0.54, P < 0.05), Cu (r = —0.54, P < 0.05), Ca (r = —-0.57,
P < 0.05), base saturation (r = —0.61, P < 0.05), silt content
(r=-0.54,P < 0.05), and pH (r = —0.56, P < 0.05), and between the
total colonization and Fe (r = —0.54, P < 0.05), Cu (r = —0.54,
P < 0.05), Ca (r = —0.53, P < 0.05), and base saturation (r = —0.56,
P < 0.05).

3.3. AMEF species richness

Twenty-two AMF species were identified, belonging to 9
genera: Acaulospora (6 species), Ambispora (1), Cetraspora (2),
Funneliformis (1), Gigaspora (2), Glomus (7), Paradentiscutata (1),
Racocetra (1) and Sclerocystis (1) (Table 3). Three species could not
be identified to the species level: Acaulospora sp. 1, Acaulospora sp.
2, and Glomus sp. all of which might represent new species.

The AMF species accumulation curve did not reach the satura-
tion point (Fig. 2), but at least 75% of the expected species were
identified. Species richness ranged from four to nine species among
the habitats (Table 3). Although richness was not statistically
different among the habitats (Fig. 3a), diversity based in the
Shannon-Wiener index was lower in the MF and RR2 habitats than
in the other three habitats (Fig. 3b). Glomus brohultii was the most
frequent species occurring in all habitat types, followed by Ambis-
pora appendicula which occurred in 4 out of the 5 sampled habitats,
and Acaulospora sp.2, Gigaspora margarita, Racocetra coralloidea,
and Glomus sp.1 (all of which were found in 3/5). Most of the other
species were found in only one of the five habitats: Acaulospora
morrowiae and Sclerocystis sinuosa in MF, Cetraspora gilmorei,
Glomus glomerulatum and Glomus ambisporum in RR1, Acaulospora
foveata and Glomus microcarpum in RF, Acaulospora scrobiculata in
RR2, and Cetraspora pellucida and Gigaspora gigantea in MD
(Table 3).

In general, AMF spore abundance per family differed among
some of the sampled habitats (F = 3.9, P<0.05). The habitats MF and
RR2 did not differ and had the highest numbers of Acaulosporaceae
spores (Fig. 4a), while RF and MD had higher numbers of Giga-
sporaceae spores (Fig. 4b). The other three AMF families (Ambis-
poraceae, Glomeraceae, Intraornatosporaceae, and Racocetraceae)
had similar numbers of spores in the different habitats (data not
shown).

3.4. AMF multiplication in trap cultures

Funneliformis halonatus, Gigaspora margarita and Glomus bro-
hultii were detected in trap cultures from MD and Racocetra
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Table 1

Physical and chemical properties of the soils along five natural and degraded habitats (MF - Mangrove forest, RR1 - Regeneration Restinga forest 1, RF - Restinga forest, RR2 -
Regeneration Restinga forest 2, and MD - Degraded mangrove forest) on Ilha da Restinga, northeastern Brazil.

Attributes Habitats F

MF RR1 RF RR2 MD
pH (H20) 7.00 + 0.1a 6.20 + 0.5 ab 4.00 + 0.1c 4.60 + 0.3c 5.90 + 0.3b 46.5**
Ca®* (cmol. dm—3) 3.30 = 0.0a 213 +03ab 1.63 + 0.6b 2.53 + 0.8 ab 2.10 + 0.0b 6.0*
Mg?* (cmol. dm~3) 047 + 0.3a 0.30 + 0.0a 0.63 + 0.3a 0.30 + 0.0a 043 +0.1a 20"
K* (cmol. dm~3) 0.36 + 0.0a 0.06 + 0.0b 0.09 + 0.0b 0.08 + 0.0b 0.10 + 0.0b 131.8*
Na* (cmol. dm™3) 1.46 + 0.4a 0.15 +0.1b 0.15 + 0.0b 0.06 + 0.0b 0.09 + 0.0b 29.3**
AP* (cmol. dm~3) 0.10 + 0.0b 0.07 + 0.0b 1.53 + 0.4a 0.60 + 0.4b 0.10 + 0.0b 21.5*
P (mg dm3) 8.67 + 1.2a 4.00 + 0.0b 8.00 + 1.0a 5.67 +1.5ab 9.33 +2.5a 6.8"*
C (%) 0.17 £ 0.1d 0.80 + 0.1c 2.73 +0.8a 1.18 + 0.2b 0.76 £ 0.1c 53.3**
OM (%) 0.29 + 0.1c 1.37 £ 0.2b 471 +13a 2.04 + 0.4v 1.30 £ 0.1b 53.8**
CEC (cmol. dm™3) 5.72 + 0.6a 3.63 +0.4a 10.16 + 0.8a 6.75 + 1.0a 14.20 + 17.5a 0.84 ™
SB (cmol. dm~3) 5.58 + 0.6a 2.64 +0.2b 2.50 + 0.3b 2.97 + 0.8b 272 +0.2b 24.1*
Cu (mg dm™3) 033 +0.1a 0.10 + 0.0b 0.00 + 0.0c 0.03 + 0.0bc 0.10 + 0.0b 38.2**
Fe (mg dm™3) 79.80 + 12.0a 24.47 + 2.0b 827 + 2.7¢ 4.53 + 0.5¢ 8.60 + 3.0c 72.1**
Mn (mg dm~3) 557 + 1.3 ab 410+ 1.5 ab 1.70 + 0.9¢ 8.43 + 4.0 ab 8.53 +23a 5.0*
Zn (mg dm—3) 0.97 + 0.2b 1.57 + 0.5 ab 127 +1.0ab 127 £+ 03 ab 3.77 + 2.0a 3.7*
V(%) 9749 + 0.2a 73.03 + 5.0b 24.77 + 3.4d 43.59 + 4.8¢ 47.07 + 6.2b 40.4**
m (%) 0.90 + 0.0b 1.75 £ 0.3b 37.76 + 8.5a 17.37 + 1.3b 1.80 + 0.1b 17.9**
Total sand (%) 97.40 + 0.7a 97.70 + 0.3a 93.50 + 1.3b 96.70 + 0.2a 97.30 + 0.2a 19.7**
Coarse sand (%) 79.85 + 1.4b 87.50 + 2.1a 78.70 + 3.4b 87.20 + 0.5a 84.40 + 0.8 ab 13.7**
Fine sand (%) 17.55 + 1.3a 10.20 + 1.8b 14.80 + 3.0 ab 9.50 + 0.7b 1290 + 1.0 ab 10.7**
Silt (%) 0.00 + 0.0a 0.00 + 0.0a 0.60 + 0.6a 0.00 + 0.0a 0.00 + 0.0a 4.0*
Clay (%) 2.60 + 0.7b 2.30 + 0.3b 5.90 + 0.8a 3.30 + 0.8b 2.70 + 0.2b 24.6**

Average values of three samples. ns: not significant and represented by same letters based on ANOVA and Tukey test at 1% (**) and at 5% (*). CEC: denotes cation exchange

capacity; SB: sum of exchangeable bases; m: aluminum saturation.

Table 2

Arbuscular mycorrhizal fungal colonization rates in plants of the habitats (MF -
Mangrove forest, RR1 - regeneration Restinga forest 1, RF - Restinga forest, RR2 —
regeneration Restinga forest 2, and MD - degraded mangrove forest) on Ilha da
Restinga, northeastern Brazil.

Habitats Mycorrhizal colonization %

Arbuscules Vesicles Hyphae Spores Total
MF 0.0 b 0.00 b 146 c 0.00 b 146 b
RR1 0.0 b 3.60 a 8.54 bc 2.86a 21.60 ab
RF 0.0 b 10.69 a 62.86 a 039a 7393 a
RR2 1.11b 6.71 a 16.11 bc 1.11a 25.05 ab
MD 6.14a 942 a 46.78 b 1.04 a 61.71 ab

% denotes percentage of intraradical arbuscules, vesicles, hyphae, spores, and total
colonization. Means followed by the same letter in the columns do not differ
significantly by the Tukey test at 5% probability.

coralloidea from RF samples, but these species were not registered
previously in the field samples of these habitats. The species rich-
ness from the trap culture analyses was in general lower than or
similar to that found in the field soil samples (Table 3) and did not
differ among the habitats according to the ANOVA and Tukey test.

3.5. AMF community composition in relation to chemical and
physical soil attributes

Positive correlations were registered between relative spore
abundance of Acaulosporaceae and availability of soil Fe (r = 0.84,
P < 0.01), Cu content (r = 0.76, P < 0.01), pH (r = 0.59, P < 0.05),
exchangeable bases (BS) (r = 0.93, P < 0.01), silt (r = 0.55, P < 0.05),
and clay content (r = 0.63, P < 0.05); a negative correlation was
found with OM (r = —0.52, P < 0.05). The relative abundance of
Glomeraceae spores was negatively correlated with Fe (r = —0.60,
P < 0.05) and Cu availability (r = —0.63, P < 0.05), pH (r = —0.60,
P < 0.05), BS (r = —0.68, P < 0.01), and silt content (r = —0.62,
P < 0.05) and positively with Al content (r = 0.56, P < 0.05) and OM
(r = 0.54, P < 0.05). The relative abundance of spores of Intra-
ornatosporaceae was negatively correlated with soil Mn availability

(r = —0.60, P < 0.05) and positively with Al availability (r = 0.59,
P < 0.05) and soil organic matter (r = 0.75, P < 0.01).

There were significant differences in AMF community compo-
sition among the habitats based on the PERMANOVA analyses
(F =5.3; P < 0.001), with the exception of the RR2 habitat, which
had similar composition to the two mangrove forests (MF and MD).
In the CCA analysis a significant correlation between the AMF
community composition and the soil was revealed (P < 0.05); the
physicochemical attributes accounted for 47% of the AMF com-
munity and the variance explained by the two axes was 70% (Fig. 5).

Considering all chemical and physical soil attributes investi-
gated, soil pH, sum of the exchangeable bases (BS), base saturation
(V), fine sand, clay and silt content, and copper and iron availability
had the greatest impact on the AMF community composition in
habitat MF (Fig. 5), while coarse sand was most correlated with RR1,
and the organic matter and available Al with RF (Fig. 5). The results
of the BIO-ENV analysis showed that the sum of the exchangeable
bases (BS) presented a high correlation with the AMF community
composition (r = 0.64).

With the exception of RR2 and MD habitats, all others presented
indicator species: Acaulospora sp. 1 was indicative for MF, Acaulo-
spora sp. 2 for RR1, Acaulospora foveata and Glomus macrocarpum
for RE. When considering the AMF families, Acaulosporaceae was
indicative for MF and Gigasporaceae for the habitat MD (Table 4).

4. Discussion

Despite the short extent of the island (1500 m), AMF commu-
nities changed significantly across the five different habitat types
sampled. As hypothesized, these changes are related to environ-
mental characteristics, principally of soil and vegetation types.

Dunes and Restinga soils are very sandy and characterized by
low nutrient availability, especially P and K (Btaszkowski and
Czerniawska, 2011; Silva et al., 2015a). Considering that low soil
fertility is one limiting factor for the establishment and mainte-
nance of species-rich vegetation, the association between coastal
plants and AM fungi is an important ecological strategy for both
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Table 3
AM fungi in five island habitats (MF - Mangrove forest, RR1 - regeneration Restinga forest 1, RF - Restinga forest, RR2 — regeneration Restinga forest 2, and MD - degraded
mangrove forest) identified from field soil samples and from AMF trap cultures.

Field Trap cultures

MF RR1 RF RR2 MD MF RR1 RF RR2 MD

Glomeromycetes
Diversisporales
Acaulosporaceae
Acaulospora foveata X
A. mellea X X
A. morrowiae X
A. scrobiculata X
Acaulospora sp.1 X
Acaulospora sp.2 X X X
Gigasporales
Gigasporaceae
Gigaspora gigantea X
G. margarita X X X
Intraornatosporaceae
Paradenstiscutata maritima X X
Racocetraceae
Cetraspora gilmorei X
C. pellucida X
Racocetra coralloidea X X X
R. tropicana X X
Glomerales
Glomeraceae
Funneliformis halonatus X X
Glomus ambisporum X
Glomus brohultii X X X X X X
G. glomerulatum X X
G. macrocarpum X X
G. microcarpum. X
Glomus sp.1 X X X
Sclerocystis sinuosa X
Archaeosporomycetes
Archaeosporales
Ambisporaceae
Ambispora appendicula X X X X X

x
x
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w Jacknife1
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104+
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Fig. 2. Accumulation curve of AMF species (Sobs) and estimated richness based on the first-order Jackknife index (Jackknife 1) on Ilha da Restinga, northeastern Brazil.
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Fig. 3. Richness (a) and diversity (b) of AMF species along five natural and degraded habitats (MF - Mangrove forest, RR1 - regeneration Restinga forest 1, RF - Restinga forest, RR2 -
regeneration Restinga forest 2, and MD - degraded mangrove forest) on Ilha da Restinga, northeastern Brazil.
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Fig. 4. Relative abundance of Acaulosporaceae (a) and (b) Gigasporaceae along five natural and degraded habitats (MF - Mangrove forest, RR1 - regeneration Restinga forest 1, RF -
Restinga forest, RR2 - regeneration Restinga forest 2, and MD - degraded mangrove forest) on Ilha da Restinga, northeastern Brazil.

fungi and plants to overcome such extreme growing conditions
(Willis and Yemm, 1961; Maun, 2009).

Root samples from the Restinga forest (RF) have the highest total
AMF and AM hyphal colonization rates, while root samples from
the other habitats showed a range of variation. The roots from the
mangrove forest (MF) were almost free of AMF colonization,
probably due to the anoxic condition of the soil. The degraded
habitat types had intermediate values. This is the first study to
include intra-radical spores as part of the quantification of mycor-
rhizal root structures. Although spores have been recognized as
important propagules for the survival of AM fungi (Smith and Read,
2008) and many species regularly form spores inside roots
(Mergulhao et al., 2014; Sieverding et al., 2014), they have usually
not been considered or have been quantified erroneously as vesi-
cles (Giovanetti and Mosse, 1980; McGonigle et al., 1990).

The number, intensity and structures of AMF colonization (hy-
phae, arbuscules or vesicles) can differ due to changes of the AMF
community composition (Hart and Reader, 2002), as observed in
our study. Differences in colonization rates are often related to
other parameters such as the number of propagules (inoculum
density), root growth, genetic compatibility between AMF and host
plants, edaphic attributes and microbial activity (Camargo-Ricalde,
2002; Zangaro et al., 2013). In this study we found a correlation
among mycorrhizal colonization and most chemical soil attributes.

The AMF species richness was rather low in our study, when
compared to other coastal ecosystems in northeastern Brazil (e.g.
Souza et al., 2011; Silva et al., 2015a, b). However, AMF species
richness on islands has generally been considered relatively low in
comparison with mainland habitats, due to difficulties for dispersal
of AMF propagules (Koske, 1988). The AMF are obligatory bio-
trophic and in order to colonize, establish and maintain themselves
in a new ecosystem, propagules need not only to arrive at the new
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Fig. 5. Canonical correspondence analysis (CCA) of the relationship between AMF
species and soil variables in five natural and degraded habitats (MF - Mangrove forest,
RR1 - regeneration Restinga forest 1, RF - Restinga forest, RR2 - regeneration Restinga
forest 2, and MD - degraded mangrove forest) on Ilha da Restinga, northeastern Brazil.
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site, but they also must survive in edaphic conditions which are not
always favorable, and find and colonize a compatible host plant
before the exhaustion of their propagule resources.

All AMF genera and the majority of AMF species recorded in our
study have already been reported from other Restinga areas (e.g.
Silva et al., 2015a) suggesting that these species are adapted to such
coastal living conditions. On Ilha do Cardoso (southeastern Brazil)
AMF species richness ranged from 14 to 24 species in the coastal
dunes and reached up to 35 at a humid forest site; the species in
common with our study were Ambispora appendicula, Acaulospora
foveata, A. scrobiculata, Cetraspora gilmorei, Gigaspora gigantea,
Glomus macrocarpum, G. microcarpum, Sclerocystis sinuosa and
Racocetra coralloidea (Trufem, 1990; Trufem et al., 1994). In dune
areas of Santa Catarina State in southern Brazil, 12 species were
registered, among them Acaulospora scrobiculata and Racocetra
coralloidea (Stiirmer and Bellei, 1994), which were also found in our
study. In Hawaiian dunes 12—14 species were detected, among
them A. scrobiculata and Sclerocystis sinuosa (Koske, 1988).

In general, A. scrobiculata, Glomus macrocarpum and Gigaspora
margarita are considered generalist fungi in marine sand dune
habitats, and are usually found in many environments (Kowalczyk
and Btaszkowski, 2011), especially in tropical areas (Souza et al.,
2003; Tchabi et al., 2010). The predominance of Acaulospora and
Glomus species might be correlated with the ability of these taxa to
adapt even to extreme conditions and to a wide range of soil pH
(Maia and Trufem, 1990; Opik et al., 2013). Furthermore, species
belonging to Glomus and Acaulospora can establish root coloniza-
tion from different types of propagule (hyphae, vesicles, and
spores) while Gigaspora species are propagated exclusively by
spores (Hart and Reader, 2002).

The mangrove forest (MF) and one regeneration Restinga forest
(RR2) had lower AMF diversity despite having similar species
richness to the other habitats, reflecting lower evenness, which is a
characteristic of disturbed habitats. This might be expected in the
specific environment of mangroves, which are frequently flooded
by saline sea water, and by the disruption of the Restinga site, as
both conditions might lead to the proliferation of specific AMF
species which are also known from other extreme environments
(Soka and Ritchie, 2014). Some AMF species are known to survive
immersion in seawater for several days (Koske et al., 1996b).

The richness of AMF species from trap cultures was lower than
AMF richness from samples directly collected in the field. This
result might be related to the incompatibility between AMF taxa
and the host plant (host preference) and/or AMF taxa and growing
conditions (environmental preference) (Jansa et al., 2002, 2014;
Trejo-Aguilar et al., 2013). Despite that, some species that had not
been found in the respective field soil samples were detected from
trap culture samples, indicating the complementarity of that
approach to more comprehensively determine AMF species rich-
ness in an environment (Mergulhao et al., 2009; Btaszkowski and
Czerniawska, 2011).

The changes in the AMF community composition across the
habitats confirm the theory that different environments (especially
related to vegetation and soil) significantly affect AMF communities
(Walter, 2004; Triantis et al, 2012). Pagano et al. (2013) and
Schechter and Bruns (2012) also observed that AMF species

diversity and AMF community structure are correlated with habitat
heterogeneity and soil attributes.

A strong impact of soil characteristics on the composition of
AMF communities has been reported in recent literature (Oehl
et al., 2010; Carvalho et al., 2012; Jansa et al., 2014; Silva et al,,
2014). In the present study, soil attributes were important factors,
among others, for differences in AMF community structure. Soil pH
was one of these factors, as also reported in other studies (Dumbrell
et al., 2010; Oehl et al., 2010).

Geographical factors may also affect AMF communities
(Dumbrell et al., 2010; Jansa et al., 2014). In the present study, the
mangrove forest (MF), which is periodically flooded, had a very
distinct pattern when compared to the other habitats, which could
be related to the periodic inundation by sea water (Sigiienza et al.,
1996). The AMF species richness and diversity on Ilha da Restinga,
although significantly lower than on the continental mainland
(Souza et al., 2011; Silva et al., 2015a, b), is possibly well correlated
with the dispersal of propagules deriving from continental sites.

The AMF spores might have arrived from the mainland by
fluvial-marine water (Koske and Gemma, 1990; Harinikumar and
Bagyaraj, 1994; Koehler et al., 1995; Koske et al., 1996b; Mangan
and Adler, 2000) or even wind transport (Allen et al., 1989; Oehl
et al., 2011). In AMF studies on the Galapagos islands, human and
animal activities were also suggested to be important factors for
AMF distribution over distances (Schmidt and Scow, 1986). Harner
et al. (2009) observed that sediments deposited by flooding events
had AMF propagules represented by hyphae and spores that were
able to colonize sorghum roots. Spores of Gigaspora gigantea, a
common AMF species in sand dunes, can tolerate immersion of
several days in seawater and still germinate (Koske et al., 1996b).

5. Conclusions

On the fluvial-marine Ilha da Restinga the changes in AMF
community structure were highly related to soil characteristics,
especially to the sum of the exchangeable bases. The changes were
evident even within the short distances among the habitats. Islands
with high variability of soil attributes and diverse vegetation are
potential refuges for diversity conservation of AM fungi.
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