RA

Sunflower oil supplementation decreased over 21% of methane emission from Holstein x Gyr lactating dairy cows grazing tropical grass

Bárbara Cardoso da Mata e Silva¹

Fernando César Ferraz Lopes², Luiz Gustavo Ribeiro Pereira², Thierry Tomich Ribeiro², Mirton José Frota Morenz², Carlos Eugênio Martins², Carlos Augusto de Miranda Gomide², Domingos Sávio Campos Paciullo², Rogério Martins Maurício³ and Alex Vieira Chaves⁴

- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte/MG
- ² Embrapa Gado de Leite, Juiz de Fora/MG
- ³ Federal University of São João del Rei UFSJ, São João del Rei, MG Brazil
- ⁴ The University of Sydney

The objective of this study was to evaluate the effect of sunflower oil supplementation on crossbred Holstein × Gyr dairy cows grazing tropical pasture. Lactating dairy cows were fed *Brachiarla brizantha* pasture managed under rotational grazing. Sunflower oil was supplemented to cows using concentrates with inclusion (14.9% DM) or not (0% DM) of sunflower oil. Dietary crude fat were 13.8% and 2.4%, respectively (DM basis).

The experimental design was a randomized block with two repetitions of pasture area with two treatments (0% and 14.9% of sunflower oil supplementation - DM basis) and four replications (cows) per treatment per block. Sixteen lactating cows Holstein \times Gyr (240 \pm 10 days in milk, 524 \pm 57 kg of live weight, 11.2 \pm 2.3 kg/d of milk) were used in this study. Methane emissions was estimated by the SF6 (sulfur hexafluoride) tracer technique. Data were analyzed using a mixed procedure of SAS where dietary treatments, blocks and cows were considered as fixed effects, and cow within block as random effect. Methane emission expressed as g CH4/day and g CH4/kg of dry matter intake (DMI) decreased 21.5% (P=0.06) and 20.2% (P=0.03), respectively, on cow supplemented with sunflower oil compared to unsupplemented cows.

There was no effect (P=0.29) of sunflower oil supplementation on CH4 emissions expressed as g CH4/kg of milk. Lactating dairy cows grazing tropical grass pasture supplemented with 14.9% sunflower oil (DM basis) demonstrate a potential for mitigating methane emissions without negatively affecting cow performance.

SP 4130