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Abstract: Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to
the presence of dense forest and lack of access routes. The use of covariates derived from multispectral
and radar remote sensors allows mapping large areas and has the potential to improve the accuracy
of soil attribute maps. The objectives of this study were to: (a) evaluate the addition of relief, and
vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions
(Landsat 8 and RapidEye) and L-band radar (ALOS PALSAR) for the prediction of soil organic
carbon stock (CS) and particle size fractions; and (b) evaluate the performance of four geostatistical
methods to map these soil properties. Overall, the results show that, even under forest coverage,
the Normalized Difference Vegetation Index (NDVI) and ALOS PALSAR backscattering coefficient
improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from
RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived
from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface
using regression kriging (RK). The relative improvement of applying cokriging and RK over ordinary
kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies
(vegetation and relief types) with soil attributes.
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1. Introduction

The Brazilian Legal Amazon covers 5,217,423 km2 (59% of the Brazilian territory) and encompasses
a great diversity of vegetation and soils. However, despite its strategic importance, the knowledge
about its soils is relatively poor and outdated [1]. The RADAMBRASIL project is the main source of
data used to develop models and maps of soil attributes in the Brazilian Amazon. However, the soil
maps were published at a coarse scale and the soil data available are very sparse across the Amazon,
with ~0.7–3.5 soil profiles per 10,000 km2 [2]. The main reason for the low density of soil data is the
presence of the dense Amazon Rainforest, which acts as a barrier for the pedologists and source of
many natural threats (tropical diseases, predators), combined with limited access routes, with most of
the territory only accessible by boats or airplane.

Digital soil mapping allows for the creation of maps of soil attributes by exploring the potential
of ancillary environmental data such as passive optical and active microwave instruments, and digital
elevation models. The covariates derived from digital elevation models have been exhaustively
explored in traditional soil surveys and digital soil mapping projects to derive soil–landscape
correlations and prediction models, since the topographic maps can often be used as proxies of the
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spatial distribution of hydrologic, geomorphologic and biologic factors controlling soil formation [3].
Topography controls the flow of water, solutes and sediments, and these processes affect the catenary
soil development, allowing to characterize soils and their properties in relation to their topographic
spatial patterns [4].

Multispectral and especially radar remote sensing data are relatively less explored in digital soil
mapping, due to costs, the more complex processing required, and to their less direct connection with
soil formation processes [5]. These data can be used in various ways, including to: (a) support the
segmentation of the landscape into more homogeneous soil–landscape units; (b) predict soil properties
using physically-based or empirical prediction methods; and (c) facilitate mapping in large inaccessible
areas, where extensive field surveys are impractical. In sparsely vegetated areas, some soil properties
(mineralogy, particle size distribution, iron, moisture, organic carbon, carbonate and salinity) have
been successfully predicted using spaceborne, airborne and in situ measurements from multispectral
and microwave sensors [5,6]. However, in densely vegetated areas, the use of remote sensing
images for mapping soils suffers from the fact that the vegetation covers much of the soil making it
necessary to search for indirect evidences of soil variation inferred from the vegetation. In these cases,
the efficiency of using remote sensing to map soil properties is even more dependent on indirect
relations between soil attributes and soil formation proxies (vegetation, topography and drainage
patterns, for example) [5,7].

While visible and infrared sensors only measure surface characteristics, radar can provide spectral
information beyond the vegetative cover and the soil surface (L-band or lower frequencies). In the
case of synthetic aperture radar (SAR), the backscattering signal is used to retrieve target properties,
including the aboveground biomass and soil moisture [8]. The backscattering coefficient is calculated
based on radar sensor configuration (observation frequency, polarization and incident angle) and
surface characteristics (roughness and dielectric properties). As the soil water content is the main
factor influencing its dielectric constant, the soil moisture content is the most frequently retrieved
attribute [8]. Singh and Kathpalia [9] developed a modeling approach based on a genetic algorithm
to retrieve simultaneously soil moisture, roughness and texture from the dielectric constant derived
from ERS-2 SAR backscatter data. Despite the agreement of the predictions with the field observations,
there were problems with the retrieval of the input variables of the model.

The relationship between soil and vegetation has the potential to improve the prediction of soil
attributes. However, more detailed information on the vegetation cover may be needed, such as plant
functional types and Ellenberg indicator values [5]. Such an approach could be useful for the Amazon
basin, which is commonly densely vegetated. Ceddia et al. [2] presented a qualitative model explaining
the relationships between soil, relief and vegetation types in the same study area of the current study,
in the Urucu River basin, Central Amazon, Brazil. They found that regions with higher slope and
lower compound topographic index (CTI) presented higher clay contents and soil organic carbon
stocks (CS). Under the conditions of the study, and considering that there is no water deficit during
the year, the main vegetation type classified as Upland Dense Forest and the input of carbon from
the vegetation, including that from deep roots, explained the higher values for both clay and CS. On
the other hand, regions with higher CTI and lower slope (river plains and flatlands) presented both
lower clay contents and CS. In these regions the soils are imperfectly drained and the vegetation types
are classified as Flooded Lowland Open Tropical Rainforest, and Upland Open Tropical Rainforest,
with species that are more adapted to soil aeration restrictions. The CS are lower because the inputs
from leaves, trunks and roots are lower and concentrated at the surface layers. The authors showed
that the use of CTI improved the prediction of CS using heterotopic cokriging.

Given the potential of remote sensing data to aid digital soil mapping in relatively remote and
densely vegetated regions, we hypothesize that the predictions of CS and particle size fractions
(PSFs) in the Central Amazon can be improved by adding relief and remotely sensed multispectral
and radar covariates. Thus, the objectives were to: (a) evaluate the addition of relief and
vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions
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(Landsat 8 and RapidEye) and L-band radar (ALOS PALSAR) for the prediction of soil CS and PSFs;
and (b) evaluate the performance of four geostatistical methods to map these soil properties, including
ordinary kriging (OK), isotopic cokriging (ICOK), heterotopic cokriging (HCOK), and regression
kriging (RK).

2. Materials and Methods

This study extends the previous study reported by Ceddia et al. [2]. It uses the same study site
and soil data used by the referred authors, but extends the analysis by including: the prediction of
PSFs (clay, silt and sand contents), besides CS; other geostatistical methods; and covariates derived
from multispectral, and radar remote sensing imagery to help predicting soil CS and PSFs.

2.1. Study Area

The study site is located in the central region of the Amazonas state, in the Urucu River basin, in
the municipality of Coari, Brazil (Figure 1). It has an elongated shape of about 50 km by 8 m buffering
an oil duct where access was possible, and covers about 7967 ha. The site is located about 640 km
from Manaus (the state capital) and can be accessed only by boat or airplane. The climate is equatorial
(Af, according to Köppen classification), with the temperature of the coldest month higher than 20 ◦C,
mean annual precipitation of 2500 mm, and no pronounced dry period. According to Brasil [10],
the soils of the region were formed from Tertiary and Quaternary sediments of the Içá Formation,
which covers an area of 563,264 km2 (36% of the Amazonas state). They are composed of very fine
sandstone, claystone and siltstone. The Holocene alluvium of the Quaternary deposits are related
to the current Amazonian drainage networks. In the study area, the main soils include Argissolos
(Ultisols) and Cambissolos (Inceptisols) [11,12], most of them with low sum of bases, high aluminum
and medium to high sand contents. Some soils in the area present aquic characteristics, especially
those near the Urucu River floodplain.

According to Brasil [10], the main vegetation types along the study site are Upland Dense
Tropical Rainforest, Flooded Lowland Open Tropical Rainforest and Upland Open Tropical Rainforest.
The Upland Dense Tropical Rainforest is commonly found in areas with relief forms called terra firme,
which are upland areas on flat-topped terrain located in river interfluves. The soils in these relief
forms are well drained, with no water deficits for plants and have higher clay contents. The Flooded
Lowland Open Tropical Rainforests are observed in relief forms called várzeas, which are the river
floodplains, while the Upland Open Tropical Rainforests are commonly found in imperfectly drained
flatlands. The soils of the study site were surveyed between 2008 and 2009 and the main soil classes
and their respective numbers of soil profiles (94 in total) are shown in Table 1.

Table 1. Number of soil profiles (N) and frequency of soil suborders in the visited sites.

SiBCS Soil Taxonomy N Frequency (%)

Argissolos Amarelos Oxyaquic Hapludults 26 28
Argissolos Vermelhos Typic Hapludults 2 2

Argissolos Vermelho-Amarelos Typic Hapludults 21 22
Argissolos Acinzentados Typic Endoaquults 3 3

Cambissolos Háplicos Typic Dystrudepts 38 41
Espodossolos Humilúvicos Humods 1 1
Neossolos Quartzarênicos Quartzipsamments 2 2

Planossolos Háplicos Aquults 1 1
Total - 94 100

SiBCS, Brazilian Soil Classification System.
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Figure 1. Location of the study area in the Central Amazon, Brazil (upper map), and the study site 
showing the location of the soil profiles (bottom map). 

Figure 1. Location of the study area in the Central Amazon, Brazil (upper map), and the study site
showing the location of the soil profiles (bottom map).
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2.2. Soil Data

In each soil profile soil samples were collected following the soil horizon stratification,
and analyzed for organic carbon (OC) by wet combustion [13], bulk density (BD) from Kopeck
rings (4.2-cm high and 4.0-cm in diameter), and PSFs—sand, silt and clay contents—by the Pipette
method [14]. Soil CS were calculated for the 0–30 and 0–100-cm layers as the depth-weighted sum
of the CS across all horizons with portions lying within the desired depth interval (Equation (1)).
These two layers are the most used in soil OC studies [15].

CS =
n

∑
i=1

OCi × BDi × Ti (1)

where CS is the OC stock (kg·m−2) at the desired layer (0–30 or 0–100 cm), OCi is the OC content
(g·kg−1) at horizon i, BDi is the soil bulk density (Mg·m−3) at horizon i, Ti is the thickness (m) of the
portion of horizon i that lies within the desired layer, and n is the number of horizons that have a
portion within the desired layer.

Similarly, the sand, silt, and clay contents of the surface (Surf) and subsurface (Sub) layers were
calculated as the depth-weighted average across the A and AB horizons for the Surf layer, and the BA
and B horizons for the Sub layer (Equation (2)). The BC and C horizons were not included.

PSFSur f /Sub =
n

∑
i=1

PSFi × Ti

/ n

∑
i=1

Ti (2)

where PSFSurf/Sub is the particle size fraction content (g·kg-1) at the desired layer (surface or subsurface),
PSFi is the PSF content (g·kg−1) at horizon i, Ti is the thickness (m) of the portion of horizon i that lies
within the desired layer, and n is the number of horizons that have a portion within the desired layer.

2.3. Remote Sensing Covariate Data

Remotely sensed relief, multispectral, and radar imagery were assembled as independent
variables, or covariates, for the prediction of soil CS at 0–30 and 0–100 cm, and sand, silt and clay
contents at the surface and subsurface. Relief and multispectral data are commonly used in digital soil
mapping studies, however, radar imagery is hardly ever included, although it has shown potential to
predict soils and soil properties [7,16].

A topographic map with 2-m contour line intervals and a stream network map of the
study area were derived at the 1:5000 scale from radar images (X-band, 0.5-m spatial resolution,
HH polarization) using interferometry. A digital terrain model (DTM, 0.5-m resolution) with enforced
drainage network and filled sinks was derived from the topographic map using the ANUDEM
algorithm [17], implemented in the Topo-to-Raster tool in ArcGIS version 9.3 (Esri, Redlands, CA,
USA) [18]. Four terrain attributes, namely slope gradient, slope aspect, curvatures, and CTI [19] were
calculated from the DTM using the Spatial Analyst tools in ArcGIS.

Three orthorectified RapidEye (RE) satellite images from 16 June 2014, with 5-m resolution
(resampled from the original 6.5-m resolution), were obtained from the Brazilian Ministry of
Environment, mosaicked, and then used to derive vegetation indices from three bands, including
band 3 at 0.630–0.685 µm (red), band 4 at 0.690–0.730 µm (red edge), and band 5 at 0.760–0.850 µm
(near infrared, NIR). In addition, a Landsat 8 Operational Land Imager (OLI) image from
31 October 2015 was obtained from the Brazilian National Institute for Space Research. Accordingly,
two Landsat 8 OLI sensor bands were used, including band 4 at 0.636–0.673 µm (red), and band 5
at 0.851–0.879 µm (NIR), with 30-m spatial resolution. The RE images and the Landsat 8 OLI image
were radiometrically and atmospherically corrected using the 6S model (Second Simulation of Satellite
Signal in the Solar Spectrum), originally developed for the simulation of radiance at the satellite level by
Vermote et al. [20], and adapted for atmospheric correction by Antunes et al. [21]. As initial conditions,
the tropical atmosphere, and the continental aerosol model were used.
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Four vegetation indices were derived from the multispectral imagery, including the Normalized
Difference Vegetation Index (NDVI) [22], the Enhance Vegetation Index (EVI) [23], the Soil-Adjusted
Vegetation Index (SAVI) [24], and, for the RE images only, the Normalized Red Edge Vegetation Index
(NDVI_Ed) (Equation (3)).

NDVI_Ed = (NIR − Red edge)/(NIR + Red edge) (3)

where NIR is the near infrared band, and Red edge is the red edge band.
Along with multispectral images, three L-band microwave (23.6-cm wavelength) radar images

from the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture
Radar (PALSAR) sensor from 6 July 2009 (two images), and 23 July 2009 (one image), with 12.5-m
spatial resolution, were acquired and mosaicked. These images were downloaded from Alaska Satellite
Facility Distributed Active Archive Center (ASF DAAC) [25]. The images were acquired in ascending
orbit, with off-nadir angles of 38.8◦, in Level 1.5 Fine Beam Dual (FBD) format, containing two bands
with HH, and HV polarization, respectively. According to Shimada [26], the ALOS PALSAR’s long
operating wavelength in L-band is suitable for tropical forest monitoring due to its high sensitivity
to forest structure and moisture characteristics. The ALOS PALSAR images were used to derive the
backscattering coefficients (σ◦) of the two polarizations (HH and HV), which indicate the amount
of microwave energy that is reflected by the target and returns to the sensor antenna per unit area,
in decibels (dB). This was performed using MapReady version 3.2.1 (Alaska Satellite Facility, Fairbanks,
AK, USA) [27].

All remotely sensed covariate rasters were assembled in a Geographic Information System and
their values extracted to the field soil data in ArcGIS, thus deriving the database used to build the
prediction models.

2.4. Prediction Methods

Four geostatistical methods were compared to predict soil CS and PSFs, including ordinary kriging
(OK), isotopic cokriging (ICOK), heterotopic cokriging (HCOK), and regression kriging (RK). Ordinary
kriging is a univariate method that uses the primary variable (CS or PSF) measured at sampled
locations to predict the same primary variable at unsampled locations. In OK, the mean is taken as a
constant but unknown value, and its stationarity is assumed only within a local neighborhood centered
at the location being predicted. The OK predictor is a best linear unbiased predictor and is written as a
linear combination, or weighted average, of the values at the sampled points, with weights adding up
to 1 (Equation (4), [28]). The unknown local mean m(u) is filtered from the linear estimator by forcing
the kriging weights to sum to 1.

Z∗
OK(u) =

nα(u)

∑
α=1

λOK
α (u)[Z1 (u)], with

nα(u)

∑
α=1

λOK
α = 1 (4)

Cokriging is a bivariate extension of kriging in which a secondary variable (that is, relief,
multispectral or radar covariates—Zv) is incorporated for the prediction of the target variable
(CS or PSFs—Z1) at unsampled locations by accounting for the spatial correlation between them
(Equation (5), [27]).

Z∗
COK(u) =

nα(u)
∑

α=1
λCOK

α (u)[Z1(uα)] +
nν(u)

∑
ν=1

λCOK
ν (u)[Zν(uν)], with

nα(u)
∑

α=1
λCOK

α (u) = 1 and
nν(u)

∑
ν=1

λCOK
V (u) = 0 (5)

Cokriging does not require that the secondary variable is available at all locations to make
predictions. When the target and secondary variables have been measured at the same sampling
locations, this is a case of isotopic cokriging. Otherwise, when they have been measured at different
locations, heterotopic cokriging can be used [29]. Since the influence of the secondary variable on
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predicting the target one depends on: (i) the correlation between them; (ii) their spatial continuity;
and (iii) their sampling density and spatial configuration [30], these two forms of cokriging (ICOK and
HCOK) were compared.

Regression kriging combines regression (prediction) methods to model the global spatial trend,
or external drift, with geostatistical methods to model (interpolate) the residuals from the
regression [31]. In RK, multiple linear regression (MLR) with stepwise variable selection
(p < 0.05) models were first derived in R version 3.1.1 [32] for the target soil variables (CS and
PSFs) as a function of relief covariates only, or relief, multispectral and radar covariates together
(all variables). For each variable, the model with the highest adjusted R2 was used to make predictions
at all pixels in the study area. Then, the MLR model residuals, derived at the sampled locations,
were interpolated across the study area using OK. The final prediction maps were derived as the sum
of the MLR predictions and interpolated residuals across the study area. For all geostatistical methods,
the auto- and cross-variograms were fitted manually using the spherical model.

In order to run and compare the accuracy of the prediction methods, the whole dataset containing
94 observations was randomly split into training (70 observations) and validation (24 observations)
sets (Figure 1). The training observations were used for model development, while the validation
observations were set aside for model validation and comparison using the mean error (ME) and root
mean square error (RMSE) (Equations (6) and (7)). The ME is used to check the bias of the predictions,
whereas the RMSE measures the accuracy of the predictions. The relative improvement (RI, in %;
Equation (8)) in the RMSE was derived to compare the ICOK, HCOK and RK against OK.

ME =
1
n

n

∑
i=1

(Oi − Pi) (6)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (7)

RI =
RMSEOK − RMSECOK or RK

RMSEOK
× 100 (8)

where Oi and Pi are the n observed and predicted values, respectively, OK is ordinary kriging, COK is
cokriging, and RK is regression kriging.

3. Results

3.1. Descriptive Statistics and Linear Regression Models

The descriptive statistics of the whole data set (94 observations), as well as the training
(70 observations) and validation (24 observations) data sets are presented in Table 2. The different data
sets have similar descriptive statistics, with the mean values of all attributes statistically equal between
the training and validation data sets, according to a Student's t-test at 0.05 significance. The main
differences between data sets are observed in the minimum and maximum values of the attributes.
Overall, the data sets are adequate for the development of predictive models and their validation,
and represent the total set of data collected in the field.

The soil CS at 0–100 cm (CS100) varied from 3.26 to 11.93 kg·m−2, with an average value
of 7.38 kg·m−2 (Table 2). About 47% of this stock was in the 0–30-cm layer, with an average of
3.44 kg·m−2. The CS obtained in this study, compared with those observed by different studies in the
same region [33–36], is 14% to 28% lower at 0–30 cm, and 5% to 17% lower at 0–100 cm. The differences
occur because this study is constrained to a single geologic formation in the Central Amazon, whereas
the other studies are not. Moreover, the bulk density data used to calculate stocks also differed among
the studies. The soil textural classification was loam at the surface, and clay loam at the subsurface,
reflecting the constitution of the parent material of the study site, which is mainly composed of very
fine sandstone and ferruginous claystone and siltstone. We call attention to the relatively high silt
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values of the region, both at the surface (mean: 371 g·kg−1; maximum: 707 g·kg−1) and subsurface
(mean: 333 g·kg−1; maximum: 584 g·kg−1) layers, as these amounts of silt are not frequently found in
Brazilian soils.

Table 2. Descriptive statistics of target soil variables.

Variables Set N Min Max Mean Median SD Skewness Kurtosis

Sand Surf (g·kg−1) W 94 182 883 456 435 153 0.450 −0.324
Sand Surf (g·kg−1) T 70 182 883 454 a 434 154 0.445 −0.077
Sand Surf (g·kg−1) V 24 249 777 463 a 437 151 0.577 −0.508

Sand Sub (g·kg−1) W 94 66 855 317 288 145 0.709 0.431
Sand Sub (g·kg−1) T 70 66 855 317 a 290 147 0.805 1.060
Sand Sub (g·kg−1) V 24 145 600 317 a 259 138 0.501 −1.279

Clay Surf (g·kg−1) W 94 34 352 173 167 77 0.304 −0.538
Clay Surf (g·kg−1) T 70 34 352 171 a 165 75 0.435 −0.191
Clay Surf (g·kg−1) V 24 37 335 180 a 208 83 −0.035 −1.147

Clay Sub (g·kg−1) W 94 13 531 327 334 104 −0.452 0.145
Clay Sub (g·kg−1) T 70 13 531 321 a 332 102 −0.414 0.524
Clay Sub (g·kg−1) V 24 121 478 346 a 388 106 −0.665 −0.472

Silt Surf (g·kg−1) W 94 58 707 371 354 134 0.164 −0.376
Silt Surf (g·kg−1) T 70 58 707 375 a 359 138 0.102 −0.217
Silt Surf (g·kg−1) V 24 158 627 357 a 339 119 0.388 −0.473

Silt Sub (g·kg−1) W 94 85 584 333 338 108 −0.087 −0.096
Silt Sub (g·kg−1) T 70 85 584 336 a 342 112 −0.097 −0.122
Silt Sub (g·kg−1) V 24 118 529 325 a 321 94 −0.158 −0.036

CS30 (kg·m−2) W 94 1.54 6.44 3.44 3.22 1.11 0.606 −0.071
CS30 (kg·m−2) T 70 1.54 6.44 3.47 a 3.21 1.18 0.582 −0.273
CS30 (kg·m−2) V 24 1.86 5.40 3.34 a 3.32 0.86 0.428 0.220

CS100 (kg·m−2) W 94 3.26 11.93 7.38 7.54 2.02 0.042 −0.408
CS100 (kg·m−2) T 70 3.64 11.93 7.46 a 7.68 2.09 0.059 −0.479
CS100 (kg·m−2) V 24 3.26 10.64 7.16 a 7.19 1.75 −0.213 −0.252

W, whole dataset; T, training dataset; V, validation dataset; Surf, surface layer; Sub, subsurface layer; CS30, carbon
stock at 0–30 cm; CS100, carbon stock at 0–100 cm; N, number of observations; Min, minimum; Max, maximum; SD,
standard deviation. a Equal means between the training and validation data sets for each soil attribute, respectively,
according to a Student's t-test at 0.05 significance.

The regression models developed for soil CS and PSFs are presented in Table 3, except for sand
and silt at the subsurface, which had no significant predictor selected among relief, multispectral and
radar covariates. The regression models to predict silt at the subsurface, CS at 0–100 cm, and clay
at the subsurface presented the highest adjusted R2, though all regression models had low adjusted
R2, which means that the proportion of the variance in the soil variables that is predictable from the
covariates is low. These poor correlations among variables also affected cokriging, as shown later.
Nevertheless, the inclusion of covariates derived from Landsat 8 OLI and ALOS PALSAR increased
the R2, mainly for silt at the surface, clay at the subsurface, and CS at 0–30 cm (CS30).

The covariates derived from RapidEye, despite having a higher spatial resolution (5 m), were not
selected in any model to predict CS or PSFs. This indicates that better resolution does not necessarily
improve or grant significant soil–landscape correlations. The NDVI derived from Landsat 8 OLI
(NDVI_L8) was selected in all significant PSF models, and the radar backscatter coefficient was
selected in all significant models but for sand at the surface. The selection of relief covariates varied
among target variables, with the slope selected to predict sand and silt at the surface, elevation selected
only to predict CS, and the CTI selected to predict clay at both layers and CS100.
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Table 3. Linear regression models using relief only, and all remote sensing variables.

Target Covariates Regression Model R2
adj

Sand Surf
Relief - -

All variables 924.43 + 5.83 × Slope − 604.31 × NDVI_L8 0.12

Sand Sub
Relief - -

All variables - -

Silt Surf
Relief 445.91 − 9.40 × Slope 0.09

All variables 130.01 + 490.94 × NDVI_L8 − 9.68 × Slope +
11.59 × BackHH − 18.58 × BackHV 0.22

Silt Sub
Relief - -

All variables - -

Clay Surf
Relief 310.71 − 14.69 × CTI − 75.86 × CurvP 0.15

All variables 157.64 + 173.17 × NDVI_L8 − 0.10 × Asp − 48.16 × CurvC
− 18.56 × CTI − 61.89 × CurvP − 61.89 × BackHH 0.19

Clay Sub Relief 431.57 + 0.17 × Asp − 15.75 × CTI 0.07
All variables 50.85 + 337.20 × NDVI_L8 − 15.86 × CTI − 14.03 × BackHH 0.15

CS30
Relief 0.07 + 0.05 × Elev 0.09

All variables −0.68 + 0.05 × Elev − 0.12 × BackHH 0.11

CS100
Relief 4.14 − 0.32 × CTI + 0.10 × Elev 0.15

All variables 3.02 − 0.38 × CTI + 0.09 × Elev − 0.25 × BackHH 0.19

Surf, surface layer; Sub, subsurface layer; CS30, carbon stock at 0–30 cm; CS100, carbon stock at 0–100 cm;
NDVI_L8, Normalized Difference Vegetation Index derived from Landsat 8 Operational Land Imager; BackHH and
BackHV, backscattering coefficients derived from ALOS PALSAR using HH and HV polarizations, respectively;
CTI, compound topographic index; CurvP, profile curvature; Asp, aspect; CurvC, combined (standard) curvature;
Elev, elevation.

3.2. Geostatistical Analysis

The results of the spatial dependence analysis of the target soil variables, residues of the regression
models, and remote sensing covariates individually, as well as of the spatial cross-dependence analysis
between target soil and remote sensing variables are presented in Table 4 and Figures 2 and 3.

The target soil variables that showed spatial autocorrelation were sand at the surface, silt at the
surface and subsurface, clay at the subsurface, and CS100 (Table 4; Figure 2). The CS100 showed
the highest range of spatial autocorrelation (8000 m), followed by the clay content at the subsurface
(5500 m). Silt at the surface layer had the lowest range (2000 m) and the lowest proportion of the
nugget variance over the total variance (that is, nugget-to-sill ratio) among the soil variables.

Ordinary cokriging (ICOK or HCOK) is more demanding than OK inasmuch as two
auto-variograms (of the primary and secondary variable, respectively), as well as their cross-variogram,
need to be known so that a model of co-regionalization can be defined. Considering these requisites,
only two variables (silt at the subsurface and CS100) could be modeled by ICOK and HCOK.
The candidate secondary variables that were spatially autocorrelated and could be used as covariates
included elevation, slope, CTI, NDVI_RE, NDVI_Ed, BackHH and BackHV, and only a few of them
were spatially correlated to silt or CS100 (Table 4; Figure 2). The cross-variograms show that silt
at the subsurface is negatively correlated with elevation and slope, and positively correlated with
CTI, whereas CS100 had the opposite behavior in relation to these covariates. Indeed, areas with
higher elevation and slope presented higher CS and lower silt contents, whereas areas with higher
CTI presented lower CS and higher silt contents in the study area. All cross-variograms presented
lower nugget-to-sill ratio compared to the original soil variables, meaning that the spatial continuity is
stronger when the secondary variables are considered for cokriging.



Remote Sens. 2017, 9, 124 10 of 19

Table 4. Fitted auto- and cross-variogram parameters (spherical model).

Variables C0 C1 Sill Range (m) C0
C0 + C1

× 100 (%)

Original variables

Sand Surf 14,656 9314 23,970 2256 61.1
Silt Surf 5000 14,000 19,000 2000 26.3
Silt Sub 6971 6042 13,013 3256 53.6

Clay Sub 8200 3500 11,700 5500 70.1
CS100 3.70 1.30 5.0 8000 74.0

Regression residuals

Sand Surf 15,000 6870 21,870 2000 68.6
Silt Surf 10,000 4100 14,100 3000 70.9
Clay Sub 7000 2000 9000 8000 77.8

CS100 3.20 2.70 5.90 8200 54.2

Silt Sub × secondary variables

Elevation 15 35 50 3256 30.0
Slope 16 9 25 3256 64.0
CTI 2.5 0.8 3.0 3256 75.8

NDVI_RE 0.001 0.002 0.003 3256 20.0
NDVI_Ed 0.0012 0.0005 0.0017 3256 72.7
BackHH 2.5 2.2 4.7 3256 53.2
BackHV 3.7 0.9 4.6 3256 80.4

Silt Sub × Elevation −50.0 −109.0 −159.0 3256 31.4
Silt Sub × Slope 0.0 −130.0 −130.0 3256 0.0
Silt Sub × CTI 0.0 41.0 41.0 3256 0.0

CS100 × secondary variables

Elevation 20 35 55 8000 36.4
Slope 19 6 25 8000 76.0
CTI 2.5 0.8 3.3 8000 75.8

NDVI_RE 0.001 0.002 0.000 8000 33.3
NDVI_Ed 0.0012 0.0005 0.0000 8000 72.7
BackHH 3.0 1.8 4.8 8000 62.5
BackHV 3.8 0.9 4.7 8000 80.9

CS100 × Elevation 0.9 5.1 6.0 8000 15.0
CS100 × Slope 0.0 3.5 3.5 8000 0.0
CS100 × CTI −0.80 −0.40 −1.20 8000 66.7

CS100 × NDVI_RE 0.0000 0.0098 0.0098 8000 0.0

C0, nugget variance; C1, sill variance; Surf, surface layer; Sub, subsurface layer; CS100, carbon stock at 0–100 cm;
NDVI_RE and NDVI_Ed, Normalized Difference Vegetation Index and Normalized Red Edge Vegetation Index
derived from RapidEye, respectively; BackHH and BackHV, backscattering coefficients derived from ALOS PALSAR
using HH and HV polarizations, respectively; CTI, compound topographic index.

The NDVI_RE was the only multispectral index that could be used to map CS using cokriging.
In this case, areas with higher NDVI_RE had higher CS. The lack of other multispectral indices that
present cross spatial dependence with CS or PSFs was unexpected because the soil types are to some
extent related to vegetation types in the study area [2]. Moreover, the vegetation indices derived from
RapidEye images did not cross-vary with the soil variables, which suggests that the higher spatial
resolution of the indices did not help cokriging, except for CS100.

Regression kriging requires that the regression residuals are interpolated using OK. To do so,
the regression residuals need to present spatial autocorrelation. From all soil attributes with fitted
regression models, only sand and silt contents at the surface, clay content at the subsurface, and CS100
presented autocorrelated residuals (Table 4; Figure 3), which could be interpolated and added back to
the regression predictions. Clay at the surface and CS30 could not be predicted using RK.
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Figure 2. Experimental and fitted auto- and cross-variograms: (a) sand content at the surface; (b) silt content at the surface; (c) silt content at the subsurface;
(d) clay content at the subsurface; (e) carbon stock at 0–100 cm (CS100); (f) silt content at the subsurface and elevation (Elev); (g) silt content at the subsurface and
slope; (h) silt content at the subsurface and compound topographic index (CTI); (i) CS100 and elevation; (j) CS100 and slope; (k) CS100 and CTI; and (l) CS100 and
Normalized Difference Vegetation Index derived from RapidEye (NDVI_RE).
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Figure 3. Experimental and fitted variograms of the regression residuals: (a) sand content at the surface;
(b) silt content at the surface; (c) clay content at the subsurface; and (d) carbon stock at 0−100 cm.

In summary, considering the requirements of the kriging methods, most of the soil variables
could be mapped by OK and RK, but only a couple could be cokriged. In OK, the variables not
mapped included sand at the subsurface, clay at the surface and CS30, which did not show spatial
autocorrelation. In RK, the variables not mapped included sand and silt at the subsurface, which lacked
significant correlations with the covariates to derive a regression model, and clay at the surface and
CS30, whose regression residuals were not spatially autocorrelated. Finally, only silt at the subsurface
and CS100 could be mapped by ICOK and HCOK.

The final predicted maps of the soil attributes are shown in Figure 4. Among the prediction
methods compared to map CS100, the best results (that is, with the lowest RMSE of external validation)
were obtained by ICOK using slope as covariate, followed by ICOK using CTI, and then HCOK using
NDVI from RapidEye (Table 5). For clay at the subsurface, RK outperformed OK. In this case, the
regression model selected CTI, NDVI from Landsat 8 OLI, and the backscattering coefficient in HH
polarization, contributing to improve both the ME and RMSE. These results show that cokriging
(isotopic or heterotopic) has potential to improve the accuracy of soil attribute predictions using relief
and multispectral remote sensing data. However, the gain in accuracy from applying these methods
need to be evaluated from a cost-efficiency perspective, when compared to the simpler and cheaper
OK method. Thus, the relative improvement (RI) of adding covariates to help in the predictions
(as in ICOK, HCOK and RK) over OK was computed (Table 5). The RI shows that the RMSE of
CS100 and clay at the subsurface were only modestly improved by up to 5% by ICOK, and 8% by RK.
In comparison, OK derived the best predictions for sand at the surface, and silt at the surface and
subsurface. Clay at the surface, sand at the subsurface, and CS30 were not mapped.
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Table 5. External validation errors, with the best model indicated in bold for each target soil
variable, respectively.

Variables ME RMSE RI (%)

Ordinary kriging

CS100 (kg·m−2) 0.08 1.79 -
Sand Surf (g·kg−1) 4.40 198.80 -
Silt Surf (g·kg−1) 6.26 139.61 -
Silt Sub (g·kg−1) −27.38 80.02 -
Clay Sub (g·kg−1) −33.43 127.96 -

Isotopic cokriging

CS100/Slope (kg·m−2) 0.24 1.70 5.0
CS100/Elevation (kg·m−2) 0.24 1.75 2.2
CS100/NDVI_RE (kg·m−2) 0.20 1.78 0.5
CS100/CTI (kg·m−2) 0.26 1.73 3.4
Silt Sub/Slope (g·kg−1) −17.22 83.40 −4.2
Silt Sub/Elevation (g·kg−1) −16.62 82.15 −2.7
Silt Sub/NDVI_RE (g·kg−1) −19.42 84.82 −6.0
Silt Sub/CTI (g·kg−1) −19.16 81.39 −1.7

Heterotopic cokriging

CS100/Slope (kg·m−2) −0.03 2.11 −17.8
CS100/Elevation (kg·m−2) 0.27 1.91 −6.7
CS100/NDVI_RE (kg·m−2) 0.28 1.74 2.8
CS100/CTI (kg·m−2) 0.16 1.89 −5.6
Silt Sub/Slope (g·kg−1) −7.40 98.78 −23.4
Silt Sub/Elevation (g·kg−1) −19.32 81.59 −2.0
Silt Sub/NDVI_RE (g·kg−1) −18.19 83.17 −3.9
Silt Sub/CTI (g·kg−1) −29.34 83.72 −4.6

Regression kriging

CS100 (kg·m−2) 0.51 2.52 −42
Sand Surf (g·kg−1) −84.46 212.83 −7.1
Silt Surf (g·kg−1) 134.80 224.69 −61
Clay Sub (g·kg−1) −32.32 117.54 8.2

ME, mean error; RMSE, root mean square error; RI, relative improvement.
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4. Discussion

4.1. Potential of Using Multispectral and Radar Data as Covariates

This study offers new insights on the use of covariates derived from relief, multispectral and radar
remote sensing data to improve the accuracy of soil attribute predictions from geostatistical methods
under native Amazon forest. Considering the regression models selected to predict soil attributes,
the covariates derived from relief, multispectral and radar data together explained only a low
proportion (<25%) of the variance of the soil attributes, respectively. Nonetheless, the addition of NDVI
(from Landsat 8 OLI) and backscattering coefficients (from ALOS PALSAR) increased substantially the
prediction power of some models, compared to the others using only relief covariates (Table 3). This is
the case of the models for silt at the surface (an increase from 9% to 22%) and clay at the subsurface
(an increase from 7% to 15%). The clay content at the subsurface was better predicted by RK than OK,
with the regression model selecting relief, multispectral, and radar variables. Although this was the
only soil attribute better predicted by RK, the preference of OK over RK is not unusual, and has been
reported elsewhere [37–40]. Thus, there is potential to improve soil attribute predictions by adding
remote sensing covariates.

The clay content at the subsurface is higher when the value of NDVI is higher and both the
backscattering coefficient and CTI are lower, respectively. The NDVI indicates the “greenness” of
the land cover, or the vegetation health, and is related to the aboveground biomass. According to
Ceddia et al. [2], in the study site the densest vegetation type is Upland Dense Forest, whose NDVI
are the highest in the study area. This vegetation type occurs more frequently in areas of low CTI on
soils with relatively high clay contents. In the opposite direction, regions with the highest CTI and
lowest clay contents occur closer to the river floodplain, where the plant species are more adapted
to soil aeration restrictions. The vegetation types in these regions are classified as Flooded Lowland
Open Tropical Rainforest and Upland Open Tropical Rainforest, which have lower density and smaller
trunk diameters (thus, lower NDVI). Some authors have found similar results, showing that some
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soil attributes or types affect the NDVI. For example, Lozano-Garcia et al. [40] derived NDVI values
from the Advanced Very High Resolution Radiometer (AVHRR) sensor over 45 fields representing
8 soil associations in the state of Indiana (USA), finding higher NDVI values in forested areas with
soils without restrictive layers, and higher clay content and water-holding capacity. Farrar et al. [41]
examined the extent to which differences in the rate of soil moisture generation, as a function of soil
type or locality, accounts for the NDVI in semiarid Botswana. According to the authors, moisture
availability is not the only soil characteristic determining the amount of vegetation growth. Instead,
a group of soil attributes including moisture, porosity, nutrient availability, profile characteristics,
and chemical attributes play a role on vegetation growth and rain-use efficiency. Although the latter
example [41] refers to an environment completely different from the Amazon region, it emphasizes the
complexity of factors directly or indirectly affecting the water dynamics in soils and the response of
vegetation and NDVI.

The backscattering coefficient in HH polarization was selected in most regression models of PSFs
and CS. The results found by Shimada [26] can explain the predominance of the HH polarization in
the regression models. The author developed a polarimetric-calibration method for ALOS PALSAR
using time series imagery acquired over dense forest in the Brazilian Amazon (Rio Branco, Acre), and
found that the HH signal of PALSAR penetrates the forest canopy deeper and returns from the bottom
of the forest stronger than the VV signal. The author argued that the total received power from the
HH polarization could be decomposed into, or originated from, the double-bounce (or penetrating)
signal, which accounts for about 20% of the signal, and the volume of the canopy, which accounts for
the remaining 80%.

Although NDVI and radar backscattering coefficients showed higher potential to be used as
covariates to improve the prediction of soil attributes, the prediction power of the models remained
low. The causes may be related to the low sensitivity of these covariates to differentiate the soil
patterns under native rainforest. In other words, the range of the NDVI values may not have been
sufficient to discretize the different vegetation types and their associated soil attributes (CS and PSFs).
Theoretical modeling results proved that large aboveground biomass in dense forests can decrease
backscatter, due to the saturation of the free-space (or not attenuation) [42]. This decrease in the
backscatter can have strong implications for the use of L-band radar data for mapping, such as severe
underprediction of soil water content and aboveground biomass [8,42]. This is especially important
because the soil water content and dynamics play an important role to connect soil formation factors
(vegetation and topography) with soil formation processes and soil attributes. However, according to
Mermoz et al. [42], the L-band does not entirely lose sensitivity at large biomass values, suggesting
that much progress can be made by refining our understanding of radar backscattering behavior in
the L-band.

The NDVI derived from RapidEye was selected as covariate to cokrige soil CS100 using HCOK
(though the best CS100 predictor was ICOK using slope as covariate). Its higher spatial resolution
(5 m) seems to be important to find the spatial cross-continuity between CS and NDVI. Rocchini [43]
points out that sensors with higher spatial resolution capture higher levels of detail, consequently
better representing the spatial variation within a short distance. On the other hand, coarser resolution
data (for example, Landsat 8 OLI with 30-m resolution) tend to have mixed-pixel problems and hence
less sensitivity to spatial complexity at short distances. However, in the opposite direction, recent
research has shown that higher spatial resolution in covariates does not necessarily improve prediction
quality [44].

4.2. Performance of the Different Prediction Methods

The performance of the prediction methods applied in this study changed according to the soil
attribute being mapped. Ordinary kriging presented the best performance to predict sand content at
the surface and silt both at the surface and subsurface, whereas the clay content at the subsurface was
better predicted using RK. The only soil variables that could be cokriged were CS100 and silt at the
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subsurface. This is unfortunate because CS100 was best predicted by ICOK and the cokriged silt maps
were practically as accurate as the OK one. This suggests that the other soil variables could have been
better predicted by cokriging but only a few covariates had the necessary spatial configurations to
meet the assumptions of this method (for example, NDVI derived from RapidEye). These results are
in accordance with other studies [45,46] showing that there is no single best prediction method for
all soil attributes. Cokriging and RK, despite having potential to improve the predictions, are more
complex methods, and thus, the extra effort for their implementation must be taken into consideration.
The RI (Table 5) gives an idea of how much improvement can be obtained from applying cokriging or
RK, relative to OK, which takes the least effort. Kravchenko and Robertson [47], mapping total soil
carbon, evaluated the RI of applying RK compared to OK. The authors found that the combination
of the primary variable having strong spatial continuity (nugget-to-sill ratio < 30%), and the primary
and secondary variables being relatively weakly correlated (R2 < 0.40) appeared to be particularly
unfavorable to obtain any improvement from RK. Besides, when the R2 was smaller than 0.30, the
maximum improvement from RK did not exceed 10%. The same reasoning from Kravchenko and
Robertson [47] can be considered to explain the poor performance of RK in this study (RI < 10%), since
the R2 of all regression models were less than 0.30. The exception was the clay content at the subsurface,
which had a R2 of 0.15 and a nugget-to-sill ratio of 70.1%, but still was better predicted by RK than
OK. Its high nugget-to-sill ratio can be caused by measurement errors and by the limited number
and spatial configuration of the training observations, which might not have captured the structural
variance at shorter distances. The weak correlation between the clay content at the subsurface and the
covariates from the regression models can be a consequence of the reduction of the effect of topography
and surface processes as the soil depth increases. For example, within a relatively short distance,
some soils in the study site have textural gradients (intensive increase of clay content with depth),
while others do not. The textural gradient depends on the translocation of clay, which, in turn, depends
on both the water dynamics and the degree of clay flocculation or dispersion within the soil profile.

5. Conclusions

This work hypothesized that the use of relief, multispectral and radar remote sensing data
can improve the accuracy of soil attribute predictions under Amazon native forest. Although the
improvements were modest and limited to a couple of soil attributes, there is potential to use remotely
sensed multispectral and radar data in the Amazon to improve the accuracy of soil attribute predictions.
However, further research is necessary to better connect soil formation proxy variables derived
from remote sensing to the spatial distribution of soil attributes in the Amazon, including the more
commonly used vegetation indices and relief variables, but especially those still little explored like
L-band radar data. The Amazon Rainforest offers harsh conditions for both soil data collection in the
field (due to its remoteness, access limitations, risks, etc.), and data correlation between field soil and
remote sensing data (due to the dense land cover that hinders direct soil observation from above, with
the models relying on indirect correlations among remote sensing reflectance data, vegetation/land
cover, and soil attributes).

The source and type (multispectral vs. radar) of the remote sensing data influenced which
covariates were selected by the prediction models, with the NDVI derived from Landsat 8 OLI
and the ALOS PALSAR backscattering coefficients most frequently selected. On the other hand,
among multispectral and radar covariates, only RapidEye NDVI presented spatial cross-continuity
to predict CS100 by cokriging. This may be related to the spatial resolution of the data, because
only fine-resolution (multispectral and relief) covariates could be used for cokriging, contrary to the
coarser-resolution radar (12.5 m) and Landsat 8 data (30 m). This is important because ICOK and
HCOK presented lower RMSE to predict CS100, thus it may be worth testing other fine-resolution data
in the search for a better improvement than those found in this study that reached a maximum of 8%.
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