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INTRODUCTION 
The acquisition of high resolution geographic data through laser technology has 

recently being expanded due to the development of LiDAR (Light Detection and Ranging) 
system. This technology’s growth is relying on its great ability to acquire information in large 
quantity and short time. The geographic data provided from laser scanning is capable of 
raising information for coast planning, assess flooding risk, power transmission network and 
telecommunication, forests, agriculture, oil, transportation, urban planning, mining, among 
others (GIONGO et al., 2010). 

LiDAR technology follows the same principles as the RADAR system, with the 
difference of using laser pulses to locate features, instead of radio waves. Not only for its 
ability to deal with large amounts of information in such a short period of time, LiDAR has 
the advantage upon the classic passive sensors (aerial photographs and satellite images) of not 
depending on a source of light, and so its data will never present shadows from clouds or 
neighboring features (GIONGO et al., 2010). 

Data from LiDAR sensor is distributed in a point cloud where each point has at least 
three-dimensional spatial coordinates (latitude, longitude and height) that correspond to a 
particular point on the Earth’s surface from which the laser pulse was reflected. 

Once LiDAR data is acquired the next step is  use algorithms that separate points (also 
referred to as returns) on the point cloud that represents the ground and the ones above the 
ground level, those algorithms can then process series of interpolation that allows the operator 
to generate Digital Elevation Models (DEMs). In order to add information for the points 
within the DEM, labeling those returns following a pattern and then grouping them on 
clusters is useful as one of the steps in exploratory data analysis. 

Several methodologies were developed to organize a pattern of points in a 
multidimensional space into clusters based on similarity. Points belonging to the same cluster 
are given the same label and present a pattern where they are more similar to each other than 
they are to a pattern belonging to a different cluster (JAIN et al., 1999). One example to apply 
this technology on forestry activities is the application of silvicultural treatment to improve 
the forest’s productivity, where the decision is taken considering characteristics from the site 
and sites with similar characteristics may have the same silvicultural system.  

The variety of techniques for grouping data elements has produced a rich and often 
confusing assortment of clustering methods. Furthermore, there is a lack of studies grouping 
topologic and hydrologic variables at forested environments. The goal of this survey is to 
evaluate k-means and CLARA clustering techniques on a LiDAR-derived DEM from 
southern Amazonia, in the municipality of Cotriguaçu, Mato Grosso, Brazil. 
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MATERIAL AND METHODS 
The LiDAR survey area used in this paper comprises 250 ha of secondary rain forest 

and lies in a region where weather prevails belonging to group A tropical rainy climate, type 
“Am”, common to the short period of drought and rainfall below 60 mm in the driest period 
of the year. The vegetation covering the study area consist of Open Tropical Rain Forest, 
submontane formation with palm trees. Its physiognomy shows large trees spaced grouped 
with palm trees presenting a number of features with large leaves and rough bark (BRAZIL, 
1982). 

Esteio Ltda., a LiDAR data provider located in Curitiba, Paraná, Brazil, acquired the 
LiDAR data in one flight on 2011 using a Leica ALS-50 discrete-return LiDAR system. The 
LiDAR data used here is part of the data belonging to the Sustainable Landscapes Project, a 
project working through the cooperation of the Brazilian EMBRAPA and the United States 
Forest Service. 

The LiDAR point cloud was summarized to create a digital elevation model (DEM). 
The DEM was created by first separating ground returns following the MCC (Multiscale 
Curvature Classification) algorithm from Evans and Hudak (2007). For the implementation of 
the MCC algorithm it is firstly required the definition of a vector Z which comprises the X 
coordinate, Y coordinate and Z (elevation) of all LiDAR returns. The Z vector is used to 
interpolate a raster surface using a thin-plate spline (TPS) interpolation at a cell resolution 
defined by scale parameter λ. A curvature tolerance (t) is then added to the interpolated 
surface and points are classified as nonground by applying the conditional statement “IF Z(s) 
> t THEN classify as nonground” (EVANS; HUDAK, 2007). In this study a scale parameter 
(λ) of 1.5 and a curvature tolerance (t) of 0.3 were applied to classify the returns as ground or 
nonground points. 

This study estimated three topographic and hydrologic variables that are frequently 
associated to erosion and soil moisture condition.  There variables are: slope, topographic 
wetness index (TWI). The slope tool of ESRI software ArcGIS 10.0 was applied to generate 
DEM map which calculate the maximum rate of change in degree between each cell and its 
neighbors, This approach provides a slope value for every cell in the output raster. Slope 
values will then represent a flatter terrain in case it is low, or steeper terrain if it is a high 
value. 

 In order to proceed for the Topographic Wetness Index (TWI) calculation (Equation 
1), the flow accumulation needed to be calculated providing a flow accumulation value for 
every cell in the raster. Combining slope and flow accumulation, the TWI could then be 
calculated providing each cell in the output raster a TWI value that represent drainage 
depressions for higher values, and crests and ridges for lower values. 

TWI= ln (a÷ tan B)              																																			                                                            (1) 

where, 
TWI – Topographic Wetness Index (TWI); 
a – upstream contributing area (flow accumulation) (m2) e 
B – slope. 

Through the R software environment for statistical computing (R CORE TEAM, 
2015), k-means and CLARA (Clustering for Large Applications) (ROUSSEEUW et al., 2016) 
clustering algorithms were computed for every cell combining the data in a pattern of points 
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with similarity on Z (elevation), slope and TWI values. Finally a map with the  four and six 
clustered was generated and evaluated using both clustering methodology. 

 
RESULTS AND DISCUSSION 
Exploratory analysis from means of variables set grouped by clusters and compared with 
same landscape position, as shown in Table I, reveled that means between both techniques 
were not significant different (Welch two sample t-test – p < 0.05). A clusters value from 
CLARA methodology was slightly higher than other clusters in K-means. However, 
considering only means attributes assessment it seems that both clustering brought any 
difference among clusters characteristics.   
 
Table 1. Exploratory analysis. 
Variable K-means  clustering CLARA clustering 

 Cl 1 Cl 2 Cl 3 Cl 4  Cl 2 Cl 1  Cl 4  Cl 3 
Mean Slope (degree) 17.4 5.4 10.8 5 15.6 5.5 10.8 5.1 
Mean Elevation (m) 298 270 321 281 299 269 323 279 
Mean TWI 2.9 3.9 3.3 3.9 3.04 3.9 3.3 3.9 

The graphic representation of both clustering techniques k-means and CLARA with 4 
and 6 clusters is illustrated on Figures 1 and 2. It was clear to notice that different labels were 
given to the clusters when individual methodology was applied. For example, the cluster 
representing crests, higher and steeper ground surfaces, which means low TWI and high 
Slope values were combined in the cluster labeled as 3 at the k-means clustering and as 4 at 
CLARA’s when considering a total of 4 clusters (Figure 1). The same change can be observed 
when considering 6 clusters in total (Figure 2).  

 
Figure 1. Graphical representation of the LiDAR-derived DEM (a), k-means (b) and CLARA (c) clustering with 

4 clusters from the Cotriguaçu area. 
 

The drainage depressions are clearer when using 6 clusters rather than 4 on both 
clustering methods. Among the two methodologies, visually, k-means shows itself more 
efficient when providing details about depressions on the ground surface.  
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Figure 2. Graphical representation of the LiDAR-derived DEM (a), k-means (b) and CLARA (c) clustering with 

6 clusters from the Cotriguaçu area. 
 

When it comes to the area covered by each cluster, we can say that there is not a huge 
difference between k-means and CLARA for 4 clusters. But when considering 6 clusters, 
CLARA seems to overrate the area covered by clusters 2 to 5 over underestimating the area 
covered by clusters 1 and 6. In each method, the area corresponding to crests, or higher 
ground surfaces, are very close to each other in dimension. In the other hand, the area 
corresponding to the lower and flatter ground surface shows a great difference between the 
two methods. 

CONCLUSION 
The two clustering techniques provided different labeling for the same surface feature. 

K-means is a more efficient tool for providing details about drainage depressions. However, 
statistically speaking, it seems that clustering methodologies create clusters with similar 
characteristics.  In both situations (4 and 6 clusters) the k-means method presented better 
imaging for topographic and hydrological features, being, thus, more recommended then 
CLARA when applying clustering to LiDAR-derived ground returns from forested areas. 
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