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Abstract

Crop models can aid the synthesis and application of

knowledge, planning of experiments and forecasting

in agricultural systems. Few studies have reviewed the

uses and applications of these models for tropical for-

ages. The purpose of this study was to review the

information available in this scientific area, highlight-

ing the main models, their applications and limita-

tions. Several empirical models have been developed

to predict the growth and biomass accumulation of

tropical forages, especially for the genera Cynodon,

Paspalum, Panicum and Brachiaria. Their application,

however, is often location or region specific. The adap-

tation of mechanistic models to accurately predict bio-

mass accumulation in tropical grasses is still limited.

Recent advances have been made on the plot-scale

and farm-scale process-based models ALMANAC,

CROPGRO Perennial Forage and agricultural production

systems simulator (APSIM), with promising results. In

addition, global-scale process-based models, such as

the Century Agroecosystem Model and the Orchidee

Grassland Management Model, have been tested for

tropical grassland areas. A greater number of region-

specific calibrations of empirical models can enhance

their use, and improved databases and model parame-

terizations for a wide range of tropical grasses will

enable the continuous improvement of mechanistic

models.
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Introduction

Crop models can be valuable tools to evaluate long-

term effects of environmental variations (e.g. weather

patterns and soil characteristics) and management on

plant responses, but they must be tested and calibrated

for new regions before their application can be extrap-

olated to predict crop responses accurately (Wu et al.,

1996). Models can summarize a great deal of informa-

tion, facilitate knowledge application and be used in

defining agricultural policies, agro-climatic zoning, cli-

mate change studies and production planning.

Crop models are used to integrate multidisciplinary

knowledge, based on processes regarding soil physics

and chemistry, plant physiology and genetics, weather

and farming management. The effects of these pro-

cesses can be coded as simple written verbal descrip-

tion or may be a comprehensive set of equations used

in the simulation of a given system (Sinclair and Selig-

man, 1996) which is used to predict growth, develop-

ment and yield (Hoogenboom, 2000), even for large-

scale applications (Rosenzweig et al., 2013a). Thus,

models can aid in the organization, interpretation and

application of current scientific knowledge, identifying

research priorities in areas where current knowledge

is insufficient and favouring the appearance of new

ideas.

Crop modelling has been an effective tool in simu-

lating plant growth, and since the 1980s there have

been significant advances, mainly due to the increased

demand for accurate predictions in crop management

scenarios, as well as in studies on climate change and
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as a result of advancements in information technology

(Dourado-Neto et al., 1998a).

Model users have followed this progress, which is

best expressed by the increase in the number and

complexity of models available (Grable, 1987) and on

the extension of their applicability (Holzworth et al.,

2014). Users should be cautious, however, with regard

to inherent limitations of crop modelling, including

the need for time–space–crop evaluation and uncer-

tainty quantification. In general, the greatest limita-

tion for developing and improving crop models is the

limited availability of information and knowledge

about the physical and physiological processes

involved (Marin et al., 2014), the responses of the sys-

tem to be simulated, and data availability (Hoogen-

boom, 2000). Therefore, model users should choose

the model that can achieve their objectives with the

available data (Dourado-Neto et al., 1998b).

Despite their importance and dissemination, crop

models are still little used in most tropical areas, and

few studies have reviewed or evaluated the applica-

tion of models created or adapted for tropical forages.

This is partially explained by the lack of understanding

of their capabilities and limitations, lack of experience

in calibrating, evaluating and using models, and a gen-

eral lack of model credibility in tropical areas (Marin

and Jones, 2014).

The objective of this review was to report the main

aspects regarding the use of models to predict tropical

grass growth and biomass accumulation (often

expressed as net accumulation of above-ground dry

matter, DM), including a brief historical perspective,

major advances achieved, types of models created and

adapted, and their applications and limitations.

Classification and use of models

Across the various scientific disciplines, models range

from very simple, with only one linear equation, to

extremely complex, with thousands of equations (Ho-

ogenboom, 2000). Ideally, models to predict crop

growth and yield should be sufficiently simple to be

readily understood and used, and yet include suffi-

cient detail to allow for application under a wide

range of conditions (Dourado-Neto et al., 1998c).

Models have multiple classifications. They can be

static or dynamic, discrete or continuous, deterministic

or stochastic, and mechanistic or empirical. Dynamic

models describe how state variables evolve over time,

while static models do not. Both the discrete and con-

tinuous models are dynamic; in continuous models,

time is an actual value (e.g. 2�24 h), whereas in the

discrete models, time is determined by integer values

(e.g. 2 h). Stochastic models include a random factor

or probability distributions, while the deterministic

models do not (Teh, 2006). Models to simulate crop

yield are generally dynamic and deterministic models:

they represent how a system responds over time with-

out an associated probability distribution (Thornley

and Johnson, 1990). They can be mechanistic and

empirical, and these are the models targeted in this

review.

Mechanistic models consider the knowledge of

physical, chemical and biological processes that govern

the phenomena under study. Sometimes they are con-

sidered explanatory because they express a cause–
effect relationship between the variables (Teh, 2006).

Empirical models are also called correlative or statisti-

cal models (Dourado-Neto et al., 1998b), offering little

or nothing to the understanding of the cause–effect
processes involved, and are designed to obtain the cor-

relation between crop production with one or more

variables such as temperature, radiation, water avail-

ability and nutrients, especially nitrogen. The empiri-

cal models are currently the most widely studied and

used under tropical conditions (Overman et al., 1990;

Tonato et al., 2010; Cruz et al., 2011).

The choice of model will depend on the objectives

of the simulation and the information (data) available.

Mechanistic models are developed based on the

understanding of the phenomena which allow for

their use under several conditions, but this requires

more information and data. These models are more

commonly used in research environments. Empirical

models are simple to develop and easy to apply. They

are, however, more prone to error and are limited to

the range of conditions under which they were

calibrated (Dourado-Neto et al., 1998b).

To a certain degree and observation level, most

crop models are empirical (Dourado-Neto et al.,

1998b). For example, considering a whole plant, a

model is mechanistic if it simulates leaf area genera-

tion and light interception, photosynthesis, assimilate

partitioning, water balance, and nutrient status in the

soil–plant–atmosphere complex. Conversely, the

model is empirical in estimating, for example, the rate

of leaf photosynthesis, because the processes involved

(capture of light, electron transport, synthesis of ATP

and NADPH, CO2 fixation, etc.) are not represented,

and photosynthetic rate is estimated empirically

according to leaf conditions.

An international survey of the Climate Change,

Agriculture, and Food Security Program revealed that

57% of the individuals polled indicated their prefer-

ence for mechanistic models, 14% for empirical mod-

els and 29% used other models (Rivington and Koo,

2010). These results reflect the increased demand for

improving the understanding of processes, which

according to the survey is the most important purpose

of modelling. By improving this understanding,
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models can assist in the decision-making, in simulat-

ing production, in research on crop management and

genetic improvement, among others, which together

comprise the main objectives of model developers and

users (Table 1).

Mechanistic models have been chosen by scientists

because they are scientifically accepted as predictors of

a wide range of responses, either for large-scale simu-

lations or farm- and plot-scale studies. Simulations on

impacts of climate change are examples of current

applications of mechanistic crop models, given that

they rely on the state-of-the-art of the physiological

and physical principles for a given species (Rosenzweig

et al., 2013b). In addition, previous studies with maize

and wheat have shown how prediction uncertainty

can be reduced using model ensembles (or multimodel

simulations) (Palosuo et al., 2011; R€otter et al., 2011;

Asseng et al., 2013), indicating that there are differ-

ences among approaches used in these models and

emphasizing the complementary benefits of having

several models as estimators of biophysical processes.

Physiological processes are essential elements for

improving plant modelling, and most model weak-

nesses would be overcome by better understanding

the main physiological aspects related to plant growth

and development (Marin et al., 2014). Besides being

genotype-dependent, photosynthesis, respiration, car-

bon partitioning and water relations are differentially

affected by the agricultural environment. Long-term

climate projections have shown that air temperature,

rainfall, air CO2 concentration and solar radiation are

the most likely climate variables to be changed in the

future (Trenberth et al., 2007). In fact, most crop mod-

elling has been developed to understand the effects of

agricultural practices and environmental factors on

crop production and particularly food and energy sup-

ply (Jones et al., 2003; Keating et al., 2003).

Empirical models

Regression analysis is the most commonly used tech-

nique to generate empirical models. It is a statistical

approach used to define functional relationships

among experimental data and has been used since the

early 1900s when wheat (Triticum aestivum L.) yield

was correlated with the amount of rainfall at the Ro-

thamsted Experimental Station, England (Fisher,

1925). Since then, many studies have used regression

analysis in order to generate equations to estimate

crop production (dependent variable) as a function of

environmental factors (independent variables).

Empirical models are often also based on other

derivative variables such as (i) growing degree days

(GDD); (ii) photothermal units (PU) (Villa Nova et al.,

1999), which consider GDD and day length; and (iii)

climatic growth index (CGI) (Fitzpatrick and Nix,

1973), which takes into account the global radiation

(Rg), a thermal growth index and a drought attenua-

tion factor, usually the ratio between actual (AET)

and potential (PET) evapotranspiration.

The GDD value expresses the accumulated thermal

energy that can be effectively used by crops for

growth. To estimate the GDD, the base temperature

(Tb) for crop growth is needed, in addition to air tem-

perature. Under tropical conditions, Equation 1 is the

most common method to estimate GDD for one day.

GDD ¼ Tmean� Tb ð1Þ

where Tmean is the mean temperature of the day.

The lower base temperature can be accurately

determined in growth chambers, isolated from other

factors. However, recent studies have estimated the

lower base temperature from field experiment data by

regression of forage accumulation with average air

temperature, considering as base temperature the one

at which herbage accumulation rate is zero (Cruz

et al., 2011; Araujo et al., 2013; Moreno et al., 2014).

Despite the controversy regarding this method, due

to the extrapolation of results to the zero-accumula-

tion rate (seldom observed in those studies), the simu-

lated biomass values have shown consistent results

when compared to observed data. In these simula-

tions, it is common to use a generalized value (15°C)
as Tb for tropical forages (Cooper and Tainton, 1968;

Moore et al., 2004), although the exact Tb is often

unknown. Thus, it is important that the Tb used or

Table 1 Percentage (%) of responses to the question ‘What

are the models used for?’ aimed at the creators and users of

models, according to the sample survey held worldwide.

Response

Main

objective

Secondary

objective

Assist in

decision-making

25 13

Impacts and/or adapts

to climate changes

24 28

Simulation/prediction

of yields/productivity

22 23

Research for improved

management

19 19

Research for genetic

improvement

7 5

Education/training 3 7

Optimized operations 1 5

Source: Rivington and Koo (2010).
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estimated by the author of the model be considered,

because although it is constant within species, varia-

tions have been observed across studies (Table 2).

The PU method considers the combined effect of

air temperature and day length, according to Villa

Nova et al. (1999). PUs are calculated as follows:

PU ¼ ðn=2 � GDDÞðNf =Niþ1Þ
h i

=ðNf =Niþ 1Þ ð2Þ

where GDD is calculated according to Ometto

(1981), n is the number of days in the growth cycle,

and Ni and Nf are the initial and final day length

values of the growth period, which are calculated as

follows:

N ¼ 24=p � cos�1 cos 109=106 � pð Þ � sine kð Þ � sine uð Þ½ �
= cos kð Þ � cos uð Þ½ �

ð3Þ

where k is the latitude and φ is the solar declination,

given by:

u ¼ 23:5p=180 � cos 2p=365 � DOY� 173ð Þ½ � ð4Þ

where DOY is the day of the year.

The CGI can be calculated according to Fitzpatrick

and Nix (1973) as follows:

CGI ¼ LI � TI �WI ð5Þ

where LI is the light index given by:

LI ¼ 1� exp �3:5 Rg=750ð Þ½ � ð6Þ

where Rg is incoming global solar radiation (cal

cm�2 day�1), TI is the thermal index, derived from

the curves relating to DM yield and average daily air

temperature, and WI is the water-index ratio calcu-

lated as follows:

WI ¼ Actual Evapotranspiration (mm)

Potential Evapotranspiration (mm)
ð7Þ

Predicting biomass accumulation by regression with

air temperature has been widely used due to its con-

ceptual simplicity and applicability, as well as the good

association between temperature and photosyntheti-

cally active radiation. Good predictions have been

obtained by regressing growth of Brachiaria (Syn. Uro-

chloa), Panicum (Syn. Megathyrsus) and Cynodon grasses

against daily minimum temperature (Tonato et al.,

2010; Cruz et al., 2011); (Table 3).

Tonato et al. (2010) analysed empirical forage bio-

mass prediction models using the weather variables:

Tmin, Tmax, Tmean and Rg. The authors compiled

data from five independent experiments, including

four from south-eastern and one from central Brazil,

and concluded that Tmin had the greatest predictive

power for forage accumulation rate (kg DM

ha�1 day�1) for Brachiaria, Panicum and Cynodon

(Table 3).

The marked effect of temperature on plant growth

is mainly related to the strong effect of temperature

on enzyme activity, including effects on photosynthe-

sis and transport processes in membranes (Salisbury

and Ross, 1991; Moore et al., 2004). The balance

between the reaction rate and the enzyme denatur-

ation rate provides the activity rate, thereby the mini-

mum, maximum and optimum cardinal temperatures

(Salisbury and Ross, 1991). The cardinal temperatures

for tropical forages often found are of approximately

�9�7 to �2°C as minimum for survival, 15°C as mini-

mum for growth, 30–35°C as optimal for growth and

50°C as the threshold for physiological disorders (Coo-

per and Tainton, 1968; Ludlow, 1980; Jones, 1985;

Moore et al., 2004).

Table 2 Base temperature (Tb) for different tropical and

subtropical grasses in specific field conditions.

Grasses Tb (°C) Reference

Brachiaria brizantha

cv. Marandu

17�2 Cruz et al. (2011)

Brachiaria brizantha

cv. Marandu

15 Mendonc�a and

Rassini (2006)

Brachiaria decumbens

cv. Basilisk

16�7 Mendonc�a and

Rassini (2006)

Pennisetum purpureum

cv. Napier

13�9 Mendonc�a and

Rassini (2006)

Pennisetum purpureum

cv. Napier

15 Villa Nova et al. (2007)

Panicum maximum

cv. Mombac�a
15�6 Araujo et al. (2013)

Panicum maximum

cv. Tanzânia

15 Mendonc�a and

Rassini (2006)

Paspalum atratum

cv. Pojuca

15�6 Mendonc�a and

Rassini (2006)

Cynodon nlemfuensis

cv. Florico

11�5 Villa Nova et al. (2007)
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Cruz et al. (2011) evaluated several meteorological

variables (Tmin, Tmax, Tmean, Rg, GDD, CGI, PU

and AET), corrected or not by a drought attenuation

factor (AET/PET), in predicting the dry biomass yield

of B. brizantha cv. Marandu with data obtained in

south-eastern Brazil. The best results were achieved

using multivariate linear regression for Tmin, Rg and

AET and with the univariate regression against cor-

rected GDD, corrected Tmin or CGI (Table 3). The

inclusion of the drought attenuation factor in the

model improved the predictive power of the vari-

ables (highest determination coefficient, R2 and

lower Akaike information criterion, AIC; Table 3)

indicating it can be a good option for rainfed condi-

tions.

Pezzopane et al. (2012) used such a correction fac-

tor for estimating Tanzania guineagrass (P. maximum)

yields. The factors were given by the AET/PET ratio or

by the current/maximum soil moisture storage ratio,

considering the sequential water balance (scale of five

days) and storage capacity of 100 mm. The best-fit

variables were those simultaneously associated with

temperature and water availability such as AET, GDD

corrected by the two water factors and the CGI

(Table 3). Although the variables that considered the

two water correction factors (DDWI and DDWS)

showed high correlation and similar statistics for the

tested conditions, Pezzopane et al. (2012) pointed out

differences in yield estimates between the two water

availability correction factors. In very dry periods and

at the onset of the rainy season, the current/maxi-

mum soil moisture storage ratio index seems to per-

form better than the AET/PET ratio, probably because

the latter is not sensitive to the lag time for soil water

replenishment.

A series of papers (Tonato et al., 2010; Cruz et al.,

2011; Pezzopane et al., 2012; Araujo et al., 2013)

reporting on the calibration of empirical models for

tropical forage grasses, showed that the average tem-

perature of the experiments used to generate these

models ranged from about 16–26°C. The experiments

used a variety of forage genotypes, but some models

were grouped for forages with similar responses. In

general, the models were univariate and linear, there-

fore simple and easy to apply. The fit ranged from R²
between 0�40 and 0�87, depending on the genotype

and the variable used (Table 3).

Forage production during the regrowth of ele-

phantgrass (Pennisetum purpureum Schum.) as a func-

tion of PU was estimated by the equation P = 1�261/
(1+e 2.85 – 0.008133 9 PU) by Villa Nova et al. (1999)

in south-eastern Brazil, where P is the amount of

dry matter produced and PU is the total of photo-

thermal units accumulated during the growth cycle.

Table 3 Univariate linear empirical models correlating dry-matter production with temperature or related variables.

Grass Variable Slope Intercept R² Reference

B. brizantha cv. Marandu Tmin 11�93 �134�95 0�73 Cruz et al. (2011)

B. brizantha cv. Marandu Tmincorr 5�78 �17�24 0�75 Cruz et al. (2011)

B. brizantha cv. Marandu GDDcorr* 12�9 6�52 0�75 Cruz et al. (2011)

Brachiaria Group 1§ Tmin 8�19 �94�92 0�55 to 0�5 Tonato et al. (2010)

Brachiaria Group 2¶ Tmin 10�66 �128�07 0�55 to 0�6 Tonato et al. (2010)

Cynodon Group 1† Tmin 9�06 �84�69 0�6 to 0�7 Tonato et al. (2010)

Cynodon Group 2k Tmin 7�97 �67�01 0�6 to 0�7 Tonato et al. (2010)

Panicum Group 1†† Tmin 6�36 �55�22 <0�4 Tonato et al. (2010)

Panicum Group 2‡ Tmin 5�93 �29�15 <0�4 Tonato et al. (2010)

P. maximum cv. Mombac�a ƩUF 0�226 600�01 0�86 Araujo et al. (2013)

P. maximum cv. Mombac�a ƩICC 368�14 �311�94 0�83 Araujo et al. (2013)

P. maximum cv. Mombac�a ƩGDD 11�52 �304�8 0�78 Araujo et al. (2013)

P. maximum cv. Tanzânia AET 34�73 �21�58 0�87 Pezzopane et al. (2012)

P. maximum cv. Tanzânia GDDcorr* 18�80 �17�02 0�84 Pezzopane et al. (2012)

P. maximum cv. Tanzânia GDDcorr** 18�90 �6�38 0�87 Pezzopane et al. (2012)

P. maximum cv. Tanzânia CGI 330�09 �12�88 0�84 Pezzopane et al. (2012)

(i) the response variable (y) is the forage accumulation rate (kg DM ha�1 day�1), except for the models of Ara�ujo et al. (2013),

which were generated with the daily sums of the entire cycle; hence, the response variable (y) is the total forage mass in each

cycle. (ii) The temperature values are given in degrees Celsius (°C). Tmincorr, minimum temperature corrected by a drought

attenuation factor; GDDcorr, growing degree days (calculated based on Tb) corrected by a water penalty factor: *by the AET/PET

ratio and **by the current/maximum soil storage ratio; CGI = daily climatic growth index; ƩUF = sum of daily photothermal

units; ƩICC = sum of CGI; ƩGD = sum of degree days. †Tifton 85 and Estrela. ‡Tanzânia and Tobiat~a. §Marandu, Basilisk and

Arapoty. ¶Capipor~a and Xara�es. kCoastcross, Florico and Florona. ††Atlas and Mombac�a.
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The CGI concept (Fitzpatrick and Nix, 1973) was

used in southern Brazil (Mota et al., 1981) and for 47

locations in the state of S~ao Paulo (Pedro, 1995) in

comparison with the observed forage accumulation

rates for guineagrass, molasses grass (Mellinis minutifl-

ora Beauv.), jaraguagrass (Hyparrhenia rufa Nees.) and

pangola digitgrass (Digitaria pentzii Stent.). The best-fit

curves were exponential and R² values ranged from

0�58 to 0�81 for guineagrass and molasses grass respec-

tively.

Empirical models where production is predicted as

a function of nitrogen availability have also been

developed. Overman and Angley (1986) and Overman

et al. (1988) suggested and evaluated models consider-

ing nitrogen availability for bermudagrass [Cynodon

dactylon (L.) Pers.] from data obtained in the south-

eastern USA. Overman et al. (1990) adjusted the equa-

tion y = A/(1+ e b�cN), where y is the estimated annual

DM yield (Mg ha�1), N is the nitrogen applied (Mg

ha�1), A is the maximum annual yield (Mg ha�1), b is

the intercept with the y-axis, and c is the response

coefficient (ha kg�1). The parameters A, b and c are

estimated empirically by experimentation.

Almeida et al. (2011) associated PU with nitrogen

fertilization and water availability to simulate growth

of Tanzania guineagrass. This approach allows simula-

tion of forage production under different levels of fer-

tilization for irrigated or rainfed conditions, thus

expanding the applicability of this type of model. The

major limitation of the study was that it used only

greenhouse data, which were collected at a single

location. Thus, further calibration with field experi-

ment data is needed if application of the model to pro-

duction systems is intended.

Some of the empirical models already developed

for tropical grasses have good predictive capability and

are easy to apply because the input variables, espe-

cially temperature, are often easy to obtain in most

tropical regions (Table 3). The major limitation of

these studies is their geographic concentration, espe-

cially in south-eastern Brazil and in the south-eastern

United States. This limits the range of environments

(climatic conditions) represented, as well as the use of

these models in regions other than those where the

data sets were collected and the models developed. In

addition, interactions among factors (temperature,

light, moisture, nitrogen, etc.) used as forage accumu-

lation predictors may further limit model predictive

power, if application conditions are not similar to

those used to develop the model. Further experimen-

tation in this field should consider especially equato-

rial regions (latitudes lower than 16° and mean

temperature above 26°C), where tropical grass produc-

tion is relevant.

Mechanistic models

Several mechanistic models have been developed or

adapted for forages in different regions of the world.

Most, however, include the basic knowledge derived

from models developed for row crops or have been

evaluated and/or are only available for temperate for-

age species. Since mechanistic models simulate growth

based on plant processes, they can be adapted for con-

ditions other than those under which they were origi-

nally generated. Examples include recent adaptations

of models that were originally developed for row crops

or for temperate forages in the USA and Australia and

which have been calibrated for tropical forages in Bra-

zil (Pedreira et al., 2011; Lara et al., 2012; Araujo et al.,

2013).

These models are usually based on hundreds (or

thousands) of equations for many individual processes,

often organized in algorithms and user-friendly inter-

faces. Generating a mechanistic model involves

knowledge about the system to be simulated (Doura-

do-Neto et al., 1998b), organization, interpretation and

a massive knowledge of physiology, beyond validating

the model with experimental data.

A basic understanding and appreciation of the key

plant physiological processes and the interactions with

other processes in the farming system is the basis for

mechanistic crop modelling. This knowledge also aids

in developing decision-making criteria, from selecting

crop genotype and field site, to defining strategic crop

management and infrastructure investments (Lisson

et al., 2005). This kind of decision support based on

modelling arose in the early 1990s, as the generation

of new data through traditional agronomic research

methods was not sufficient to meet the increasing

demand for answers from research. Traditional agro-

nomic experiments are restricted in time and space,

making results site- and season-specific, time-consum-

ing and expensive. McCown et al. (1996) stated that

among the many changes taking place in agricultural

research, there is an increased recognition that a ‘sys-

tems approach’ is needed to meet the challenges pre-

sented by the complexities, uncertainties and conflicts

in modern agricultural production systems.

A comprehensive evaluation of forage models,

developed over nearly three decades ago, may be

found in Hanson et al. (1985), who evaluated the

models AFRICA, BLUE GRAMA, ELM, LINEAR,

RANGES, ROOTS, SHEEP, SAGE and SPUR. In a

recent work, Kiniry et al. (2007) developed field

parameters to enable the use of the ALMANAC (Agri-

cultural Land Management Alternative with Numerical

Assessment Criteria) model for simulating growth and

yield of bermudagrass [Cynodon dactylon (L.) Pers.],

© 2015 John Wiley & Sons Ltd. Grass and Forage Science, 71, 54–65
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Pensacola bahiagrass (Paspalum notatum Flugge) and

two warm-season range grasses native to Texas, USA.

The ALMANAC model considers water and nutri-

ent balance and interception of solar radiation. With

this model, it is possible to simulate a single plant spe-

cies or several species in competition. It was developed

to require only readily available inputs. The biomass

growth is simulated with a radiation-use efficiency

(RUE) approach, considering the leaf area index (LAI)

and extinction coefficient developed throughout the

seasons. The biomass growth rate considers flowering

effects and can be reduced by stresses such as nutrient

deficiency, drought or temperature extremes (Kiniry

et al., 2007).

In the study of Kiniry et al. (2007), the maximum

leaf area index obtained for bermudagrass and bahia-

grass was about 2�2, mean light-extinction coefficient

ranged from 0�7 to 2�1 and radiation-use efficiency of

four of the five species evaluated ranged between 1

and 2 g MJ�1. The authors concluded that the model

simulated mean forage biomass reasonably well and

that it is a useful tool to simulate the soil and climate

effects on the evaluated species and locations.

The CROPGRO and APSIM models were recently

adapted for growth simulations of tropical forages in

Brazil (Pedreira et al., 2011; Lara et al., 2012; Araujo

et al., 2013; Pequeno et al., 2014). CROPGRO predicts

the growth and composition dynamics of crops based

on input data of the physiological plant processes, soil

characteristics, climate and management (Boote et al.,

1998). These are included in the software DSSAT

(Decision Support System for Agrotechnology Transfer),

which has models for simulating the growth of 28

crops in the most recent version 4�5 (Decision Support

System for Agrotechnology Transfer [DSSAT], 2013).

From the general CROPGRO model, adaptations

have been made to simulate the growth of bahiagrass

in a rotation system with peanuts (Arachis hypogaea,

L.) in Florida (USA) and to simulate the growth of

palisadegrass [Brachiaria decumbens cv. Basilisk (Stapf.)]

in the low-latitude regions of Colombia (Giraldo et al.,

1998). The annualized version of CROPGRO model

consistently overpredicted the dry-matter yields of ba-

hiagrass, particularly in cooler months (Rymph et al.,

2004). The desire for more rigorous applications and

use of the model imposed the need for higher accu-

racy, which required better prediction capability and

more realistic representation of the seasonal and rapid

patterns of regrowth, including a storage organ for

reserves (Rymph et al., 2004). For these reasons,

Rymph et al. (2004) added code to the model to create

a true perennial CROPGRO bahiagrass model which

included a perennating storage organ (rhizome/stolon)

for replenishment of reserves and use of stored carbo-

hydrate and N for regrowth, as well as dormancy and

partitioning that responded to day length. This coding

together with more vigorous parameterization and

testing was included in the CROPGRO v 4�0 growth

model, thus conferring on the model the ability to

predict growth and N-tissue composition of bahiagrass

in response to daily weather, N fertilizer and harvest

management. The Rymph et al. (2004) version of

CROPGRO (CROPGRO Perennial Forage model), how-

ever, was not immediately incorporated into the

DSSAT platform because the source code was differ-

ent. In Brazil, the CROPGRO Perennial Forage model

was calibrated for B. brizantha cv. Xara�es (Pedreira

et al., 2011), B. brizantha cv. Marandu (Pequeno et al.,

2014), B. brizantha cv. Mulato II (Pequeno, 2014) and

for P. maximum cv. Tanzânia (Lara et al., 2012). Pedre-

ira et al. (2011), Lara et al. (2012) and Pequeno et al.

(2014) used data from Piracicaba/SP (22°420S,
47°500W) for the adaptations and found that the mod-

els effectively integrated knowledge about the forages

and also that they can be used to simulate growth

with acceptable accuracy.

Results from Pequeno (2014) suggest that it is pos-

sible to apply CROPGRO Perennial Forage model for dif-

ferent tropical grass species with minimal

parameterization effort, especially for those from the

same genera. This is possible because the internal code

of CROPGRO model is generic and the model reads

and uses input files that define species traits and culti-

var attributes. For each species, the CROPGRO Peren-

nial Forage model species file contains information

about base temperature (Tb) and optimum tempera-

ture (Topt) for developmental processes and growth

processes. In the cultivar file, the day-length effect is

modelled with two parameters that define critical day

length and slope of day-length sensitivity, which slows

or accelerates development depending on day-length

changes. The species file also includes coefficients and

other relationships for photosynthesis, N fixation, tis-

sue composition, growth and maintenance respiration

(Boote et al., 2002).

APSIM (Agricultural Production Systems Simulator) is

a modular modelling system developed by the Agricul-

tural Production Systems Research Unit in Australia to

simulate biophysical processes in whole farming

systems. The modular structure is flexible, and cur-

rently, the system is able to simulate the growth of 30

different crops and pasture species (Holzworth et al.,

2014). APSIM-Growth is a module for simulating

forage growth, and it was previously used to simulate

the above-ground DM production of Bambatsi col-

oured guineagrass (Panicum coloratum L.) in Australia.

The model was subsequently parameterized for

Brazilian conditions (P. maximum cv. Mombac�a) by

Araujo et al. (2013) using a data set from S~ao Carlos,

SP, Brazil (21°570S, 47°500W). Using the original
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parameterization, APSIM-Growth was not able to

accurately estimate P. maximum regrowth over the

seasons, as the day-length component, which shifts

biomass partitioning between shoots and roots, did not

work satisfactorily for this grass. The authors also

reported the need for changes in all original parame-

ters, such as optimum and base temperatures, specific

leaf area and radiation-use efficiency. After the param-

eterization, the models were evaluated using indepen-

dent data sets for irrigated and rainfed conditions with

satisfactory results (mean bias error of 6 kg DM ha�1

harvest�1 against the observed data set). Recent adap-

tations of the models CROPGRO and APSIM provide

promising model application possibilities in tropical

pastures, although data used on their parameterization

were incipiently concentrated in specific locations in

the USA, Australia, Brazil and Colombia.

Despite the usefulness of the CROPGRO Perennial

Forage model in agronomic decision-making, there are

opportunities for further model improvement for trop-

ical pasture application, such as grazing simulation

and its impacts on tillering and leaf appearance,

growth and senescence. The model simulates defolia-

tion and post-harvest conditions by a MOW function,

which allows for the definition of a residual stubble

mass and leaf area index.

As APSIM comprises a set of biophysical models

and a software framework that allows these biophysi-

cal models to be coupled together, it may be useful for

simulations both on plot-scale and farm-scale levels,

although other component models, besides APSIM-

Growth, still have to be tested and calibrated under

tropical conditions.

The Century Soil Organic Matter Model Environ-

ment and the Orchidee Grassland Management Model

are process-based ecosystem models designed for

large-scale applications (Parton et al., 1987; Parton

et al., 1993; Chang et al., 2013). The Century model

simulates primary productivity, soil nutrient dynamics

(carbon, nitrogen, phosphorus and sulphur), soil water

and changes in soil organic matter for different plant–
soil systems (Parton et al., 1987; Parton et al., 1993).

The CROPGRO Perennial Forage model uses the soil

organic carbon module from Century model with all

its features (Gijsman et al., 2002).

The grassland production submodel of the Century

model simulates production as a function of a maxi-

mum potential production defined for each crop and

modified by the effects of soil temperature, soil mois-

ture, shading by canopy and dead vegetation, and

nutrient availability (N, P and S) (Metherell et al.,

1993; Parton et al., 1993). The parameter for maxi-

mum potential production has both genetic and envi-

ronmental components (i.e. level of photosynthetic

active radiation, maximum net assimilation rate, effi-

ciency of conversion of carbohydrate into plant con-

stituents and maintenance respiration rate) (Metherell

et al., 1993). Maximum potential production should

reflect above-ground production in optimal summer

conditions, and this parameter may be used to cali-

brate predicted production for different environments,

species and varieties (Metherell et al., 1993). Harvest,

grazing and fire affect above-ground biomass, while

grazing and fire may also affect the root-to-shoot ratio

and nutrient content of plants (Metherell et al., 1993;

Parton et al., 1993).

Parton et al. (1993) determined that 60% of plant

productivity predicted by the Century model for C4

and C3 grasses had errors of less than 25% of the

observed production and that the general seasonal

patterns of biomass dynamics were well simulated by

the model, although differences between years with

similar rainfall were not simulated.

Orchidee is a dynamic global vegetation model

designed to simulate carbon and water cycles from a

site level to global scale. The Orchidee model is based

on three models. The SVAT SECHIBA is an atmospheric

general circulation model that describes exchanges of

energy and water between the atmosphere and the bio-

sphere, and the soil water budget (Kriner et al., 2005).

LPJ simulates vegetation dynamics (Kriner et al., 2005).

STOMATE simulates other process such as photosyn-

thesis, carbon allocation, litter decomposition, soil car-

bon dynamics, maintenance and growth respiration,

and phenology (Kriner et al., 2005). The Orchidee

model distinguishes between 12 plant functional types,

including native and cultivated C4 grasses (Kriner et al.,

2005). For each functional type, different biogeochemi-

cal parameters are determined (i.e. optimal maximum

RuBisCO-limited potential photosynthetic capacity,

optimum photosynthetic temperature, maximum leaf

area index – beyond which there is no allocation of

biomass to leaves – and critical leaf age for senescence)

(Kriner et al., 2005). Orchidee-GM incorporates a pas-

ture management model inspired in the PaSim grass-

land model (Chang et al., 2013) with cutting and

grazing practices being considered.

Coltri et al. (2014) tested Orchidee-GM against

P. maximum observed data from Brazil. Orchidee-GM

simulated leaf area index (LAI) well (R2 = 0�79;
P > 0�0001; RMSE = 1�93), leaf biomass (R2 = 0�79;
P > 0�0001; RMSE = 929�7 kg ha�1) and total biomass

(R2 = 0�89; P > 0�0001; RMSE = 4443�5 kg ha�1). The

results were not good at simulating specific leaf area

(SLA) (R2 = 0�4; P = 0�0198; RMSE = 48�54 g cm�2).

Total biomass was overestimated, particularly in winter.

The CROPGRO Perennial Forage, APSIM-Growth,

Century Agroecosystem and Orchidee Grassland

Management models may also be used in studies of

climate change, mitigation and adaptation problems,
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although those models still have to be tested for tropi-

cal grasses under extreme climatic conditions (e.g.

flooding, drought and extreme temperatures). Intra-

and interspecific differences have been observed on

responses of Brachiaria spp. to drought and flooding

(Dias-Filho, 2002; Guenni et al., 2002; Dias-Filho and

Caetano, 2008; Santos et al., 2013). Xu et al. (2013)

highlighted that there is strong evidence of enhanced

growth of water-stressed C4 plants by elevated CO2

concentrations. Although the CROPGRO Perennial For-

age and the APSIM-Growth models have been param-

eterized for tropical forages (Pedreira et al., 2011; Lara

et al., 2012; Pequeno, 2014), CO2 response equations

that mimic C4 photosynthesis have not been tested

against CO2 response data on forages. Further research

is needed to evaluate the performance of these models

for different genotypes under extreme climatic condi-

tions.

Currently, the main limitation for a broad applica-

tion of mechanistic models seems to be the availability

of input data, given that much of the data required

(soil, climate and plant parameters) are scarce or

absent for most tropical grassland areas. In addition,

experiments used for tests and calibrations have been

carried out under similar and balanced initial biomass

conditions (stubble). Extreme initial conditions also

may provide differences among grasses. In addition, all

the experiments were carried out under mean temper-

atures between 16 and 26°C. Thus, it is possible to

run simulations for many Brachiaria and Panicum spe-

cies with minimal adjustment of parameters, but reli-

able results were only obtained in standard forage

environmental conditions, i.e. without absence of

severe water and/or heat stresses.

For model improvement, in addition to more

experimentation under high temperatures and mois-

ture-stress conditions, we also suggest the develop-

ment of tools to enable the adjustment of canopy

initial growing conditions (stubble). We believe that

the implementation of standardized experimental pro-

tocols may favour the use of databases available in the

literature for model development and adaptation. Cur-

rently, it is difficult to convert available data from

tropical pasture trials (especially those from grazing

trials) into usable data for model parameterization,

mainly because most experiments were not set up

with this goal in mind, forcing researchers to estimate

a large number of parameters required by models.

Final considerations

The advancement of scientific knowledge and compu-

tational tools has made for increased development of

tropical forage growth models, and their application is

promising in research as well as in systems manage-

ment. No single model can be considered perfect, but

rather more suited or adapted to specific situations

and uses, depending on the objectives of the user and

information (data) available.

Empirical models have better use possibilities in

commercial applications, most having acceptable pre-

dictive power and are simple and easy to operate. We

highlight the univariate linear regressions using GDD

corrected for drought attenuation factors, CGI and

minimum air temperature, as independent variables.

The limitation of these models refers to the restricted

geographic range of the experimental data. These

models can be used in regions with similar climatic

characteristics, but if they are to be used in other

regions, the database should be expanded.

Thus far, studies to adapt mechanistic models for

tropical forages are limited. The initial results enable

us to use the models ALMANAC, CROPGRO Perennial

Forage, APSIM, Century and Orchidee-GM for Pani-

cum, Brachiaria, Cynodon and Paspalum grasses, with

satisfactory accuracy. Adapting them for other forages

using data from other regions would likely increase

their predictive capability.

Considering future perspectives where forage-based

animal-production systems are likely to be increasingly

challenged from technical and environmental stand-

points, with increasing demand for animal products,

and the need for fine-tuning production procedures

and processes becoming routine, forage models may

gain in importance and become common elements and

useful tools in forage-based livestock production.
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