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Abstract 
The original soil exchangeable potassium (K) concentrations are at or above critical levels in many 
Brazilian Cerrado (savanna) soils. Hence, many cropped areas have been fertilized with low K rates, 
below crop requirements, but yields have not decreased as expected. In these areas, topsoil exchangeable 
K analyses have shown no decrease, or even some increase. The aim of this study was to evaluate 
exchangeable and non-exchangeable K forms in soils under different uses and managements in the Vale 
do Araguaia region of Mato Grosso state, Brazil. Soil samples were taken from 91 sites at depths of 0-20 
cm and 20-40 cm, in areas under grain crops, pasture and native vegetation (Cerrado or forest). Silt 
content ranged from 12 to 175 g kg-1 and clay from 90 to 595 g kg-1, and the predominant clays were 
kaolinite, hematite, goethite and gibbsite. Under pasture, the soils had high levels of exchangeable K in 
the 0-20 cm layer and high levels of non-exchangeable K from 20 to 40 cm. This can be a result of the 
absorption of non-exchangeable K by grasses, the main cultivated species, by recycling K to the 
exchangeable fraction in the topsoil. There was a positive relationship between silt and non-exchangeable 
K contents. Ratios of exchangeable to non-exchangeable K were over 3 in soils with silt above 70 g kg-1, 
in which non-exchangeable K was over 100 mg dm-3. Cover crops growing in soils rich in silt take up 
non-exchangeable K and exchangeable K from deeper layers, which is recycled to the soil as 
exchangeable K upon plant residue mineralization, which may have been responsible for the maintenance 
or increase in exchangeable K levels in the 0-20 cm layer in areas where low K rates have been used for 
grain production. 
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INTRODUCTION 
More than 90% of the potassium contained in soils is in the structural fraction linked to the material of 
origin, represented as total K (Coelho & Vilagia, 1988). According to Raji (1991), the main mineral 
compounds with K are feldspar, potash and mica. The presence of the ionic form of K from this material 
of origin is due to mineralization, through weathering or “geological reaction of the decomposition of 
rocks” (Kerbauy, 2013; Kampf et al., 2009). The vermiculites, like micas, contain K between the layers, 
and in smectites, reduction of iron content facilitates the fixation of K (Curi et al., 2005). The 2:1 
feldspars, depending on chemical variations, can form potassium, sodium-calcium and barium minerals. 
A main characteristic of alkaline feldspars is the large quantities of K or Na and dearth of Ca (Melo et al., 
2009). Potassium fractions considered as having low solubility, linked to the mineral of origin, such as the 
interlayer K or non-exchangeable K, can be a source of K for plants. The action of the rhizosphere can 
deplete the K present in phlogopite minerals, transforming them into vermiculite (Hinsinger & Jaillard, 
1993; Gomers et al., 2005). 
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As the mineralogy, the soil silt content can be correlated with the levels of K (Medeiros et al., 2014). In 
this regard, Silva et al. (2008) reported that the silt fraction contains large reserves of non-exchangeable 
K. 
 
Mato Grosso state is the Brazil’s largest producer of grain crops, and the Vale do Araguaia region, in the 
state’s northeast, is an agricultural frontier region that accounts for more than 16% of the state’s soybean 
output (IMEA, 2015). This region contains highly varied soil classes, but three stand out: Dark-Red 
Latosol (Oxisoil); Red-Yellow Latosol (Oxisol); and Plinthosol (Plinthaquox) and Red-Yellow Argisol 
(Ultisols) (IBGE, 2014; SEPLAN, 2014). Few studies have been conducted to investigate the influence of 
production system or silt content in the soil on the potassium nutrition of crops, especially in soils with 
high concentrations of non-exchangeable K, characteristic of this region of Mato Grosso state. In this 
region, some areas are fertilized with insufficient K rates to replenish the quantity taken up by the crops, 
but no declines have been observed in yields or levels of exchangeable K in the arable layer (0-20 cm 
depth). The objective of this study was to assess the forms of exchangeable and non-exchangeable K in 
soils under different management systems and uses, as well as the relationship with the soil mineralogy. 
 
MATERIAL AND METHODS 
Studied region was the Vale do Araguaia (Araguaia Valley - Figure 1), which basically contains four soil 
classes: Dark-Red Latosol (Oxisoil); Red-Yellow Latosol (Oxisol); and Plinthosol (Plinthaquox) and Red-
Yellow Argisol (Ultisols) (IBGE, 2014; SEPLAN, 2014). The predominant clay minerals are kaolinite, 
hematite, goethite and gibbsite, except in the Plinthosol, where hematite is absent (Ker, 1997; Galvão et 
al., 2007). Soil samples were collected from 91 sites (Table 1). Each collection point was geographically 
referenced with a GPS device. Soil samples were collected in areas cultivated with soybeans, in a line 
transversal to the rows, at depths of 0-20 cm and 20-40 cm. At each depth, a portion of soil with thickness 
of 5 cm and width 50 cm was collected, within a 50 cm wide part of the planted row. Soil samples were 
also collected in areas of pasture and native vegetation (Cerrado or forest). Cropped areas were chosen for 
contrast regarding the use before planting soybeans: corn, millet, Urochloa (Brachiaria) or fallow (Table 
1). 
 
Exchangeable K in the soil was extracted with Mehlich-1 solution. The non-exchangeable K was 
extracted with a hot solution of HNO3 and the quantity was determined by subtraction from the 
exchangeable K value (Rouse & Bertranson, 1949).  
 
The descriptive data on the levels of K were analyzed and the correlations were determined by multiple 
regression analysis, with a predictive model for the K extractable in HNO3 based on soil chemistry 
analysis. The progressive matrices technique was used.  
 
RESULTS AND DISCUSSION 
The silt content in the top layer (0-20 cm) varied from 12 to 175 g kg-1, while the organic matter content 
ranged from 7 to 54 g kg-1 and the exchangeable potassium concentration varied from 9.5 to 319 mg dm-3. 
According to Oliveira Junior et al. (2010), in general the critical level of K in the soil is considered to 
range from 31 to 51 mg dm-3. In turn, the levels of non-exchangeable K varied from 0.01 to 403 mg dm-3 
in the top layer. At the depth of 20-40 cm, large amplitudes of the forms of K were observed. The 
exchangeable K presented a minimum value of 5.0 mg dm-3 and maximum of 191.50 mg dm-3, while the 
non-exchangeable K ranged from 0.78 mg dm-3 to 339.13 mg dm-3. 
 
Therefore, the soils in the Vale do Araguaia region presented high levels of non-exchangeable K, but in 
some cases the concentration of non-exchangeable K was up to 2.39 times more than that of exchangeable 
K in the top layer, and up to 5.52 times more in the 20-40 cm layer. As can be seen in Figure 2, the slope 
of the line is steeper in the 20-40 cm layer than in the 0-20 cm layer (2.04 and 1.7 respectively). 
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Therefore, at the depth of 20-40 cm, twice as much K was extracted in HNO3 in relation to the 
exchangeable K. 
 
At sites 24, 32, 41, 42, 43, 64 and 66, the levels of K in HNO3 were high even though the levels of 
exchangeable K were low (Figure 2). 
 
Sites 41 and 66 had been cultivated with soybeans for longer than four years, with cover of U. ruziziensis 
between crops. Besides this, these sites had not received potassium fertilization in the past three crops. 
Nevertheless, the levels of K were above the critical threshold. In these cases, the content of non-
exchangeable K was high at both depths. Site 42 is a native Cerrado area, with low exchangeable K and 
high non-exchangeable K levels at both depths.  
 
Sample 43 came from an area cultivated with pasture for more than 15 years that had never received any 
fertilization. In the top layer the level of exchangeable K was higher than that of non-exchangeable K, but 
at the depth of 20-40 cm the content of non-exchangeable K was greater than that of exchangeable K 
(Figure 2). According to Mielniczuk (2005), the straw from dried cover plants that are efficient in 
absorbing potassium releases the mineral to the soil, creating different levels from the surface to the lower 
levels of the profile.  
 
Sample 32 came from a field cultivated with soybeans, without potassium fertilization on the two 
previous crops. Even with this management, the content of exchangeable K was above the critical level. 
Nevertheless, the level of non-exchangeable K was low in the top layer (0-20 cm). These results indicate 
a tendency for transformation of non-exchangeable K to exchangeable K. This is supported by the fact 
that the soil in the forested areas on this same property (sample 32) presented high non-exchangeable K 
and low exchangeable K in both layers sampled (Figure 2).  
 
The areas with pastures (sites 43 and 66) presented the same tendency, in which the concentration of 
exchangeable K was high in the 0-20 cm layer and that of non-exchangeable K was low at the 20-40 cm 
depth. It can be stated that Brachiaria extracts potassium from the non-exchangeable fraction and transfers 
it to the exchangeable fraction of the higher soil layers. The highest concentration of Brachiaria roots was 
found in the 0-20 cm layer. These roots are responsible for depletion of non-exchangeable K and its 
transformation into exchangeable K (Hissinger et al., 1993; Gomers et al., 2005), and the deposition of 
exchangeable K occurs from senescence of the plants with the action of rain, causing this K to be 
deposited on the soil surface (Rosolem et al., 2006). This can be explained because Brachiaria extracts a 
large amount of K and exports very little, and because of the form of the K+ ions in the plant, where it is 
not part of any cell constituent. Then it is rapidly leached from the dried grass after senescence and 
deposited in the soil. This increases the fraction of exchangeable K in the surface layer. Besides this, 
livestock activity also exports very little K from the system, as reported by Vilela et al (2007). Garcia et 
al. (2008) identified absorption of the non-exchangeable K fraction by Brachiaria grown together with 
corn, because the non-exchangeable K in the soil declined in the parts covered with Brachiaria and the 
exchangeable K increased. Calonego et al. (2005) found that the release of K from dried grass cover 
occurs in rising quantities after drying, due to the loss of turgescence of the cells.  
 
Cultivated areas with Brachiaria between crops and soybeans in the summer presented distinct results: at 
site 24 the exchangeable K was higher than the non-exchangeable K while at site 41 the exchangeable K 
was lower than the non-exchangeable K. The area of site 24 received K fertilization all years, while that 
of site 41 did not. This indicates that the plants only access the less soluble source when there is no 
addition of readily available sources. Growing of cover plants in the winter, without fertilization, causes 
depletion of the non-exchangeable forms of K, with corresponding enrichment of the solution in the soil, 
a pattern than is more pronounced in plants with high extraction capacity, such as grasses (Benites et al., 
2010).  
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There was a positive and significant correlation (at 1%) between the levels of silt and non-exchangeable 
K (Table 2), at both depths, such that the higher the silt content, the greater the concentration of non-
exchangeable K. Similar results were reported by Medeiros et al. (2014) and Silva et al. (2008), indicating 
that the silt fraction contains large reserves of non-exchangeable K.  
 
The levels of non-exchangeable K were only higher than 120 mg dm-3 in the soils with silt concentration 
greater than 70 g kg-1 (Figure 4). Hence, it can be inferred that in this region, non-exchangeable K will 
only be found in soil with silt content higher than 7% (70 g kg-1). 
 
The highest levels of non-exchangeable K observed were 339.1 mg dm-3, with silt content of 100 g kg-1 

(sample 18), and 203.1 mg dm-3, with silt content of 150 g kg-1 (sample 41). According to Melo et al. 
(2003) reported higher quantities of total K in sand and silt fractions, while Castilho et al. (2002) 
concluded that the silt fraction, in the majority of soils studied, was the main source of K.  
 
Samples 2, 21, 39 and 88 contained high silt contents (Figure 3), but the levels of non-exchangeable K 
were low. The soils in samples 2, 21 and 88 were reddish, indicating a high quantity of iron oxide, which 
is an excellent cementing agent of silt in clay. This may have hampered the dispersion during analysis of 
the silt and can generate a functional silt. As pointed out by Melo et al. (2000, 2003), it can be hard to 
analyze the silt in soils with high concentrations of iron oxide, particularly because of the cementing 
effect in Latosols. Sample 39 might have come from a soil with low silt content, because soils under 
native Cerrado vegetation in the study region typically have low levels of non-exchangeable K. Therefore, 
the material of origin might have been poor in potassium.  
 
Figure 4 shows the ratio between non-exchangeable K and exchangeable K in relation to the levels of silt. 
It can be seen that the levels or silt are correlated with higher levels of non-exchangeable K in these 
samples. 
 
The samples with silt contents higher than 70 g kg-1 corresponded to the highest ratios between non-
exchangeable K and exchangeable K. All of these ratios were higher than 3 (Figure 4). The highest ratios 
between non-exchangeable K and exchangeable K were found in the samples from sites 41, 42 and 64, all 
of which were in the range of 5. In these cases, the silt contents were higher than 100 g kg-1 (Figure 4).  
 
Brazilian soils generally have high levels of non-exchangeable K, with ratios between non-exchangeable 
and exchangeable K ranging from 1 to 3 (Benites et al., 2010).  
 
Figure 5 shows a multiple regression of the variables observed K in HNO3 and the expected level, based 
on two variables: level of silt and level of exchangeable K. To estimate the concentration of K extracted 
in HNO3 in the top layer (0-20 cm), the following equation can be used (1):  
 
(1)        K HNO3 = -31.7746 + 1.6980 exchangeable K + 0.2635 silt (R2=0.82)  
 
Equation (1) explains 82% of the variation of the levels of K extracted in HNO3. The equation is highly 
significant, with an estimated error of 28. Using this equation with the concentrations of exchangeable K 
and silt (parameters routinely analyzed in soil laboratories), it is possible to estimate the content of K that 
would be extracted in HNO3.  
 
Figure 5 was plotted with data from the soil samples collected at the 91 sites in the Vale do Araguaia 
region. Note that only three data points are outside the 95% confidence interval. Therefore, equation (1) 
can be used for this region to predict the content of K that would be extracted in HNO3, since analysis 
using this extractant is more difficult and expensive than determining the content of exchangeable K 
(Mehlich-1).  
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CONCLUSIONS 

The levels of silt were directly correlated with the levels of non-exchangeable K and based on the values 
of exchangeable K and the silt concentration, the levels of non-exchangeable K (extractable in HNO3) can 
be estimated. 
 
Forage species used as cover between crops or as pasture in silt-rich soils absorb exchangeable K and 
non-exchangeable K from the subsoil, recycling K to the arable layer with mineralization of residues. 
This can explain the maintenance or even increase in the levels of K in the surface layers, even without 
application of potassium fertilizer. 
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Figure 1. Map indicating the region where the soil samples were collected. 
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Figure 2. Relation of levels of exchangeable K and K extracted in nitric acid (HNO3) at the depth of 20-40 
cm at the 91 collection sites in the Vale do Araguaia region. 
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Table 1. Simple pairwise linear correlation coefficients between the levels of exchangeable K, non-
exchangeable K and silt in the two soil layers (0-20 cm and 20-40 cm). 
Variable Non-exch K 

(0-20cm) 
Exch K 
(20-40 

cm) 

Non-exch K 
(20-40 cm) 

Silt 
(0-20 cm) 

Silt 
(20-40 cm)

Exchangeable K (0-20 cm) 0.66* 0.77* 0.58* 0.12 0.20 

Non-exchangeable K (0-20 
cm) 

 0.66* 0.95* 0.28* 0.35* 

Exchangeable K (20-40 
cm) 

  0.53* 0.10 0.13 

Non-exchangeable K (20-
40 cm) 

   0.26 0.39* 

*significant at the level 1% of probability. 
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Figure 3. Relation between levels of non-exchangeable K and silt in the 20-40 cm layer in soil samples 
from the 91 collection sites in the Vale do Araguaia region. 
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Figure 4. Ratio between levels of non-exchangeable K and exchangeable K in relation to silt levels in the 
20-40 cm layer in samples from 91 sites in the Vale do Araguaia region. 
 
 
 

 

 
Figure 5. Multiple regression of K extracted in nitric acid (HNO3), generated by the observed levels of 
exchangeable K and silt in the soil samples from the 91 sites in the Vale do Araguaia region. 


