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 11	

Abstract: Nelore is the most economically important cattle breed in Brazil, and the use of 12	

genetically improved animals has contributed to increase beef production efficiency. The 13	

Brazilian beef feedlot industry has grown considerably in the last decade, so the selection 14	

of animals with higher growth rates on feedlot has become quite important. Genomic 15	

selection could be used to reduce generation intervals and improve the rate of genetic 16	

gains. The aim of this study was to evaluate the prediction of genomic estimated breeding 17	

values for average daily gain in 718 feedlot-finished Nelore steers. Analyses of three 18	

Bayesian model specifications (Bayesian GBLUP, BayesA, and BayesCπ) were performed 19	

with four genotype panels (Illumina BovineHD BeadChip, TagSNPs, GeneSeek High and 20	

Low-density indicus). Estimates of Pearson correlations, regression coefficients, and mean 21	

squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ 22	
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model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are 23	

reasonable values given the heritability estimates (from 0.40 to 0.44) and sample size (568 24	

animals in the training population). Furthermore, results from Bos taurus indicus panels 25	

were as informative as those from Illumina BovineHD, indicating that they could be used 26	

to implement genomic selection at lower costs. 27	

Keywords: Genomic selection, Bos taurus indicus, growth, feedlot performance 28	

 29	

Introduction 30	

Brazil has the world's second largest cattle herd with over 200 million heads 31	

(Instituto Brasileiro de Geografia e Estatística 2013), with the Nelore (Bos taurus indicus) 32	

being the most widespread and economically important breed. As the total pasture area in 33	

Brazil has decreased over the decades, productivity gains have become an important factor 34	

for beef production (Martha et al. 2012). The Nelore breed has been selected for growth 35	

rate traits on pasture based on traditional pedigree and phenotypes analysis, however, the 36	

Brazilian beef feedlot industry has grown about 50% in the last decade (Millen et al. 37	

2011), and novel breeding objectives and criteria are required.   38	

In this context, the application of technologies to improve animal performance and 39	

thus to supply genetically improved animals for both pasture and feedlot systems are a 40	

critical factor to overcome the challenge of increasing the Brazilian beef production 41	

efficiency.  42	

Nowadays, exploring the availability of technology to genotype thousands of 43	

single nucleotide polymorphisms (SNP) distributed across the genome, allows the 44	

application of genomic selection (GS). Phenotypic and SNP data information are then 45	

combined to predict genomic estimated breeding values (GEBV) earlier in the life of the 46	



3	
	

	
	

animals (Meuwissen et al. 2001). It has been argued that GS could lead to a decrease in 47	

generation interval, and improvement of the rate of genetic gain (Schaeffer 2006), and also 48	

assist the better control of inbreeding rates (Daetwyler et al. 2007).  49	

Based on the importance of the Nelore cattle in Brazil and the increasing use of 50	

feedlot systems, it is necessary to identify appropriate methodologies that allow genomic 51	

selection of animals with higher growth rates on feedlots. The aim of the current study was 52	

to compare different regression models and SNP panels in terms of accuracy, bias and 53	

precision of genomic estimated breeding values for average daily weight gain (ADG) in 54	

feedlot-finished Nelore steers.  55	

 56	

Material and methods 57	

Samples 58	

 During the mating seasons of 2006/07 through 2008/09, 804 steers, offspring of 34 59	

Nelore bulls from 17 lineages, chosen to represent the genealogies of the Nelore breed in 60	

Brazil, were generated through fixed-time artificial insemination in five farms. They were 61	

raised to 21 months of age and then moved to either the Embrapa Southeast Livestock 62	

(São Carlos - SP, Brazil) or the Embrapa National Beef Cattle Center (Campo Grande - 63	

MS,  Brazil) during three seasons in feedlot experiment periods (2009, 2010 and 2011). 64	

Animals were fed with a total mixed ration (TMR) diet with 13% crude protein and 71% 65	

total digestible nutrients (dry matter basis, corn or sorghum, soybean meal, soybean hull, 66	

cotton seed, limestone, mineral mixture, urea, and monensin). The diet was provided twice 67	

a day in which the feed offered (total mixture composed by concentrate:silage, 40:60 ratio) 68	

was adjusted daily ad libitum. The animals were weighed every 14 days without fasting, 69	

for an average period of 91 days. Steer rearing and sample collection protocols were 70	
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approved by Animal Care and Use Committee from the Embrapa Southeast Livestock 71	

(São Carlos, Brazil). 72	

 73	

Phenotype and genotype datasets 74	

 The initial dataset consisted of 7,236 weighting records from the 804 steers, but 75	

only those from the 15th up to 77th days in feedlot were considered to estimate ADG, to 76	

disregard the first weight and also because after this period more than 30% of the animals 77	

had already been slaughtered. A linear regression analysis of live weight over time was 78	

performed using the remained 3,523 records from 803 steers, using the lm function of the 79	

R software (R Development Core Team 2014). The slope was used as the ADG during the 80	

feedlot period for the purpose of considering only the linear weight gain and avoiding 81	

comparison with different feedlot period lengths.   82	

Steers were assigned to 39 contemporary groups (CG) containing from 5 to 42 83	

animals, which combined information on mating season (3 levels), experimental feedlot (2 84	

levels) and slaughter group (32 levels of animals slaughtered in the same week). After 85	

that, the phenotype and genotype datasets were merged to ensure that they had the same 86	

individuals. The summary of age at feedlot entry, starting weight, ADG and days in 87	

feedlot on the remaining animals are presented in Table 1. 88	

There were in total 780 steers and 34 bulls genotyped with the Illumina BovineHD 89	

BeadChip (Illumina, San Diego, CA). The initial dataset contained 742,906 markers, in 90	

which unplaced, mitochondrial and sex-linked SNP were first discarded, as well as 91	

duplicated markers (e.g. two different names and positions for the same SNP). SNP were 92	

also filtered based on two other panels: GeneSeek Genomic Profiler (GGP) HDi 80K and 93	

GGP LDi 20K (Gene Seek Inc., Lincoln, NE). The panels were built specifically for Bos 94	
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taurus indicus breeds. Originally, the GGP HDi 80k/LDi 20k contained 74,085/19,721 95	

markers, of which 69,942/18,464 were available in the primary dataset.  96	

Paternity correction and quality control (QC) were performed to improve results. 97	

To deal with SNP presenting significant deviation from the Hardy-Weinberg Proportions 98	

(HWP) deviation, we checked plots of HWP versus percentage of heterozygous, and 17 99	

SNP with more than 80% of heterozygous were excluded from the three datasets because 100	

they could reflect an error during the genotyping procedure (Ziegler 2009). Quality control 101	

was performed using the R package SNPtats (Clayton 2012). SNPs were kept for further 102	

analysis only if they had call rate > 98% and minor allele frequency (MAF) > 1%. The 103	

MAF filter excluded 20.0, 1.9 and 7.3% of the total SNP from the 770k, HDi, and LDi 104	

panels, respectively.  105	

After QC, the Beagle v.3.3.2 (Browning and Browning 2009) software was used 106	

for phase inference and imputation of missing genotypes for each SNP panel. Finally, to 107	

constitute a fourth SNP panel scenario, Tagger (Bakker et al. 2005), which is based on 108	

linkage disequilibrium (LD) between markers (r2), was used. This tool estimates the r2 109	

between all SNP pair and then selects a minimal set (TagSNPs) of markers with a r2 ≥ 0.3 110	

with at least one another marker on the same chromosome. We have chosen this threshold 111	

because it is the overall average r2 at the distance of 10kb to 25kb, obtained in a previous 112	

analysis of the same animals (Mudadu et al. 2016). The final number of SNP was 15,863; 113	

63,945; 82,933 and 534,787 for the LDi, HDi, TagSNP and 770k panels, respectively.  114	

 115	

Fixed effects modeling and adjusted phenotypes 116	

 The adjusted phenotype (𝑦) was represented as 𝑦 = 𝑦 −  1𝜇 −𝑊𝛼, in which 𝑦 is 117	

the vector of observations, 𝜇 is the overall mean, 𝑊 is an incidence matrix for fixed 118	
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effects (CG and animal age at feedlot entry) and 𝛼 is the vector of fixed effects estimates. 119	

A residual analysis was performed at this point and animals with the normalized residuals 120	

with absolute values larger than 3.5 were removed, thus 718 steers remained into the 121	

dataset. 122	

 123	

Models for genomic-enabled prediction 124	

Three specifications were considered for building genome-enabled prediction 125	

models: BayesA, BayesC𝜋 and Bayesian GBLUP. The R package BGLR (de los Campos 126	

and Rodriguez 2014) was used to fit the models, a flat (non-informative) prior was 127	

assigned to the intercept. For the BayesA method, a normal distribution was assigned to 128	

the marker effects, 𝛽!  ~ 𝑁 0,𝜎!"! , where 𝑗 = (1,… ,𝑝), 𝑝 is the number of SNPs, and 𝜎!"!  129	

is the individual variance for the SNP effect. In a second level of hierarchy, each 𝜎!"!  was 130	

assigned independent and identically distributed (iid) Scaled-inverse Chi-square density, 131	

with degrees of freedom (𝑑𝑓!) set to 5 and scale parameter (𝑆!) treated as unknown, 132	

following a Gamma distribution with shape (𝑠) and rate (𝑟) parameters. The parameter s 133	

was set to s=1.1 and r was solved so that 80% of proportion of the variance of the response 134	

was attributed the linear predictor. On this model, the prior marginal distribution of marker 135	

effects is a scaled-t density, with parameters 𝑑𝑓! and 𝑆! (Rosa et al. 2003). 136	

For the BayesC𝜋 model, the prior for each marker effect was an iid mixture of 137	

point of mass (1- 𝜋) at zero (spike) and a slab that follows a Gaussian distribution, 138	

 𝛽!  ~ 𝑁 0,𝜎!! 𝜋, where 𝜎!! is the common variance for the SNP effects. The additional 139	

parameter 𝜋 represents the prior proportion of non-zero effects and was treated as an 140	

unknown, with a Beta prior distribution 𝜋 ~𝐵𝑒𝑡𝑎 𝑝!,𝜋! , with 𝑝! > 0 𝑎𝑛𝑑 𝜋! ∈  0,1 . 141	

The parameters were set to 𝑝! = 2 and 𝜋! = 0.5, which give a uniform prior in the 142	
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interval 0,1 . Thus, differently from BayesA, BayesC𝜋 sets some SNP effects to zero, 143	

within a variable selection framework.  144	

 The Bayesian GBLUP (BGBLUP) model was implemented as a Bayesian 145	

Reproducing Kernel Hilbert Spaces (RKHS) regression (de los Campos et al. 2009), using 146	

a single kernel, user-defined (co)variance matrix 𝐾. The vectors of additive random effects 147	

were assigned multivariate normal priors, 𝑢 ~ 𝑁 0,𝐾𝜎!! , in which 𝜎!! ~ 𝜒!! 𝑆,𝑑𝑓  and 148	

𝐾 was set as a marker-derived relationship matrix 𝐺, built as the first method proposed by 149	

VanRaden (2008). Briefly, let 𝑀!"# be a genotype matrix with 𝑛 (number of samples) 150	

rows and 𝑚 (number of SNPs) columns, 𝑍!"# be the centered M matrix, and 𝐺 =151	

 !!!

! !!(!!!!)
, where the denominator is the total variance across loci. The degrees of 152	

freedom (𝑑𝑓) was set to 5 and the scale parameter (𝑆) was solved so that 80% of 153	

proportion of the variance of the response was attributed the linear predictor. 154	

The number of iterations, burn-in and thinning interval parameters were 155	

graphically evaluated and were different for each model (Table 2), and the length of the 156	

chain used to compute posterior statistics was 25,000, 20,000, and 10,000 for BayesA, 157	

BayesC𝜋, and BGBLUP, respectively. For BayesA and BayesC𝜋, the marker-based 158	

genetic variance (𝜎!!) was computed as the sum of the variance explained by each SNP 159	

marker (𝜎!"! ), while for BGBLUP the genetic variance was equal to 𝜎!!.  For the three 160	

models, the narrow sense heritability was estimated as: ℎ! = 𝜎!! (𝜎!! + 𝜎!!), where 𝜎!! is 161	

the residual variance.  162	

 163	

Validation  164	
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The dataset was divided into training (animals from seasons 1 and 2) and testing 165	

(animals from season 3) subgroups, which contained 568 and 150 animals, respectively. 166	

For the BayesA and BayesC𝜋 models, the GEBV on the testing set was defined as 167	

𝐺𝐸𝐵𝑉!(!"!) =  𝑔!"𝛽!"#
!
!!! , where 𝑔!" is the genotype of the jth SNP on the ith animal and 168	

𝛽!"# is the vector of the SNP marker effect estimated on the training set. For Bayesian 169	

GBLUP, phenotypes of testing subgroup were set as missing and samples of 𝑢 were 170	

obtained in each iteration from the posterior distribution 𝑢,𝜎!!,𝜎!!|𝑦 . 171	

The correlation between GEBV and adjusted phenotype of animals on testing 172	

subgroup, 𝑟(𝐺𝐸𝐵𝑉!(!"!),𝑦!(!"!)), was used as an estimation of prediction accuracy. The 173	

slopes of regressing adjusted phenotypes on GEBV for animals in testing subgroup 174	

𝑏!!"!,!"#$!"!,  were evaluated as a measure of bias, which can be used to verify whether 175	

genomic predictions are inflated or deflated. The last comparison criterion was the mean 176	

square error, 𝑀𝑆𝐸 =  (!"#$!! !!)!!"#"
!

!!"!
, where 𝑛!"! is the size of testing dataset, that was 177	

used as a measure of precision and bias of the point estimator. 178	

 179	

Data availability 180	

The phenotypic and genotypic data are available at figshare repository and their 181	

description and accession numbers are listed in File S1. File S2 contains a custom R script 182	

used in the analysis.  183	

 184	

Results and discussion 185	

Accuracy of genomic-enabled breeding values  186	
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Pearson correlation coefficients between adjusted phenotypes and GEBV were 187	

used as a proxy of genome-enabled prediction accuracies (Table 3). All estimates were 188	

quite similar, ranging from 0.24 to 0.27. Bolormaa et al. (2013) reported even lower 189	

accuracies (from 0.13 to 0.24) of GEBV for ADG in feedlot using GBLUP estimates in 190	

Bos taurus taurus and Bos taurus indicus animals. When analyzing ADG of almost 4,000 191	

Nelore young bulls in pasture using traditional BLUP, Fragomeni et al. (2013) reported an 192	

EBV accuracy of 0.56, which suggests we could achieve higher accuracies than we found 193	

in the present study.   194	

It is known that the success of genomic selection depends on the accuracy of 195	

GEBV, which in turn is a function of heritability, size of training population and effective 196	

population size (Ne) (Goddard and Hayes 2009). Based on the simulation presented by van 197	

der Werf (2013), who considered a population with Ne=250 (estimated Ne of Nelore 198	

cattle=214 (Mudadu et al. 2016)) and a trait with h2=0.5, a training population of 500 199	

animals would reach an accuracy of 0.2, similar to our results. Moreover, the authors 200	

showed that a training population of more than 2,000 individuals would be required to 201	

achieve an accuracy of 0.4. Another key factor is the level of relationship among animals 202	

in the training and testing sets. The present study evaluated half-sib families and according 203	

to Hayes et al. (2009), this structure allows estimating only the effects of paternal alleles 204	

with high accuracies, decreasing the reliability of the GEBVs.  205	

Taking into account the above-mentioned factors, we point out that the crucial 206	

points would be to increase the number of reference animals, and to include animals with 207	

different levels of relationship, thus the SNP markers effects could be better estimated.  208	

Since ADG in feedlot-finished steers could be viewed as a new selection criterion for 209	
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Nelore cattle, it is important to estimate the GEBVs with high accuracies in order to allow 210	

selection of young animals and genetic gains at a reduced genotyping costs.  211	

 212	

Bias and precision measures of genomic-enabled breeding values 213	

Regression coefficients of adjusted phenotypes on GEBV (Table 4) were used to 214	

measure the extent of prediction bias, since values greater or lower than 1 are related to 215	

deflated or inflated GEBV, respectively. For the 770k panel, only the results from 216	

BayesC𝜋 models were not considered biased. Also, it is clear that estimates from BayesA 217	

models (except for TagSNP) were deflated, which means the GEBVs were not in the same 218	

scale as the adjusted phenotypes. The opposite was observed for all models applied to 219	

TagSNP dataset, thus it seems that selecting markers based only on their pairwise r2 220	

resulted in overestimated predictors.  221	

Differences among prediction accuracies were negligible, thus information on 222	

slopes and MSE (Table 4) were combined and the models resulting in less biased GEBV 223	

were 770k-BayesC𝜋, HDi-BayesC𝜋 and LDi-BayesC𝜋. The current average cost of 224	

genotyping can easily reach $150.00, $100.00 and $50.00 per animal, for 770k, HDi and 225	

LDi, respectively. Therefore, if it would be possible to predict accurate GEBV using less 226	

dense panels of SNP at lower costs, the implementation and application of genomic 227	

selection would be better accepted by the beef cattle industry.   228	

 229	

Estimates of variance components  230	

The divergences in the variance components (Table 5) were expected, since the 231	

markers included in each models captures different proportions of the genetic variance. 232	

For example, the marker-based genetic variance estimated using BGBLUP was the lowest 233	
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(about 0.02) in this study. For BayesA and BayesC𝜋 the genetic variance is a function of 234	

SNP effects and their uncertainty variances and allelic frequencies (Gianola et al. 2009). 235	

Results from BayesA models were not consistent among SNP panels and, we hypothesized 236	

that by fitting a great number of markers, larger is the captured marker-based genetic 237	

variance (Table 5).  238	

BayesC𝜋 models resulted in less biased GEBVs, and its coefficients of heritability 239	

ranged from 0.41 to 0.44 (Table 5). This was similar to the coefficient reported by Olivieri 240	

et al. (2016) for ADG in Nelore cattle in post-weaning feedlot performance test 241	

ℎ! = 0.43 . Although heritability is a population parameter, it is known that magnitudes 242	

of heritability estimates of similar traits are often similar across populations.  243	

 244	

Conclusion 245	

 For the purpose of comparing GEBV estimates using different SNP panels and 246	

Bayesian models, we considered some of the most common criteria used to evaluate the 247	

quality of the genome-enabled predictions. Overall, all SNP panels and models provided 248	

similar accuracies, however Bos taurus indicus SNP chips (HDi and LDi) and methods 249	

that zero a proportion of the SNP effects, such as BayesC𝜋, seem to result in less biased 250	

predictions.  Furthermore, results from less dense marker panels based on Bos taurus 251	

indicus were as good as the high-density panel, and at lower genotyping costs. 252	

 253	
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Table 1. Summary of age and weight at feedlot entry, ADG and days in feedlot for the 718 330	

Nelore steers 331	

 
Age (d) Weight (kg) ADG (kg/d) Days in feedlot     

Minimum 542 226 0.193 48     

Mean (sd) 

(±sd 

649 (45) 361 (51) 1.235 (0.407) 92 (20)     

Maximum 745 510 2.457 119     

 332	

Table 2. Parameters of Gibbs sampler for each model 333	

 Model 

MCMC samples BayesA BayesC𝜋 BGBLUP 

Total 400,000 600,000 160,000 

Burn-in 150,000 200,000   60,000 

Thinning         10          20         10 

Posterior*    25,000    20,000    10,000 

*Final number of samples used to calculate features of posterior distributions. 334	

 335	

 336	
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Table 3. Pearson correlation coefficients used as proxy estimates of prediction accuracies 337	

of genomic estimated breeding values for ADG  of the 150 animals in testing subgroup 338	

 

SNP panel1 

Model 770k TagSNP HDi LDi 

BGBLUP 0.26 0.24 0.25 0.26 

BayesA 0.26 0.25 0.26 0.27 

BayesC𝜋 0.26 0.25 0.25 0.26 

1actual number of SNPs included in the analysis: 770k - 534,787; TagSNP - 82,933; HDi - 339	

63,945; LDi - 15,863. 340	

 341	

Table 4. Regression coefficients (b) of GEBV on adjusted phenotype and mean squared 342	

errors (MSE) of predictions for the 150 animals in testing subgroup 343	

  SNP panel1 

Model 
770k TagSNP HDi LDi 

b MSE b MSE b MSE b MSE 

BGBLUP 1.15 1.58 0.46 1.59 1.10 1.58 1.11 1.59 

BayesA 1.29 1.09 0.69 1.24 1.68 1.32 1.99 1.37 

BayesC𝜋 0.98 1.12 0.45 1.12 0.94 0.94 0.93 0.94 

1actual number of SNPs included in the analysis: 770k - 534,787; TagSNP - 82,933; HDi - 344	

63,945; LDi - 15,863. 345	

	346	
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Table 5. Estimates of residual (𝛔𝐞𝟐) and genetic (𝛔𝐠𝟐) variance components, heritability (𝐡𝟐) 348	

and proportion of non-zero effects (𝛑) for all models 349	

SNP panel1 Parameter  BGBLUP2 BayesA2,3 BayesC𝜋2,3 

770k 

𝜎!! 0.05 (0.04-0.06) 0.06 (0.05-0.07) 0.05 (0.04-0.06) 
𝜎!! 0.02 (0.01-0.04) 

 
0.06  0.03   

ℎ! 0.31 (0.19-0.45) 0.53 (0.49-0.58) 0.41 (0.36-0.47) 
𝜋 ― ― 0.98 (0.96-1.00) 

 
TagSNP 

𝜎!! 0.05 (0.04-0.06) 0.06 (0.05-0.07) 0.05 (0.04-0.06) 
𝜎!! 0.02 (0.01-0.04) 0.04 0.03   
ℎ! 0.32 (0.19-0.46) 0.40 (0.36-0.45) 0.42 (0.37-0.48) 
𝜋 ― ― 0.98 (0.96-1.00) 

HDi 

𝜎!! 0.05 (0.04-0.06) 0.06 (0.05-0.07) 0.05 (0.04-0.06) 
𝜎!! 0.02 (0.01-0.04) 0.03   0.03   
ℎ! 0.32 (0.19-0.46) 0.31 (0.28-0.35) 0.42 (0.37-0.48) 
𝜋 ― ― 0.98 (0.96-1.00) 

LDi 

𝜎!! 0.05 (0.04-0.06) 0.06 (0.05-0.07) 0.05 (0.03-0.06) 
𝜎!! 0.02 (0.01-0.04)  0.02  0.04  
ℎ! 0.32 (0.19-0.45) 0.28 (0.25-0.32) 0.44 (0.36-0.47) 
𝜋 ― ― 0.98 (0.96-1.00) 

1actual number of SNPs included in the analysis: 770k - 534,787; TagSNP - 82,933; HDi - 350	

63,945; LDi - 15,863; 2numbers in brackets refers to the highest posterior density intervals 351	

(HPD) at 95% (lower bound–upper bound). 3HPD for 𝜎!! for models BayesA and 352	

BayesC𝜋 could not be estimated.  353	


