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ABSTRACT. Genomic selection is the main force driving applied 
breeding programs and accuracy is the main measure for evaluating its 
efficiency. The traditional estimator (TE) of experimental accuracy is 
not fully adequate. This study proposes and evaluates the performance 
and efficiency of two new accuracy estimators, called regularized 
estimator (RE) and hybrid estimator (HE), which were applied to a 
practical cassava breeding program and also to simulated data. The 
simulation study considered two individual narrow sense heritability 
levels and two genetic architectures for traits. TE, RE, and HE were 
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compared under four validation procedures: without validation (WV), 
independent validation, ten-fold validation through jacknife allowing 
different markers, and with the same markers selected in each cycle. 
RE presented accuracies closer to the parametric ones and less biased 
and more precise ones than TE. HE proved to be very effective in the 
WV procedure. The estimators were applied to five traits evaluated in 
a cassava experiment, including 358 clones genotyped for 390 SNPs. 
Accuracies ranged from 0.67 to 1.12 with TE and from 0.22 to 0.51 
with RE. These results indicated that TE overestimated the accuracy 
and led to one accuracy estimate (1.12) higher than one, which is 
outside of the parameter space. Use of RE turned the accuracy into the 
parameter space. Cassava breeding programs can be more realistically 
implemented using the new estimators proposed in this study, providing 
less risky practical inferences.

Key words: Genomic prediction; Accuracy estimator; Cross-validation; 
Cassava breeding

INTRODUCTION

Genome wide selection (GWS; Meuwissen et al., 2001) is a technique of great importance 
in plant and animal breeding, allowing efficiency in genetic evaluation and prediction of genetic 
gains. It is based on genomic values predicted by phenotypes and a large number (n) of molecular 
markers widely distributed in the genome. Genomic breeding values (GBV) of N individuals are 
predicted by appropriate functional models, which estimate the effect of each marker on phenotypes, 
allowing early identification of the genetically superior individuals. However, genomic prediction 
poses statistical challenges such as estimability, owing to the high dimensionality problem (N 
<< n case), and multicollinearity between the covariates, since the molecular markers are highly 
correlated. These challenges require the use of statistical methods to consider the regularization of 
the estimation process and/or the selection of covariates (Gianola et al., 2003).

To address these drawbacks, many statistical methods have been proposed for genomic 
selection, such as penalized estimation methods (Meuwissen et al., 2001; Van Raden, 2008), 
Bayesian estimation (Meuwissen et al., 2001; de Los Campos et al., 2009; Habier et al., 2011; 
Legarra et al., 2011), implicit regression methods (Gianola et al., 2006; Gianola et al., 2009; de 
Los Campos et al., 2009), and methods with dimensional reduction (Solberg et al., 2009; Azevedo 
et al., 2014; Azevedo et al., 2015a), among others such methods for genome-wide association 
studies (Hayes, 2013) and methods for additive-dominance genomic models (Azevedo et al., 
2015b). These methods were typically evaluated based on their prediction accuracy.

Accuracy is the main measure for evaluating the efficiency of the prediction of GBV. 
A traditional estimator for the experimental accuracy of GWS was introduced by Legarra et 
al. (2008) and Hayes et al. (2009a). This estimator is the ratio between the predictive ability 
and the square root of the trait heritability. However, in some circumstances, this estimator has 
inconsistencies, such as the fact that the higher the trait heritability, the lower the accuracy, 
and can lead to estimates outside the parameter space (higher than 1). Ould Estaghvirou et 
al. (2013) conducted a comparative study among alternative accuracy estimators for GWS, 
but such estimators only differed from the estimator of Legarra et al. (2008) and Hayes et 
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al. (2009a) in the estimation of trait heritability. In fact, to date, there are no other proposed 
estimators for the experimental (after obtaining data) accuracy of genomic selection, but only 
for the expected (before obtaining data) accuracy (Resende et al., 2008; Goddard, 2009; Hayes 
et al., 2009b; Daetwyler et al., 2008, 2010; Goddard et al., 2011).

Thus, we propose an estimator for experimental accuracy, called the regularized 
estimator (RE), which is given by the multiplication of the traditional estimator by the square 
root of the molecular heritability. This adjustment corrects the accuracy estimator so that it 
occurs within the parameter space (from 0 to 1) and produces less biased and more precise 
estimates. Furthermore, the predictive ability combined with the proportion of genetic variance 
explained by markers yields a hybrid estimator (HE), which uses both the experimental 
information and the theoretical expectation.

In addition, the estimation of accuracy is associated with the validation form and the 
marker selection, because when thousands of effects are estimated, there is a risk of over-
parameterization, i.e., experimental errors in the data explaining marker effects (Meuwissen, 
2007). Thus, it is necessary to study and assess the behavior of the accuracy estimators in different 
forms of validation and under markers selection. It is noteworthy that recent methodologies for 
GWS have been evaluated with simulation studies (Piccoli et al., 2014; Bhering et al., 2015).

Cassava (Manihot esculenta) is a crop of great economic importance and the efficiency 
of its breeding programs should be investigated. Cassava genetic resources have been evaluated 
for the prediction of breeding values of traits of interest (Nassar, 2007; Graciano-Ribeiro et 
al., 2009); genomic selection may be of great value for this crop. Thus, the objective of this 
study was to propose and evaluate the performance and efficiency of the two new estimators 
(called regularized and hybrid) for the accuracy of GWS, which includes the predictive ability 
and both genomic heritability and pedigree-based heritability, considering different validation 
forms and the selection of markers. The estimators were also evaluated for cassava because of 
its importance in plant breeding programs and to elucidate the importance of the estimation of 
accuracy during practical genomic selection.

MATERIAL AND METHODS

Experimental material

Genomic selection was conducted on five traits evaluated in cassava (M. esculenta). 
The experiment was arranged in a randomized complete block design with three replications 
and 10 plants per plot, including 358 cassava accessions belonging to the germplasm collection 
of the Embrapa Cassava which were genotyped for 390 SNP markers. The trial was established 
at Cruz das Almas, Brazil, under the guidelines of Embrapa. The traits evaluated were shoot 
weight (SW), fresh root yield, amylose content, dry matter content, and shoot yield. The RR-
BLUP method (described below) was used.

Simulated datasets

The simulated data set was described by Azevedo et al. (2015b). A total of 2000 
equidistant SNP markers separated by 0.1 cM across ten chromosomes were simulated. One 
hundred of the markers were genes (QTL). A total of 1000 individuals from 20 full-sib families 
were genotyped and phenotyped.
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Scenarios

There were four scenarios studied: 1) heritability of 0.22 in a trait controlled by genes 
with small effects; 2) heritability of 0.37 in a trait controlled by genes with small effects; 
3) heritability of 0.20 in a trait controlled by many genes with small effects and some with 
major effects; and 4) heritability of 0.32 in a trait controlled by many genes with small effects 
and some with major effects. These 4 scenarios were analyzed considering four forms of 
validation and three accuracy estimators. Each scenario was simulated 10 times. Accuracies 
and genomic heritabilities were calculated for each replicate of the simulation and averaged 
across replicates. For validation forms based on folds, the accuracies and genomic heritabilities 
were also averaged across validation cycles in each replicate of the population.

Traditional accuracy estimator (TE)

This estimator is traditionally applied in evaluating the efficiency of the GWS 
method in several breeding programs of different organisms (Resende Jr et al., 2012; 
Resende et al., 2012, 2014; Azevedo et al., 2015a). Considering the phenotypic model 
given by y = μ + g + e, where µ is the overall mean, g is a genetic effect, and e is 
an residual effect, an accuracy estimator for genomic selection ( ŷgr ) was proposed by 
Legarra et al. (2008) and Hayes et al. (2009a) and is given by ˆ ˆ( )yg yyr r h=  or ˆ ˆ ˆ( )yg yy aar r r=
, respectively, where ŷyr  is the predictive ability of GWS represented by the correlation 
between the phenotype y and the predicted genomic breeding values ŷ , âar  is the accuracy 
of the pedigree-based evaluation (a and â are the true additive genetic value and estimated 
additive genetic value, respectively), and h2 is the heritability of the trait given by 

2 2 2 2( )g g eh σ σ σ= + , where 2
gσ  is the genetic variance and 2

eσ  is the residual variance. It can be 
seen that h is itself the accuracy ( âar ) of the individual phenotypic selection.

Considering that the quantities ˆMg  and g stand for the predicted genomic breeding 
value and true breeding value (with variance 2

gσ ), respectively. The algebraic proof of this 
estimator can be made considering the corrected phenotypic values (y = g + e) and predicted 
genomic breeding values ( ŷ) in the validation population and under the assumption that ŷ  only 
captures genetic effects ( ˆ ˆMy g= ), i.e., it does not explain any environmental effect (e). This 
assumption holds only when the validation is perfect (totally independent) and simultaneously 
LD (linkage disequilibrium) between the marker and QTL is complete. Thus, the covariance 
of these two variables is:

This leads to 2ˆ( , ) gMCov g g σ= , indicating that ˆMg  captures all of g. The variances of ŷ  and y are 
2 2
ˆˆ ˆ( ) ( )

MgMyVar y Var gσ σ= = = and 2 2 2 2 2( ) y g e gVar y hσ σ σ σ= = + = , respectively.
Thus, the predictive ability equals the correlation value between ŷ and y, and is given by:

Therefore, the accuracy estimator is equal to ˆ ˆyg yyr r h= .

2ˆ ˆ ˆ( , ) ( , ) ( , ) gM MCov y y Cov g g e Cov g g σ= + = = (Equation 1)

(Equation 2)2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ( , ) ( , ) ( ) ( ) ( ( )) .y g y g gyy y y y ygr Cor y y Cov y y h r hσ σ σ σ σ σ σ σ= = = = =
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However, this estimator has some inconsistencies. In ˆ ˆyg yyr r h= , given ŷyr , if the square 
root of the trait heritability h is larger than ŷgr  is smaller, a fact that is not consistent with 
reality, because, theoretically, the higher the heritability of the trait, the greater the accuracy of 
selection. In addition, this estimator produces ŷgr  outside (greater than 1) the parameter space 
from 0 to 1. Conceptually, it does not make sense that ŷgr  tends to infinity when h approaches 
zero. In practice, this can lead to the situation where a population without genetic variability 
(heritability of zero) is able to show accuracy of reasonable magnitude with GWS, which is 
inconsistent with the genomic selection theory.

RE

The proposed regularized estimator is given by ˆM
M

g g yy
hr r
h

=  or ˆMg g Mygr r h= , where 
hM is the square root of the genomic or molecular heritability. This estimator multiplies the 
proximity (distance) between y and ŷ given by ŷyr  by the proximity (distance) between hM and 
h (given by Mh

h
), producing the proximity (distance) between gM and g. In this case, multiplying 

ŷyr  by Mh
h

decreases the accuracy, i. e., penalizes ŷyr , which makes sense biologically.
Under the assumption that ŷ  captures both genetic and environmental effects, i.e.,

ˆ ˆ ˆMy g e= + , as the LD is imperfect ( 2ˆ( , )
MgMCov g g σ= ) and/or validation is not performed or is 

inaccurate, which leads to covariance of errors ( 2ˆ( , ) eCov e e σ= ). In this case, we have:

The variances of the corrected phenotypic values y and predicted values ŷ  are equal to 
2 2 2 2 2( ) /y g e gVar y hσ σ σ σ= = + =  and 2 2 2ˆ( ) /

M My g MVar y hσ σ= = , respectively.
Thus, the predictive ability equals the correlation between y and ŷ  given by:

and, therefore, the accuracy estimator is equal to ˆM
M

g g yy
hr r
h

= . The regularized estimator ˆM
M

g g yy
hr r
h

=  
has a good statistical property, producing Mg gr  in the parameter space as the product of two 
fraction, since Mh

h  is always smaller or equal to 1. In addition, the lower the Mh
h , the lower the 

Mg gr , which is consistent with reality. Since the smaller Mh
h

, the lower the proportion of the 
variance explained by the markers and therefore less accurate. Thus, the inconsistencies in the 
traditional formula are corrected. This estimator is conservative (produces smaller accuracies 
than the traditional formula) and is a function of three parameters, not two, also including 
genomic heritability. The ratio of the heritabilities takes into account the efficiency of markers 
in capturing QTLs, i.e., it considers the degree of imperfection in LD.

It is important to emphasize that the genomic or molecular heritability ( 2
Mh ) must be 

equal to or less than the heritability of the trait (h2) as 2
Mh  is the fraction of h2 that is captured 

by markers, and the maximum limit of the squared accuracy of GWS is 2
Mh  (de Los Campos 

and Sorensen, 2013; de Los Campos et al., 2014). The molecular heritability is given by 
2 2 2 2( )

M Mg g eMh σ σ σ= + , where 2 2

1
2

iM

n

g mi i
i

p qσ σ
=

=∑  is the additive genomic variance, 2
imσ , and pi and qi are the 

variance and allele frequency of marker i, respectively (Gianola et al., 2009).

(Equation 3)2 2

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( ) ( )

  ( )
M

M M M

g e M

Cov y y Cov g e g e Cov g g Cov e e Var g Var e
Var yσ σ

= + + = + = +

= + =

(Equation 4)
2 2

ˆ ˆ

2 2

ˆ ˆ( , ) ( , ) ( ) ( ) M
M M M

M M M M M M M M M

M M M M M M

g g
y y y y yyy y

M

y y g g y g y g g g gM

g g g g g g g g g M

r Cor y y Cov y y h h

h h h h hr hr
h

σ σ
σ σ σ σ σ σ

σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ

 
  
 

= = = = =

= = = = =
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HE

The HE combines the experimental predictive ability and the theoretical expectation 
of 2 2 2/

Mmq g gr σ σ= , which also is a regularized estimator. Assuming 2 2
My yσ σ≈ , we have 22 2 2/ /

Mmq g gh h σ σ≈

. Given that 2 2 2/
Mmq g gr σ σ=  is the proportion of g explained by markers, we have hM / h = rmq. Thus, 

using the RE, the accuracy is given by *
ˆ ˆ g gM M

M
g g mqyy yy

hr r r r r
h

= = = , where 2
mq

e

nr
n M

=
+ , n is the number of 

markers and Me = 2NeL, Ne is the effective population size, and L is the genome size in Morgans 
(Goddard et al., 2011; Meuwissen et al., 2011). It is noteworthy that 2

mqr  changes with the number 
of selected markers. The HE provides an accuracy estimate without requiring the estimation of 

2
Mh  and h2. In addition, it penalizes the selection of a very small number of markers.

A deterministic formula for the predictive ability is derived and presented in Appendix 
1. It demonstrates the relationship between the predictive ability and the genomic heritability.

Parametric accuracy

Parametric accuracies under the additive model were computed using the formula 
of Resende et al. (2008); Goddard et al. (2011); Grattapaglia and Resende (2011); Resende 
et al. (2014): 2 2 2

ˆ 2 2

( / )
1 /
mq mq QTL

gg
mq QTL

r Nr h n
r

Nr h n
=

+ , where nQTL is the number of QTL, N is number of genotyped and 
phenotyped individuals, h2 is the trait heritability and 2

mqr  proportion of genetic variance 
explained by markers.

Supervised RR-BLUP

In the context of genomic selection, according to Meuwissen et al. (2001), the basic 
linear model is as follows:

where y is the vector of phenotypes (N X 1, where N is the number of genotyped and phenotyped 
individuals), 1 is a vector with all entries equal to 1 (N X 1), μ is the average of the trait, m is 
the vector of additive genetic marker effects (n X 1, where n is the number of markers) with 
incidence matrix X (N X n), and 2~ (0, )mm N Iσ  where 2

mσ  is the variance of markers, e is the 
model of the residual vector with 2(0, )ee N Iσ

, and 2
eσ  is the residual variance. In this study, we 

evaluated the accuracies under the RR-BLUP (Meuwissen et al., 2001) and RR-BLUP_B (a 
marker selection procedure by Resende Jr et al., 2012) methods.

The RR-BLUP method was applied to each data set considering the total number of 
markers. After this preliminary analysis, markers groups of size 50, 100, 150, and so on up to 
2,000 were selected based on the highest magnitudes of their effects.

Estimation and validation populations

The estimation population is used to estimate the effects of the markers while the 
validation population is used to analyze the efficiency of the estimated effects in recovering 
individual genomic values in an independent sample of the population.

(Equation 5)1y Xm eµ= + +
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An estimation-validation approach was cross-validated by the jacknife procedure. 
According to this method, the original data set with 1000 individuals was divided into 10 
training data sets of 100 individuals each (ten-folds procedure or TF) (Efron, 1982).

The genomic heritability was estimated as the average of heritabilities obtained in each of 
the cycles. The estimation of accuracy was done in two ways: first as the average of the predictive 
abilities obtained in each of the cycles allowing for different markers to be selected (TFD scheme) 
in each cycle; and second, restricting the selected markers to be the same (TFS scheme) in each 
cycle, after identifying them through the average effects across ten cycles. Under the supervised 
RR-BLUP method, the markers with the greatest magnitudes of effects were selected. However, the 
chosen sets of markers were alternatively variable in each cycle (form I of the jacknife validation or 
TFD) or unique for all validation cycles (form II of the jacknife validation or TFS).

In this study, the following forms of validation were considered, i) physically distinct 
(2 different subpopulations), called independent validation (IV); ii) jacknife procedure 
considering forms I (TFD) and II (TFS); and iii) without validation (WV) with the population 
used for estimation and validation at the same time.

The data were simulated using the RealBreeding software (Viana, 2011). All 
computational analyses were implemented in the R software (R Development Core Team, 
2010) using the rrBLUP package and mixed.solve function.

RESULTS

Results on the average accuracy using the RE, the TE, and the HE for independent validation 
(900 and 100 individuals in the estimation and validation populations, respectively) are presented 
in Figure 1. For IV, at high heritability (0.37 and 0.32), RE and TE performed similarly in terms of 
the distance between the estimated accuracy and the parametric accuracy, but RE underestimated 
and TE overestimated the accuracy, thus favoring RE. For IV at low heritability (0.22 and 0.20), TE 
showed a smaller distance from the parametric accuracy but it still overestimated accuracy, while 
RE underestimated it. HE was poorer for IV, underestimating the accuracy.

Figure 1. Average prediction accuracy by the regularized estimator (RE - blue), the traditional estimator (TE - red), 
and the hybrid estimator (HE - yellow) for independent validation. The gray line indicates the maximum accuracy 
(1); 500 refers to the number of markers which maximizes the estimated accuracy. The scenarios are defined as 
Scenario 1, trait controlled by genes with small effects and heritability 0.22; Scenario 2, trait controlled by genes 
with small effects and heritability 0.37; Scenario 3, trait controlled by small and major effects genes and heritability 
0.20; and Scenario 4, trait controlled by small and major effects of genes and heritability 0.32.
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Results of the average accuracy for the RE, TE, and HE by the jacknife procedure 
(with k = 100) considering the I and II validation forms (TFD and TFS, respectively) are 
presented in Figure 2.

Figure 2. Average prediction accuracy by the regularized estimator (RE - blue), the traditional estimator (TE - 
red), and the hybrid estimator (HE - yellow) for the jacknife procedure considering forms I and II (TFD and TFS, 
respectively). The gray line indicates the maximum accuracy (1); 500 refers to the number of markers which 
maximizes the estimated accuracy. The scenarios are defined as Scenario 1, trait controlled by genes with small 
effects and heritability 0.22; Scenario 2, trait controlled by genes with small effects and heritability 0.37; Scenario 
3, trait controlled by small and major effects genes and heritability 0.20; and Scenario 4, trait controlled by small 
and major effects of genes and heritability 0.32.

The behaviors of the genomic heritability ( 2
Mh ) estimates through cross-validation 

were similar to the parametric accuracy curve by IV, reaching a maximum and then staying 
constant (Figure 3). The predictive ability with cross-validation showed a different behavior, 
decreasing with an increase in the numbers of markers (Figure 3).

Figure 3. Behavior of the predictive ability and genomic heritability across selected groups of SNPs with cross-
validation. The scenarios were defined as: Scenario 1, trait controlled by genes with small effects and heritability 
0.22; Scenario 2, trait controlled by genes with small effects and heritability 0.37; Scenario 3, trait controlled by 
small and major effects genes and heritability 0.20; Scenario 4, trait controlled by small and major effects of genes 
and heritability 0.32.
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The results of the average accuracy for the RE, the TE, and HE without validation 
(WV) are presented in Figure 4.

Figure 4. Average prediction accuracy by the regularized estimator (RE - blue), the traditional estimator (TE - red), 
and the hybrid estimator (HE - yellow) without validation. The gray line indicates the maximum accuracy (1); 500 
refers to the number of markers which maximizes the estimated accuracy. The scenarios are defined as Scenario 1, 
trait controlled by genes with small effects and heritability 0.22; Scenario 2, trait controlled by genes with small 
effects and heritability 0.37; Scenario 3, trait controlled by small and major effects genes and heritability 0.20; and 
Scenario 4, trait controlled by small and major effects of genes and heritability 0.32.

The standard deviations of the accuracy estimates with RE, TE, and HE are presented 
in Figures 5 and 6 for independent validation and forms I (TFD) and II (TFS) of the jacknife 
procedure, respectively. For independent validation the best (the ones with smaller standard 
deviation) estimators for the accuracy were HE, RE, and TE, in this order, for all scenarios. 
For the jacknife procedures the same tendencies were observed. In this case, the RE and HE 
methods were by far more precise than the TE method.

Figure 5. Standard deviation of the accuracy by the regularized estimator (RE - blue), the traditional estimator (TE 
- red), and the hybrid estimator (HE - yellow) for independent validation. The scenarios are defined as Scenario 1, 
trait controlled by genes with small effects and heritability 0.22; Scenario 2, trait controlled by genes with small 
effects and heritability 0.37; Scenario 3, trait controlled by small and major effects genes and heritability 0.20; and 
Scenario 4, trait controlled by small and major effects of genes and heritability 0.32.
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Figure 6. Standard deviation of by the regularized estimator (RE - blue), the traditional estimator (TE - red), 
and the hybrid estimator (HE - yellow) for the jacknife procedure considering forms I and II (TFD and TFS, 
respectively). The scenarios are defined as Scenario 1, trait controlled by genes with small effects and heritability 
0.22; Scenario 2, trait controlled by genes with small effects and heritability 0.37; Scenario 3, trait controlled by 
small and major effects genes and heritability 0.20; and Scenario 4, trait controlled by small and major effects of 
genes and heritability 0.32.

To elucidate the importance of the new estimators for evaluating the quality of prediction 
in genomic selection, the results for an applied breeding program of cassava are presented in 
Table 1. Accuracies ranged from 0.67 to 1.12 with the TE estimator, which turned out 0.22 
and 0.51 with the RE estimator. These results revealed that TE overestimated the accuracy 
and led to one accuracy estimate (1.12) higher than one, which is outside of the parameter 
space. Under the same conditions, the RE estimator produced a value of 0.22, which is in the 
parameter space. The estimates with TE have the highest possible accuracy and those with RE 
have the lowest possible accuracy. Such inferences provide greater reliability in the practical 
evaluation of the efficiency of genomic selection in cassava improvement. For example, for 
the SW trait, the most likely accuracy is between 0.51 and 0.83, being more likely close to 
0.51. Besides being more precise, the new estimator provides more conservative inferences, 
which are less risky from a practical standpoint. Overall, the cassava breeding program can be 
more realistically implemented using the new estimators proposed in this study.

Table 1. Estimates of genomic heritability ( 2
Mh ), trait heritability (h2), predictive ability ( ŷyr ), and accuracy by 

the traditional estimator ( ŷgr - TE) and by regularized estimator ( Mg gr - RE) for the traits shoot weight (SW), 
fresh root yield (FRY), dry matter content (DMC), shoot yield (SY), and amylose content (AC) in cassava 
(Manihot esculenta).

 
SW FRY DMC SY AC 

2
Mh  0.37 0.29 0.26 0.32 0.04 

h2 0.37 0.35 0.30 0.38 0.05 

ŷyr  0.51 0.40 0.37 0.39 0.25 

ŷgr  (TE) 0.83 0.68 0.68 0.67 1.12 

Mg gr (RE) 0.51 0.37 0.35 0.38 0.22 
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DISCUSSION

The behavior of the parametric accuracy curve, along with the number of markers 
with the greatest effects in the analysis, show that an asymptote is reached around 500 markers 
and, subsequently, a constant value is maintained up to the total number of 2000 markers. 
For IV (Figure 1), estimators of the accuracies approximately reach the maximum value at 
500 selected markers. This result indicates that, on average, 5 markers are enough to capture 
one QTL. After that point, the accuracy tends to stabilize. This occurred for all estimators, all 
scenarios in IV, and also for the WV case. These results were similar to the parametric case.

The results showed notably greater distances from the parametric values when considering 
the IV (Figure 1) than jacknife procedures (Figure 2) for all estimators. In addition, the IV was 
superior to the jacknife procedures. This is consistent with the results of Wray et al. (2013a, b). The 
IV was superior to the jacknife procedures, approaching better parametric accuracy with or without 
marker selection. With RE, the TFS was better than the TFD validation scheme.

For the key value of 500 markers, RE produces accuracy values very close to parametric 
ones in scenarios 2 and 4 (Figure 1) and all scenarios in Figure 2. In these situations, the TE 
estimator overestimated the accuracies. In addition, TE exceeded the parameter space (values 
greater than 1) in some scenarios (Figure 2). This is not permissible for a good estimator. For RE 
and HE, this never occurred. In the comparative study of Ould Estaghvirou et al. (2013), selection 
of markers was not considered, but out of space parameter estimates were still obtained. This 
result has also been observed in genomic selection analysis using real data (Resende et al., 2012).

For TFD and TFS validations when (number of markers equal to 500) the maximum 
accuracy is reached, RE and HE were approximately coincident and superior to TE in terms 
of both distance (smaller bias) and direction of the estimation (underestimation) in all four 
scenarios. In this case (number of markers equal to 500), the parametric values were 0.64, 
0.68, 0.61, and 0.65; the estimates for RE were 0.51, 0.55, 0.48, and 0.55; and the estimates 
for TE were 1.13, 0.99, 1.09, and 1.02, for the four scenarios, respectively. This shows that TE 
should not be used with cross-validation.

For TFD and TFS, estimators of the accuracies approximately reach the maximum 
value at 500 selected markers. Following this, they tend to decrease (Figure 2). The decay 
in accuracy with increasing number of markers is consistent with Fernando et al. (2007) also 
working with RR-BLUP and two thousand markers. As in Figure 3, Wray et al. (2013a,b) also 
found that the predictive ability ( ŷyr ) decreases with increasing number (n) of independent 
markers and consequently with increasing of the ratio n

N  (N = number of individuals). This 
result is due to the fact that increasing n causes greater variance of the estimated genetic 
relationship coefficients (Wray et al., 2013a,b). This decrease in predictive ability was also 
observed in association with cross-validation for a few traits (Resende et al., 2012).

For WV, the HE very closely matched the parametric accuracy curve while RE and 
TE overestimated it. However, when all markers were used, RE also had accuracies close to 
the parametric. In general, compared to TE, the regularized estimator presented accuracies 
closer to the parametric ones, mainly when selecting markers. It was also less biased and 
more precise, with smaller standard deviations than the traditional estimator. In all scenarios, 
RE and HE are conservative with respect to estimation of accuracy. In theory, RE assumes 
that validation was poor and HE does not need validation. Thus, without validation, the best 
results were for HE (coincident with parametric value) and RE, in this order. Without marker 
selection, RE without validation perfectly matched the parametric accuracy. In contrast, TE 
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was the worst estimator and exceeded the parameter space in the entire curve, proving to be 
completely inadequate without validation or when it validation is poor. Even in such cases, the 
use of an adequate accuracy estimator (other than TE) can guarantee a valid estimate.

TE can be used only with IV and, even in this case, it overestimates accuracy and is 
less precise. The HE proved to be very effective in the absence of validation and in the jacknife 
procedures, but it is not recommended for IV. The regularized estimator revealed that not only 
the predictive ability of GWS methods matters, but also their capacity of precisely estimating 
the genomic heritability (Azevedo et al., 2015b). Thus, not only the predictive ability and bias 
should be used in comparing methods but also the genomic heritability and accuracy produced 
by the new method should be considered. The following inferences can be made according to 
the accuracy estimator and kind of validation: i) for the best accuracy, HE without validation 
should be used; ii) for the highest possible accuracy, TE with independent validation should be 
used; and iii) for the lowest possible accuracy, RE with independent validation should be used.
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Appendix 1

Deterministic formula for the predictive ability ŷyr , molecular heritability 2
Mh , and 

accuracy ĝgr  of GWS.

From the expression 
2

2
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M
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= , we get 2 2 2
mqMh r h=

.
 (1)

From the expression for the expected squared accuracy
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substituting QTLn  for eM , we have 
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As 2 2 2
mqMh r h=  (1), it follows that the squared experimental accuracy is 
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From (4) the squared accuracy of the RE, we get the squared predictive ability as:
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which simplifies to 
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showing that it depends mainly on 2
Mh  and N.

From (6) we get back to the squared experimental accuracy as 2 2
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From the formula for the squared predictive ability via the RE, the genomic heritability is 

given by 
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