Frações Físicas de Matéria Orgânica em Solo Cultivado com Palma Forrageira sob Diferentes Quantidades de Palhada de Capim-buffel

Thâmara Layse de Souza¹; Diana Signor²; Fleming Sena Campos³; Carlos Tiago Amâncio Rodrigues⁴

Resumo

Este trabalho teve por objetivo determinar os efeitos da adição de palha de capim-buffel como cobertura morta sobre as frações da matéria orgânica do solo. O experimento foi desenvolvido no campo experimental da Embrapa Semiárido. Foram utilizadas quatro doses de capim-buffel (0, 10, 20, 30 toneladas por hectare). O delineamento experimental foi em blocos ao acaso, com quatro repetições. As amostras de solo foram coletadas na camada 0-10 cm de todas as parcelas experimentais para fracionamento físico da matéria orgânica do solo, com separação das seguintes frações: areia (> 53 μ m) e silte+argila (< 53 μ m). O teor médio de C foi de 0,38% na fração areia e de 3,71% na fração silte+argila. No solo, o teor de C observado foi de 1,02%. Não houve alteração significativa no teor de carbono nas frações físicas, por causa da recente implantação do experimento. Baseado nos resultados obtidos, novas coletas de solo são necessárias para avaliar a variação nos teores de C nas frações

¹Estudante de Ciências Biológicas, Universidade Pernambuco (UPE), estagiária da Embrapa Semiárido, Petrolina, PE.

²Engenheira-agrônoma, D. Sc. em Ciência do Solo, pesquisadora da Embrapa Semiárido, Petrolina, PE, diana.signor@embrapa.br.

³Zootecnista, D. Sc. em Zootecnia, Programa Nacional de Pós-Doutorado (PNPD/Capes), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE.

⁴Engenheiro-agrônomo, mestrando em Engenharia Agrícola da Universidade Federal do Vale do São Francisco (Univasf), Petrolina, PE

da matéria orgânica ao longo do tempo.

Palavras-chave: Fracionamento físico, *Opuntia ficus-indica*, palhada, capim-buffel.

Introdução

O Nordeste brasileiro é uma região caracterizada pela paisagem semiárida, onde os solos rasos e pedregosos, cobertos por vegetação de Caatinga, desafiam o homem a criar alternativas de plantio adaptadas para maior resistência a estiagens (RAMALHO, 2013). A palma forrageira (*Opuntia ficus-indica*) aparece nesse contexto como uma opção de cultura xerófila adaptada ao Semiárido, com grande capacidade de absorção de água. A sua importância como reserva forrageira é significativa na sustentabilidade da pecuária regional, segmento fortemente atingido pela escassez de alimentos (CAVALCANTE et al., 2014).

O uso de cobertura morta sobre o solo é uma estratégia importante para os cultivos na região semiárida, pois, reduz a erosão superficial (SANTOS et al., 2000) e a perda de água por evaporação, permitindo que o conteúdo de água no solo seja até 65% maior que o do solo descoberto (LYRA et al., 2010).

Além dos efeitos sobre a retenção de água, a cobertura morta é uma forma de adicionar carbono ao solo e, como toda a adição de matéria orgânica, é capaz de melhorar atributos químicos, físicos e biológicos do solo (BAYER; MIELNICZUK, 2008).

A matéria orgânica do solo (MOS) é um conjunto complexo de materiais orgânicos com diferentes composições, grau de disponibilidade para a microbiota e função no ambiente (CARTER, 2001). Segundo Christensen (2001), a MOS pode estar na forma livre (matéria orgânica não complexada, que é formada por resíduos animais e vegetais parcialmente decompostos, hifas, esporos, pellets fecais, esqueletos da fauna do solo, fragmentos de raízes e sementes) ou fortemente ligada às partículas minerais (formando complexos organominerais).

A MOS não complexada encontra-se na classe de tamanho areia,

é composta por resíduos orgânicos em início de decomposição, sendo possível ainda identificar as características do tecido original, e representa um reservatório transitório entre a liteira e a fração associada aos minerais, possuindo maior taxa de decomposição e o menor grau de humificação que os complexos organominerais (frações de tamanho silte e argila) (ROSCOE; MACHADO, 2002; CHRISTENSEN, 2001).

Em solos tropicais, o conteúdo de C nesta fração varia de 10% a 25% do teor total de C. Por outro lado, a fração silte + argila concentra a maior parte do C orgânico do solo (30% a 70% do C em solos tropicais), que está em uma forma mais decomposta e mais estável no solo (ROSCOE; MACHADO, 2002).

O fracionamento da MOS, com a separação nas frações por classe de tamanho, é uma ferramenta importante para estudos de caracterização e quantificação dos compartimentos de C no solo (ROSCOE; MACHADO, 2002), porque, como as alterações se processam muito lentamente no solo, nem sempre é possível notar variações no teor total de carbono no solo devido à introdução de diferentes práticas de manejo. Apesar disso, o teor de C em formas lábeis, como a fração não complexada (tamanho areia) pode ser percebido mais rapidamente que variações no conteúdo de C total, sendo um indicador mais sensível da dinâmica de C (BLAIR et al., 1997).

Assim, o objetivo desse trabalho foi determinar os efeitos da adição de palha de capim-buffel como cobertura morta sobre as frações físicas da matéria orgânica do solo.

Material e Métodos

Foram avaliados os teores de carbono (C) em duas frações da matéria orgânica do solo (fração $> 53 \, \mu \text{m}$: tamanho areia e fração $< 53 \, \mu \text{m}$: tamanho silte + argila) em solo cultivado com palma forrageira com diferentes quantidades de palhada na superfície. O experimento foi implantado em 04 de março de 2016, no Campo Experimental da

Caatinga, na Embrapa Semiárido, em Petrolina, PE. Os tratamentos avaliados foram quatro doses de palhada de capim-buffel (*Cenchrus ciliaris*): 0, 10, 20 e 30 toneladas por hectare. O delineamento experimental foi em blocos ao acaso, com quatro repetições. As parcelas experimentais eram formadas por cinco linhas de palma, plantadas no espaçamento de 0,10 cm entre plantas e 1,0 m entrelinhas.

Em dezembro de 2016, amostras de solo foram coletadas na camada 0-10 cm de todas as parcelas experimentais para fracionamento físico da MOS. Após a coleta, as amostras foram secas ao ar e uma subamostra de aproximadamente 10 g foi pesada em *erlenmeyers* de 125 mL. Em seguida, foram adicionados 40 mL de solução hexametafosfato de sódio (5 g/L) em cada recipiente. A suspensão foi então agitada por 16 horas, em um agitador horizontal em velocidade de 16,5 RPM. Posteriormente, a suspensão foi passada em peneira de 53 μ m para separação da fração tamanho areia (> 53 μ m).

Com auxílio de água destilada, a fração $> 53~\mu m$ foi transferida para recipiente plástico com capacidade de 80 ml e levada para secar em estufa a 60 °C. Após secagem, a massa da fração $> 53~\mu m$ foi obtida em balança analítica. Em seguida, essa fração foi passada em moinho de bolas e cerca de 0,25 g do material moído foi pesado em cápsula de estanho para determinação do teor de C por combustão seca em analisador elementar (Leco CN 2000), no Laboratório de Solos e Tecidos Vegetais da Embrapa Semiárido. O mesmo procedimento foi feito para a determinação do teor total de C nas amostras de solo (não fracionadas).

Os dados foram analisados por estatística descritiva.

Resultados e Discussão

Não houve alteração no teor de carbono nas frações físicas da matéria orgânica avaliada. Na fração tamanho areia, o teor médio de C foi de 0,38%. Na fração silte + argila, o teor médio de C foi de 3,71% e no solo como um todo o teor observado foi de 1,02%. No trabalho de Loss et al. (2009), o teor de carbono das frações

tamanho areia em função dos diferentes sistemas de uso do solo variou de 0,2% a 0,5%, estando próximos aos valores obtidos na média da fração areia no presente trabalho (Tabela 1).

A ausência de diferença entre tratamentos provavelmente aconteceu devido à recente implantação do experimento (cerca de nove meses), pois, as mudanças ocorrem de forma lenta no teor de carbono total do solo e o tempo decorrido desde a implantação do experimento não foi suficiente para alterar as frações da MOS avaliadas. Na Tabela 1, podem-se observar altos valores no coeficiente de variação, o que também justifica a ausência de alterações significativas.

Assim, é possível concluir que há necessidade de um tempo maior para que alterações no teor de C no solo e nas frações físicas da matéria orgânica possam ser observadas. Portanto, novas coletas de solo devem ser realizadas nesse experimento, no futuro, para avaliar a variação nos teores de C nas frações da matéria orgânica ao longo do tempo.

Tabela 1. Teores de carbono no solo e em duas frações da matéria orgânica em função da adição de doses de palha de capim-buffel sobre o solo no cultivo de palma forrageira.

Dose de p <mark>â</mark> lha (Mg ha)	Teor de C na fração areia (%)		Teor de C na fração silte + argila (%)		Teor de C no solo (%)	
	Média	Desvio padrão	Média	Desvio padrão	Média	Desvio padrão
0	0,27	0,04	3,95	1,06	0,99	0,31
10	0,50	0,28	3,16	1,64	1,02	0,51
20	0,39	0,18	4,14	1,97	1,11	0,42
30	0,36	0,16	3,60	1,65	0,97	0,42
Média	0,38		3,71		1,02	
Mediana	0,30		3,14		0,99	
Desvio padrão	0,19		1,49		0,38	
Coeficiente de variação	0,49		0,40		0,37	

Conclusão

Não houve alteração significativa no teor de carbono nas frações físicas por causa da recente implantação do experimento. Entretanto, o teor de C na fração ligada aos minerais (silte + argila) é cerca de dez vezes superior ao teor de C na fração mais lábil (areia).

Referências

BAYER, C.; MIELNICZUK, J. Dinâmica e função da matéria orgânica. In: SANTOS, G. A.; SILVA, L. S.; CANELLAS, L.P.; Camargo, F.A.O. **Fundamentos da matéria orgânica do solo**: ecossistemas tropicais e subtropicais. 2. ed. Porto Alegre: Metropole, 2008. p. 7-18.

BLAIR, G. J.; LEFROY, R. D. B.; SINGH, B. P.; TILL, A. R.; Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate. In: CADISCH, G.; GILLER, K. E.; **Driven by nature: plant litter quality and decomposition**. London: CAB International, 1997. p. 273-281.

CARTER, M. R. Organic matter and sustainability. In: REES, R. M.; BALL, B. C.; CAMPBELL, C. D.; WATSON, C. A. **Sustainable management of soil organic matter**. New York: CABI Publishing, 2001. p. 9-22.

CAVALCANTE, L. A. D.; SANTOS, G. R. A.; SILVA, L. M.; FAGUNDES, J. L.; SILVA, M. A. Respostas de genótipos de palma forrageira a diferentes densidades de cultivo. **Pesquisa Agropecuária Tropical**, Goiânia, v. 44, p. 424-433, 2014.

CHRISTENSEN, B. T. Physical fractionation on soil and structural and funcional complexity in organic matter turnover. **European Journal of Soil Science**, Oxford, v. 52, n. 3, 345-353, 2001.

LOSS, A. PEREIRA, M. G.; SCHULTZ, N.; ANJOS, L. H. C.; SILVA, E. M. R. Carbono e frações granulométricas da matéria orgânica do solo sob sistemas de produção orgânica. **Ciência Rural**, Santa Maria, RS, v. 39, n. 4, p. 1067-1072, 2009.

LYRA, G. B.; SOUZA, J. L.; TEODORO, I.; LYRA, G. B.; MOURA FILHO, G.; ARAÚJO JÚNIOR, R. F. Conteúdo de água no solo em cultivo de milho sem e com cobertura morta na entrelinha na região de Arapiraca – AL. **Irriga**, Botucatu, v. 15, p. 173-183, 2010.

RAMALHO, M. F. J. L. A fragilidade ambiental do Nordeste brasileiro: o clima semiárido e as imprevisões das grandes estiagens. **Sociedade e Território**, Natal, v. 25, p. 104-115, 2013.

ROSCOE, R.; MACHADO, P. L. O. A. Fracionamento físico do solo em estudos da matéria orgânica. Dourados: Embrapa Agropecuária Oeste; Rio de Janeiro: Embrapa Solos, 2002. 86 p.

SANTOS, C. A. G.; SUZUKI, K.; WATANABE, M.; SRINIVASAN, V. S. Influência do tipo da cobertura vegetal sobre a erosão no semi-árido paraibano. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 4, p. 92-96, 2000.