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Sweet sorghum is a very robust crop which has the potential to be used in ethanol production due to its high fer-
mentable sugar content present in its stem juice, very similar to sugarcane. Therefore, for breeding purposes it is
relevant to analyze sugar composition in the juice to characterize sweet sorghum genotypes and their period of
industrial utilization within different environments for maximum ethanol yield. In this work we developed a
rapid, low cost and efficientmethod to determine the profile of sugars (sucrose, glucose and fructose) in sorghum
juice by near infrared spectroscopy and partial least square regression, and validation of the method was per-
formed according to the high-performance liquid chromatography method. Developed models provided root
mean square error of prediction of 4, 1 and 0.6 mg·mL−1 and ratio performance deviations of 8, 5 and 5 for su-
crose, glucose and fructose, respectively. Relative standard deviations of three sweet sorghum juice sampleswere
reportedwith content variation (low,medium and high) 0.2, 0.3, 0.8% for sucrose; 1, 2, 2% for glucose; 1, 2, 3% for
fructose. Sugar profile is an asset for crop breeders to take decisions for the development of more productive cul-
tivars and higher sugar content.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Sweet sorghum is one of the most promising alternative crops to
sugarcane for ethanol production due to the presence of sweet juice in
its stem [1].

Sugar content in sweet sorghum juice varies between 14 and 23%
Brix and may be extracted by protocols similar to those used for sugar-
cane [2]. The juice from the fresh stem contains sucrose, glucose and
fructose, with sucrose being the main sugar [3,4].

One of the measures undertaken by the sugar industry to assess
sweet sorghum quality is the determination of the contents of soluble
solids (Brix) of the juice extracted. However, the Brix is an indirectmea-
sure that relates the soluble solids dissolved inwater based on refractive
index changes. It is a measure widely used in the technological qualifi-
cation of sugarcane juice [5], fruit juice [6] without specifying the
sugar present. Brix in sweet sorghum samples has been strongly corre-
lated with sucrose content, albeit not correlated with glucose and fruc-
tose [7].

Since the sugar extracted from sweet sorghum is a function of bio-
mass yield, fiber content and juice quality, it is important to know the
um, Rod. MG 424, Km 45, C. P.
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composition of the sugars in sorghum juice to better qualify the sweet
sorghum genotypes and their period of industrial utilization (PIU) in
different environments to provide maximum yield of ethanol during
the fermentation process [2]. PIU should be the longest possible, with
a minimum threshold of 30 days. In fact, PIU comprises the period in
which the cultivar may remain in the field maintaining productivity
and quality at optimal levels, according to the minimum standards
established to ensure the viability of the crop until it is harvested and
processed by the ethanol industry.

Chromatographic techniques, such as high performance liquid
chromatography (HPLC) [8], ion chromatography (IC) [9], gas chro-
matography (GC) [10] or enzymatic methods [11], are commonly
used to determine the chemical composition of sugars in sorghum
juice.

However, all these techniques, coupled to several chemicals and in-
puts needed for sample preparation allow only a few analyses per day.

The Embrapa SorghumBreeding Program requires a great number of
sugar content analyses of sweet sorghum juice during the harvest peri-
od. Themethodwe stablished in thiswork allowed a faster and low-cost
alternative to the HPLC method to detect hybrids with high sugar yield
potential during their PIU. The method employs near infrared spectros-
copy (NIR) associated to the development of multivariate chemometric
regression models. PLS regression is a multivariate method and uses in-
formation of the NIR spectrum to establish the calibration equation. NIR
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Table 1
Sucrose, glucose and fructose contents as determined by HPLC from 160 samples of sweet
sorghum juice.

Component Sucrose Glucose Fructose

Minimum 26.50 6.60 4.21
Maximum 169.52 36.16 17.5
Mean 89.40 17.58 9.97
Standard deviation 3 5 2

Units: mg mL−1.
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region contains information on the relative proportions of C\\H, N\\H
and O\\H bands which are the primary structural components or or-
ganic molecules [12].

This approach has been widely used in numerous agricultural and
food products [13] and offers decisive advantages over traditional
methods, such as little sample handling, no chemicals, high precision
and accuracy, inexpensiveness and faster results [12].

The evaluation of sugar quality by near infrared spectroscopy has
been reported in the literature for fruit juice [14], sugar beet [15], sugar-
cane [16] and sweet sorghum in dry samples [17,18]. Chen et al. [17] ex-
tracted sucrose and glucose from dry sorghum stalks using distilled
water and autoclave at 121 °C for 15 min. Mid-infrared spectroscopy
was used to predict sucrose, glucose and fructose contents in juice sam-
ples of sweet sorghum [4].

This work aimed at developing a multivariate calibration-based
method using near infrared transflectance spectroscopy as a source
of analytical information to determine sucrose, glucose and fructose
contents in sweet sorghum juice with the minimal pretreatment of
samples for high-throughput screening phenotyping.
2. Materials and methods

2.1. Preparation of samples

The experiment was conducted in the field experimental area of
Embrapa Maize and Sorghum, in Sete Lagoas (19°28′S, 44°15′08″W),
Fig. 1. Set of raw NIR spectra of 1
MG, Brazil, using cultivars of Embrapa's sweet sorghum breeding
program.

One hundred sixty juice samples, from eight genotypes of sweet sor-
ghum (BRS 508, BRS 509, BRS 511, CMSXS643, CMSXS646, CMSXS647,
CV 198, CV 568 with similar flowering patterns were harvested, at dif-
ferent stages of maturation, 72 days after sowing with an interval of
seven days approximately. The samples were collected during 2015
and 2016.

Normal cultural practices were maintained to conduct the experi-
ment, following May et al. [19].
2.2. Sugar analysis

Stalk panicles were removed and eight stalks were crushed in a
forage chopper machine (Irbi, Araçatuba SP Brazil). Further, 500 g
of the material were taken to the hydraulic press (Hidraseme,
Ribeirão Preto SP Brazil) for 1 min with minimal constant pressure
of 250 kgf·cm−2. An 80 mL aliquot of juice extracted from each sam-
ple was stored in a polyethylene vial and frozen at −4 °C for later
analysis, totaling 160 samples. Sucrose, glucose and fructose con-
tents were analyzed by HPLC as follows: sorghum juice samples
were thawed at room temperature and 3 mL of each sample were di-
luted 15 times with deionized water. The samples were then shaken
at 45 rpm for 15 min and centrifuged at 3000 rpm for 15 min. Sam-
ples were filtered through a C18 cartridge, previously conditioned
with 2 mL acetonitrile and 2 mL deionized water. After this process,
2 mL of the solution were filtered with 0.45 μm membrane filters
(PTFE) and analyzed by HPLC (2695 Alliance Waters, Milford, MA,
USA) using a Phenomenex column (RCM-Ca). The mobile phase
used was ultrapure water flux 0.6 mL min−1, column temperature
65 °C. The detector was the Refractive Index (Milford MA, USA)
working at 40 °C. Analytical curves were produced by using sucrose,
D-glucose and D-fructose as standards (Sigma-Aldrich) with 99.5%
purity, respectively. Sucrose, glucose and fructose in the samples
were detected by comparison to standard retention time. Three cal-
ibration curves (R2 ≥ 0.999) were established for sucrose, glucose,
60 sorghum juice samples.



Table 2
Summary of statistical indicators for calibration and validation of sucrose, glucose and
fructose content (mg mL−1) in sweet sorghum juice determinate by the optimized NIR
based PLS models.

Component Sucrose Glucose Fructose

Calibration
Number of samples 100 100 100
LVa 5 8 7
RMSECb 3 0.8 0.5
R2c 0.99 0.97 0.95
RPDd 9 6 5

Validation
Number of samples 60 60 60
RMSECVe 4 1 0.6
RMSEPf 4 1 0.6
Bias 0.89 −0.21 −0.01
R2c 0.98 0.94 0.94
RPDd 8 5 5
RERg 35 25 30

a LV = latent variable.
b RMSEC = root mean square error of the calibration.
c R2 = determination coefficient.
d RPD = ratio performance deviation.
e RMSECV= root mean square error of cross-validation.
f RMSEP = root mean square error of prediction.
g RER = range error ratio.

127M.L.F. Simeone et al. / Microchemical Journal 134 (2017) 125–130
and fructose, respectively, from determinations at six different sugar
concentrations.
2.3. Near infrared spectra data calibration and validation

Juice sweet sorghum samples (50 mL) were filtered in cotton and
placed on a petri dish (100mm in diameter) with a transflection acces-
sory (total nominal optical path of 1.5 mm) to collect NIR spectra with
NIRFlex N-500 FT-NIR spectrometer (Flawil, Switzerland). The spec-
trometer was controlled and data were retrieved by NIRWare Operator
software and handled with Unscrambler X® (version 10.3, CAMO Soft-
ware Inc., Woodbridge NJ USA) software. The spectra were recorded in
triplicate from 10,000 to 4000 cm−1 with 4 cm−1 steps, averaging 32
scans, at 25 ± 2 °C. HPLC analyses were performed after NIR
measurement.

Prior to calibration, several preprocessing techniques, standard nor-
mal variate (SNV) and first-derivative Savitzky-Golay (SG-1), with 9
points on the right and on the left, were applied to the spectra to obtain
the best calibration equation. Two sample sets were prepared for calibra-
tion and external validation applying the Kennard-Stone algorithm [21]
to the values of the PLS scores of the samples.

The partial least square (PLS) method was used to provide a predic-
tion eq. [20]. Model performance was assessed by the coefficient deter-
mination (R2) of calibration and validation, root mean square error of
calibration (RMSEC), (RMSECV, a full cross-validation) and prediction
(RMSEP, for the external validation set). A full cross-validation follow-
ing the random method was performed to determine the optimum
number of factors for the model and to detect any outliers. Accuracy of
the generated PLS models was attested by trueness and precision stud-
ies. Two other parameters, namely, ratio performance deviation (RPD)
and range error ratio (RER), were used to evaluate the model's predic-
tion capacity [22].
Fig. 2. Plots of regression coefficients for the sucrose, glucose and fructose PLS models.
Sucrose (A), glucose (B) and fructose (C).
3. Results and discussion

Soluble sugars aremajor components of sweet sorghum juice, with a
wide range of sucrose, glucose and fructose concentrations [23].
Current study characterized 160 samples of sweet sorghum juice by
HPLC analysis during maturation curve period of sweet sorghum
development.

We observed that sugar profiles changed according to sorghum's de-
velopmental stage and the genotype analyzed.

The overall average sugar content in sweet sorghum juice (Table 1)
was 89.40mgmL−1 sucrose, 17.58mgmL−1 glucose and 9.97mgmL−1

fructose. Juice from sweet sorghum genotypes exhibited total ferment-
able sugars ranging between 105.43 and 204.99 mg mL−1 and averag-
ing 171.92 mg mL−1.

The raw spectra set in Fig. 1 show baseline offsets due to light scat-
tering or refractive index variation due to concentration variation.

All NIR spectra showed that vibration bands from O\\H and C\\H
groups were correlated with sugar components. While the structures
of sugars are similar and they exhibit similar NIR absorption peaks,
they may be probably differentiated by their absorption magnitude
due to the different numbers of O\\H groups, and slight changes in
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the O\\H and C\\H absorption band positions caused by inter-molecu-
lar hydrogen bonds. The absorption bands due to O\\H and C\\H
groups in sugars in which sucrose contains eight O\\H functional
groups and glucose and fructose contain five groups each largely influ-
ence the spectral variation although they may still be differentiated
[24]. Spectral ranges between 7200 and 6600, 6000 and 5500, 5400
and 4600, and 4600 and 4000 cm−1 may be attributed to O\\H stretch
first overtone, C\\H stretch first overtone, O\\H combination bands
and C\\H combination band regions, respectively [25]. Strong
peaks between 7400 and 6400 cm−1 and between 5400 and
4600 cm−1 are mainly related to the first overtone of O − H
stretching and O\\H combination bands of water, respectively and
were not use to develop the PLS models. Spectral regions between
5800 and 5400 cm−1 and between 4600 and 4000 cm−1 are related to
the first overtone of C\\H stretching and C\\H + C\\H and C\\H +
C\\C combination bands, respectively, both attributed to vibrations of
the molecules of sugars [24,26]. Considering the absence of significant
signals in this region between 10,000 and 7800 cm−1, it was deleted
previously to the development of the models.

All NIR spectra collected were preprocessed with mean center-
ing, whilst the presence of scattering and baseline deviations
were corrected by SNV (standard normal variate) and first deriva-
tive with 9-point Savitzky-Golay (9 on the right, 9 on the left). Sam-
ples are divided into calibration (n = 100) and validation (n = 60)
sets utilizing the Kennard-Stone algorithm [21]. Calibrations sets
cover the widest range of sugar concentration (Table 2).
Fig. 3. Plots of sugar content predicted by the proposed NIR method versus reference values o
samples. Sucrose (A), glucose (B) and fructose (C).
The preprocessed spectra (5800–5400 cm−1 and 4600–4000 cm−1)
were submitted to PLS calibration to give the most accurate models for
sucrose, glucose, and fructose content. RMSEC for calibration set,
RMSECV a full cross-validation, RMSEP for prediction set and R2 were
considered to evaluate results. RMSEC provides information about the
adjustment of the model to calibration data.

Latent variables (LVs) can be used to reduce the dimensionality of
data, and the optimal number of latent variables (LVs) was determined
by the lowest value of predicted residual error sum of squares (PRESS)
[27]. Consequently, the calibration optimal models were selected to
high R2, and low RMSEC, RMSECV, RMSEP and bias [28].

Fig. 2 shows the regression coefficients for themodels. The coefficients
for sucrose, glucose and fructose present a great similarity among them.
The highest variation was associated with frequencies in the 7800–
4000 cm−1 region. In general, coefficients associated with water vibra-
tions are negative, while the coefficients associated with sugars are posi-
tive [15,17]. The information-rich region from 4600 to 4000 cm−1 can be
ascribed to combinations of O\\H bend/hydrogen-bonded O\\H stretch
(4428 cm−1), O\\H stretch/C\\C stretch (4393 cm−1) and combinations
of C\\H/C\\C (4385–4063 cm−1) vibrations of the sugar molecules [28].

Accuracy of the generated PLS models was attested by trueness and
precision studies. Trueness of multivariate methods is evaluated by
RMSECV, RMSEC and RMSEP. All the models presented good correlation
between reference values and NIR predicted ones. Fig. 3 shows the corre-
lation between values determined by the reference analysis method and
values predicted by the NIR for external validation.
btained by liquid chromatography using an independent test set of sweet sorghum juice
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A model with five latent variables (LVs) minimized the root mean
squared error of cross validation (RMSECV) and maximized R2 for
sucrose, or rather RMSECV = 4 mg mL−1 and R2 = 0.99. A model with
eight LVs was selected for glucose, with RMSECV = 1 mg mL−1 and
R2 = 0.97. In the case of fructose, a model with seven LVs showing
RMSECV = 0.6 mg mL−1 and R2 = 0.95 was selected.

RMSEP expresses the degree of agreement between estimated
values by a model previously constructed and a real or reference
value [29].When the predicted values were plotted against the refer-
ence values for sucrose, glucose and fructose, the validation samples
achieved a rootmean squared error of prediction (RMSEP) of 4, 1 and
0.6 mg mL−1, respectively.

The precision was only estimated at the level of repeatability because
the sugar content of sweet sorghum juice changes over time and the in-
termediate precision cannot be evaluated. Consequently, repeatability
was evaluated by estimating relative standard deviations (RSD) for tripli-
cates of three sweet sorghum juice samples with low, medium and high
sugar contents. RSD varied 0.2, 0.3, 0.8% for sucrose; 1, 2, 2% for glucose;
1, 2, 3% for fructose, respectively. These values can be compared with
the expected values issued from the Horwitz eq. [30] and acceptable
RSD (b4%) were obtained.

The accuracy of the method was evaluated by the elliptical joint
confidence region (EJCR) test, which is frequently used to evaluate
accuracy of new analytical methods. This ellipse must contain values
of intercept=0 and slope=1,which indicate the absence of systematic
errors [31]. Thus, by taking the critical value for the Snedecor-Fisher
statistic at a 95% confidence level F2,58 = 3.15, we obtain β1 b 1
(0.9768,−1.69,−0.69) and β2 N 1 (1.03, 3,66, 2.69) for sucrose, glucose
e fructose, respectively. This indicates that the point (0,1) lies inside the
EJCR and then, the intercept may be considered to be zero and the slope
to be unity, which indicates absence of systematic errors of the PLS
method in comparison with HPLC.

RPD and RER ratio relates SEP to variance and range in the original
reference data, taking into consideration that RPD should ideally be
at least 2.4 and the RER at least 10.0 [21]. Williams and Sobering
[32] indicated that the value of 3 or more was recommended. All
models in Table 2 presented RPD above 3 and RER above 10 and
may be used to screen sweet sorghum genotypes. However, it should
be underscored that the accuracy of a model depends on its applica-
tion and the errors of prediction (RMSEP). By comparison, the pre-
diction of sugars in sweet sorghum juice was consistent with
previous reports for dry samples utilizing transmission mode [17,
18,33]. NIR models may be of great help to breeders to select the
sweet sorghum genotypes so that they may have the best sugar pro-
file for bioenergy crop.

4. Conclusions

The development of high-throughput screening methodologies is
crucial to fast phenotyping in plant breeding. Therefore, we developed
a fast an inexpensive method that allowed evaluation of sugar content
for sweet sorghum selection for bioenergy purposes. Sugar profile of
sweet sorghum juice was determined for sucrose, glucose and fructose
by HPLC at different stages during stalk maturation. Using NIR-PLS
methods, models were built to determinate sucrose, glucose and fruc-
tose present in the juice of sweet sorghum and the results were compa-
rable to those determined by HPLC method. The PLS-NIR method
developed is a good alternative to chromatographic methods requiring
minimum sample preparation, no chemicals reagents and fast
throughput.
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