REDUÇÃO DO CONSUMO DE ÁGUA E ECOEFICIÊNCIA EM

GRANDES EMPRESAS, RS.

Marta Regina Lopes Tocchetto^[1]; Lauro Charlet Pereira^[2]

1. INTRODUÇÃO

Atualmente se considera indissociável: estratégias para redução de matérias primas, água, energia e aumento de produtividade. Em muitas indústrias, como as de recobrimento metálico e de tratamento de superfície, o consumo de água é muito grande, assim a reciclagem e o reuso podem ser uma oportunidade para combinar redução de custos. melhoria do gerenciamento e uso racional de recursos naturais (Centi e Perathoner, 1999). Programas, voltados para a redução, reuso ou reciclagem, de água, exigem que a substância seja vista como matéria prima. Estratégias de minimização para a indústria de tratamento de superfície devem ter como foco o desenvolvimento de programas amplos para a redução de resíduos e de efluentes líquidos (EPA, 2002). As tecnologias de membranas têm se destacado para recuperação de águas provenientes do processo galvânico. Em especial, destacam-se os processos de osmose reversa, microfiltração e eletrodiálise, além das resinas trocadoras de íons. O uso mais eficiente da água trás como benefícios, a redução do custo de produção e o aumento da ecoeficiência. Outros benefícios também são verificados como, um menor descarte de águas contaminadas, a possibilidade de reciclar as águas para o mesmo ou outro processo, redução do consumo de energia (aspecto fortemente dependente do consumo de água) e a proteção dos recursos naturais (Baptista et al., 2001). Nessa perspectiva, as estratégias preventivas possibilitam aliar o aproveitamento eficiente dos recursos à minimização de resíduos de riscos e de poluição, a partir da fonte de origem (Staniskis e Stasiskiene, 2003). Este contexto determinou o problema central da pesquisa. O objetivo do trabalho foi: identificar as medidas implantadas para redução do consumo de água, em um grupo de cinco grandes empresas galvanicas.

2. MATERIAL E METODO

Em um estudo de caso, foram selecionados cinco grandes empresas do Rio Grande do Sul, as quais encontram-se identificadas por letras alfabéticas (A, B, C, D,e E). Tais empresas possuem diferenciação de porte, de produtos e serviços, entre si, conforme mostra a Tabela 1. O método adotado foi o investigativo, que constou de entrevistas *in loco*, com uso de questionários, junto aos responsáveis pelo setor ambiental de cada empresa. O período da pesquisa foi de abril a setembro do ano de 2003.

Tabela 1 - Empresas Participantes do Estudo de Caso

Empresas	Total de Funcionários	Årea Total Construída (m²)	Produtos e Serviços
Α	1.000	19.423,00	Fabricação de artefatos e utensílios metálicos

mk:@MSITStore:D:\XVRBMCSA.chm::/Áreas%20apresentação/8.%20Poluição%20... 08/09/2004

BD	1.028	13.000,00	Fabricação de utensílios, peças e acessórios
CF	1.700	51.331,00	Fabricação de máquinas e equipamentos
DL	2.174	28.810,00	Reparo de peças e motores
EM	15.000	54.360,00	Fabricação de artefatos e componentes decorativos

3. RESULTADOS E DISCUSSÃO

A partir da análise dos resultados, verificou-se que a principal estratégia utilizada para a redução do consumo de água foi a lavagem tríplice, em cascata. Observou-se, ainda, que o controle de entradas e saídas de água era deficiente, dificultando muito o planejamento de ações para redução de consumo e reuso de água. Os principais resultados obtidos são apresentados na Tabela 2.

Tabela 2 - Resultado do Estudo de Caso

Empresas	Α	В	С	D	E
Parâmetros	^	ם		U	-
V de lodo (m ³ /mês)	40	5	17	17	6
ETE (entrada) V de efluente m ³ /mês	28.800	200	100	90	540
Consumo de água (galvânica) m ³ /mês	28.800	200	50	Sem dados	150
Fechamento de ciclo de água – Economia (%)	-	84 (antes eram gastos 1.500 m ³ /mês)	-	-	83 (antes eram gastos 870 m ³ /mês)
Tratamento de efluentes líquidos	Físico- químico	Troca Iônica e Físico- químico	Físico- químico	Físico- químico	Troca Iônica e Físico- químico
Recuperação de metais	Evaporador a vácuo				Eletrodiálise - Evaporador a vácuo

mk:@MSITStore:D:\XVRBMCSA.chm::/Áreas%20apresentação/8.%20Poluição%20... 08/09/2004

		_	- Reciclo	_	-	- Reciclo
Redução	do		-			- Reserva
consumo	de		Captação			de incêndio
água			de água			
			de chuva			
			- Água			
			dos			
			lavadores			
			de gases			
			para		}	
			sanitários			

Os valores idênticos de consumo de água e volume de efluentes a tratar na estação de tratamento (ETE) nas empresas A, B sugerem as dificuldades de controle, pois na ETE são tratados efluentes gerados de outros processos executados. A empresa D não possui controle de consumo de água. Observou-se que nas empresas (A, C e D), onde o tratamento dos efluentes é convencional (físico-químico), a geração de lodo é maior. O uso de tratamentos alternativos, como troca iônica e tecnologias de membrana possibilitam o reuso da água, através do fechamento de ciclos no processo, além da recuperação dos metais que são reciclados e retornam para os banhos de recobrimento. As empresas **B e E** obtiveram economia acima de 80% de consumo de água, com a implantação de equipamentos que possibilitam essas estratégias. Os resultados demonstraram que medidas de redução e reuso de água se inter-relacionam com a geração de lodo galvânico. A empresa A instalou um secador rotatório, devido às dificuldades de área para armazenagem de um volume tão elevado. O reaproveitamento de lodo galvânico é proibido no Rio Grande do Sul, devido a periculosidade. A disposição em aterros é a forma aceitável para o gerenciamento. Os aspectos construtivos em aterros, para resíduos perigosos, são de fundamental importância tanto para evitar danos irreversíveis ao meio ambiente, quanto para evitar gastos financeiros grandiosos para recuperação de áreas degradadas.

5. CONCLUSÕES

A partir dos resultados, foi possível fazer as seguintes conclusões:

- a) as estratégias preventivas e de reuso de água são pouco praticadas no grupo de empresas pesquisadas;
- b) o estabelecimento de estratégias para racionalização do uso da água se deve mais à escassez iminente dos recursos hídricos do que à consciência conservacionista existente nas empresas;
- c) há um grande potencial no setor galvânico para conciliar a atividade produtiva e a eficiência ambiental.

mk:@MSITStore:D:\XVRBMCSA.chm::/Áreas%20apresentação/8.%20Poluição%20... 08/09/2004

6. REFERÊNCIAS BIBLIOGRÁFICAS

BAPTISTA, J. M. et al (2001). Programa Nacional para o uso eficiente da água (versão Preliminar). Laboratório Nacional de Engenharia: Lisboa, 2001.

CENTI, G.; PERATHONER, S. (1999) Recycle rinse water: problems and opportunities. Catalysis Today, v.53, p.11-21, 1999.

COSTANZI, R. C.; DANIEL L. (2002). Metodologia para implantação de programas de fechamento de circuito de água no processo industrial. In: Simpósio Internacional de Qualidade Ambiental, 3, 2002, Porto Alegre. **Anais ...** Porto Alegre, 2002. 1 CD-ROM.

EPA (2002). Fact Sheet: **Metal Recovery Technologies for the Metal Finishing Industry**. Disponível em: http://es.epa.gov/techinfo/facts/michigan/michfs20.html. Acesso em: 09/12/2002.

STANISKIS, J.K.; STASISKIENE Z. (2003). **Promotion of cleaner production investiments: internacional experience.** Journal of Cleaner Production, 11, p. 619-628, 2003.

Química Industrial; Doutoranda; Profa. Universidade Federal de Santa Maria;marta@tocchetto.com

² Engenheiro Agrônomo; Doutor, Pesquisador da Embrapa Meio Ambiente (SP).