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Abstract

Although there is substantial diversity among cultivated sweet oranges genotypes with respect to morphological, physio-

logical, and agronomic traits, very little variation at DNA level has been observed. It is possible that this low DNA

molecular variability is due to a narrow genetic basis commonly observed in this citrus group. The most different mor-

phological characters observed were originated through mutations, which are maintained by vegetative propagation.

Despite all molecular tools available for discrimination between these different accessions, in general, low polymorphism

has been observed in all groups of sweet oranges and they may not be identified by molecular markers. In this context, this

paper describes the results obtained by using laser-induced fluorescent spectroscopy (LIFS) as a tool to discriminate sweet

orange accessions (Citrus sinensis L. Osbeck) including common, low acidity, pigmented, and navel orange groups, with very

little variation at DNA level. The findings showed that LIFS combined with statistical methods is capable to discriminate

different accessions. The basic idea is that citrus leaves have multiple fluorophores and concentration depends on their

genetics and metabolism. Thus, we consider that the optical properties of citrus leaves may be different, depending on

variety. The results have shown that the developed method, for the best classification rate, reaches an average sensitivity

and specificity of 95% and 97.5%, respectively. An interesting application of this study is the development of an econom-

ically viable tool for early identification in seedling certification, in citrus breeding programs, in cultivar protection, or in

germplasm core collection.
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Introduction

The sweet orange (Citrus sinensis L. Osbeck) is the most

representative and recognizable species of the citrus group.

Its production in 2012 was estimated at 51.8 million tons,

totalling approximately 53% of citrus production for both

fresh fruit and processed juice consumption. Brazil is the

world’s biggest producer of sweet oranges, which corres-

ponds to about one-third of the world’s production, that is,

approximately 18 m/t.1
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The sweet orange originates from Asia and several

research results suggest the hybrid originates from crosses

between the pomelo (C. grandis L. Osbeck) and the mandarin

(C. reticulata Blanco).2–5 According to Hodgson,6 sweet

oranges are classified into four groups: common, low acidity,

pigmented, and navel oranges. In these groups, there is a

wide diversity in phenotype traits such as size and shape of

canopy, color, size, type, ripening season of the fruits, and the

number of seeds per fruit. Although there is substantial

diversity among cultivated genotypes in terms of morpho-

logical, physiological, and agronomic traits, very little vari-

ation at DNA level has been observed,7,8 It is possible that

this low DNA molecular variability is due to a narrow gen-

etic basis commonly observed in these citrus groups. Most of

the different morphological characters observed originated

through mutations, which are maintained by vegetative

propagation.9

Several DNA markers have been utilized in genetic stu-

dies, cultivar characterization, and identification of sweet

oranges, such as variable number of tandem repeats

(VNTRs) loci,10 inter-simple sequence repeats (ISSRs) and

restriction fragment length polymorphisms (RFLPs),8,11

random amplified polymorphic DNA (RAPD),12,13 iso-

zymes,14 single nucleotide polymorphism (SNP),15 and

simple sequence repeats (SSR).7,16 However, despite all

these molecular tools, in general, low polymorphism has

been observed in all groups of sweet oranges.

Sun et al.17 reported a new strategy cultivar identifica-

tion diagram (CID) that was used with success to improve

the efficiency of RAPD markers for the identification of

60 sweet orange cultivars. Recently, another technique

called laser-induced fluorescence spectroscopy (LIFS) was

employed as a tool to identify citrus varieties.18,19 The

results showed that this technique was able to discriminate

the different citrus varieties in a nursery. Milori et al.18 used

an excitation laser of 561 nm and showed that LIFS com-

bined with statistical methods is able to discriminate differ-

ent citrus varieties. Several statistical tests, such as principal

component regression (PCR), partial least squares regres-

sion (PLS), and factorial discriminant analysis (FDA), were

assessed as classification methods for each sample class.

The rate of success for this classification depends on the

combination of canopy and rootstock varieties as well as

the classification method used. The best results are given

by the classic principal component analysis (PCA) and

PLS–LDA classifiers (around 90%). However, FDA using

Mahalanobis distance showed the best success rate for clas-

sification of the Natal variety (around 81%). In previous

work described in Santana-Vieira et al.,19 two different

excitation lasers, 405 nm and 561 nm, aimed to determine

LIFS accuracy in the differentiation and grouping very clo-

sely varieties of four Sunki mandarin selections: Comum,

Florida, Tropical, and Maravilha. The results obtained

with LIFS was compared with the ones obtained with

ISSR and SSR molecular markers for the same varieties.

Laser-induced fluorescence spectroscopy distinguished

the four selections with an accuracy greater than 70%

while molecular markers were able to distinguish clearly

Tropical from Maravilha, but not Comum from Florida

selections.

Laser-induced fluorescence spectroscopy is an analytical

technique20 used to monitor chemical and physical proper-

ties of plants which access not only color pigment such as

chlorophyll and carotenoid,21,22 but also other secondary

metabolites of the leaves, which comprise the fluorophore

of the green leave. Thus, the fluorescence emission spec-

trums of the leaves are rich in information of various chem-

ical compounds.

The fluorescence spectroscopy on the leaves of plants

has emerged as a specific and important tool for remote

sensing to access accurately the physiological state of plants

and allow early diagnosis of biotic and abiotic stresses in

vegetation.23,24 Their applications in agriculture, biology,

and botanics has been published in a numerous of

reviews in the last 20 years.18,23–29 Laser-induced fluores-

cence spectroscopy has an optical configuration which

allows non-invasive interaction with the sample. Thus, the

tool can be made very compact for the development of field

devices and incorporated in agricultural vehicles. Such

equipment allows large-scale and real-time monitoring as

for citrus early identification in breeding programs and

early biotic and abiotic stress diagnosis in crops. Beside,

other features such as high sensitivity and reliability made

LIFS an attractive investigation tool for the productive

sector

In this context, this paper describes the results obtained

by using LIFS associated with chemometric methods as a

tool to discriminate sweet orange accessions (C. sinensis L.

Osbeck) including common, low acidity, pigmented, and

navel orange groups. The main features from these set of

leaves is that they are indistinguishable by molecular mar-

kers. Even with little genetic variability among them, each

accession is characterized by a specific combination of

canopy and rootstock and presents a particular concentra-

tion of multiple fluorophores and chemical composition.

These changes are successfully identified by optical tech-

niques because it alters the characteristic optical signature

of the leaves from each accession and discriminate

them among its genetics.9,18,19 Two different LIFS systems,

one with excitation wavelength at 405 nm and the

other one with excitation wavelength at 561 nm, combined

with chemometric tools, were used to discriminate these

sweet oranges varieties. The evaluation was performed

in two different sets of leaves, from ten different citrus

varieties in each set collected in two different seasons:

the first one in winter time and the second one in summer

time. Both sample sets were received from Citrus

Germplasm Bank of Centro de Citricultura Sylvio Moreira

of Instituto Agronômico (CCSM-IAC), Cordeirópolis,

SP, Brazil.
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Materials and Methods

Plant Material

The sweet orange accession (C. sinensis L. Osbeck) belongs

to the Citrus Germplasm Bank of Centro de Citricultura

Sylvio Moreira of Instituto Agronômico (CCSM-IAC),

Cordeirópolis, SP, Brazil. A total of 20 accessions of

sweet orange were evaluated (Table 1) in two different

season: the first set comprises leaves from ten different

accessions collected in winter and the second set com-

prises leaves from another ten different citrus accessions

collected in summer; they were separated into groups

according to the measurements presented in Tables 2 and

3, respectively. All plants were grafted on C. limonia and

cultivated in 60-L citrus pots containing commercial sub-

strate on greenhouse conditions. All parameters such

as soil management, irrigation, fertilization, temperature,

and watering were adequate and favorable to growing

the plants. These parameters were considered for each

tree. The plants in a Germplasm Bank are not in the

seedling phase or even adults. All plants were about

3 years old. Besides, no trees already showed any difference

in phenotype traits, which did not allow differentiation

between them by visual inspection. Figure 1 showed a pro-

tected BAG as maintained in the Germplasm Bank of

CCSM-IAC.

Leaf samples

Three leaves of each accession were collected at CCSM-

IAC and sent to Embrapa Instrumentation to be analyzed.

First, these samples were cleaned with a piece of cotton

made wet with distilled water and then dried with dry

cotton wool in order to remove any soil or dirt that

could affect and influence the LIFS spectra. After that, the

leaves were kept in bags and refrigerated at 4 �C to prevent

degradation. All measurements were performed with the

leaves in natura25 (without any kind of sample preparation)

as shown in Figure 2. Measurements were performed

within 24 h after arrived at Embrapa Instrumentation.

Accessions from the same variety were not measured

in sequence to avoid interference in the reading of the

equipment. The measurements were done on the abax-

ial leaf surface, on the right side of the midrib, next to

the petiole.

Table 1. First set of sweet orange (C. sinensis) accessions eval-

uated by spectroscopy.

ID

Groups

Navel Common names

BAG Citros 0006 Baia Vale del Cauca

BAG Citros 0008 Baianinha Piracicaba

Common

BAG Citros 0119 Pera Ipigua

BAG Citros 0227 Ovale

BAG Citros 0273 Pera Mahle

BAG Citros 0295 Pera Olı́mpia

BAG Citros 1546 Pera de Abril IAC 148

BAG Citros 1557 Valencia B

BAG Citros 1589 Westin IAC 115

BAG Citros 1640 Seleta do Rio IAC 420

BAG Citros 1667 Pera Roberto Gullo

BAG Citros 1703 Pera Bianchi

Pigmented

BAG Citros 0277 Red Pulp

BAG Citros 0278 Red Pulp de Mombuca

BAG Citros 0279 Sanguinelli- Faz. Reserva

BAG Citros 0280 Doppio Red Pulp

BAG Citros 1708 Valencia Puka

Low acidity

BAG Citros 1526 Piralima IAC 2

BAG Citros 1538 Lima IAC 9

BAG Citros 1701 Piralima IAC 11

Table 3. Separated groups of the second set of citrus varieties

analyzed by LIFS technique.

Group Accessions

Group 1 Pera Abril IAC 148

Pera Bianchi

Pera Roberto Gullo

Group 2 Seleta do Rio IAC 420

Valência B

Valência Puka

Westin IAC 115

Group 3 Lima IAC 9

Piralima IAC 11

Piralima IAC 2

Table 2. Separated groups of the first set of citrus accessions

analyzed by LIFS.

Group Accessions

Group 1 Pera Ipigua (BAG Citros 0119), Pera Mahle

(BAG Citros 0273), and Pera Olı́mpia (BAG

Citros 0295)

Group 2 Sa (BAG Citros 0277), Red Pulp of Mombuca

(BAG Citros 0278), Sanguinelli – Faz.

Reserva (BAG Citros 0279), and Doppio

Red Pulp (BAG Citros 0280)

Group 3 Baianinha Piracicaba (BAG Citros 0006), Baia

Vale del Cauca (BAG Citros 0008), and

Ovale (BAG Citros 0227)
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Laser-Induced Fluorescence Spectroscopy Apparatus

In this study, we used two portable LIF systems. Both sys-

tems were developed by the Optics and Photonics

Laboratory from Embrapa Instrumentation (international

patent WO2010069017A1).30 The main difference between

these two systems are excitation frequency and detection

range of spectrometers. The first system has a diode laser

CUBE Model produced by Coherent with excitation at

405 nm and maximum output power of 50 mW at room

temperature, and a high sensitivity mini-spectrometer

manufactured by Ocean Optics (USB4000) with spectral

range of 194–894 nm.18,19,25,30 It will be addressed as

LIFS-405 from now on. Referred to as LIFS-561, the

second system comprises a diode laser COMPASS model,

also produced by Coherent, but with emission at 561 nm.

LIFS-561 has a high sensitivity mini-spectrometer (USB4000)

produced by Ocean Optics with detection range of

500–1200 nm.18,19 Both systems have an optical shutter, a

bifurcated optical fiber (six illumination optical fibers around

one reader fiber is also manufactured by Ocean Optics).

There is an adjustable optical filter to minimize the scattered

excitation light and a notebook with software developed to

control, acquire, and evaluate the spectral signal.

The developed software, DIAGNÓSTICO, adjusts three

parameters of the spectrometer in both pieces of LIFS

equipment: integration time, average number, and boxcar.

The integration time (in ms) is the time interval in which

the system captures the light emission from each sample.

The average number is the number of collected spectra to

obtain the average spectrum which best represents the

emission from the sample in order to minimize noise.

The third parameter is the boxcar, which consists of a

pre-treatment parameter used for smoothing the spectra.

This smoothing is carried out by evaluating a medium at

each point of the spectrum that involves a number of neigh-

bors on either side of the respective point. In this work, the

measurements performed with the LIFS-405 system

adopted the following parameters: 60 ms for integration

time, 20 for the spectral averages, and 2 for boxcar.

For the measurements performed with the LIFS-560 nm,

the spectrometer parameters adopted were: 2 ms for

Figure 1. Protected BAG as maintained in the Germplasm Bank of Centro de Citricultura Sylvio Moreira of Instituto Agronômico

(IAC), Cordeirópolis, SP, Brazil.

Figure 2. All measurements were performed with the leaves in

natura positioning the optical fiber probe perpendicularly on its

ventral portion near the midrib, taking care that light does not

focus directly on the veins of the leaf.
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integration time, 20 for the spectral averages, and 2 for

boxcar.18,19

The experimental procedure consists of positioning the

optical fiber probe perpendicularly on the ventral portion

of the leave in natura near the midrib, making sure that the

light does not focus directly on the veins of the leaf. Before

the measurement, each sample was exposed to excitation

source for about 2 s, which is enough to reach fluorescence

steady state.

Data Evaluation

In this work, the PCA31,32 was evaluated to study the

potential to differentiate sweet orange accessions using

the fluorescence spectra and create classifiers able to cor-

rectly identify each variety. Principal component analysis

was evaluated on the entire fluorescence spectrum infor-

mation only for the Pera sweet oranges accession as input

variable and the PC scores delineated clearly the different

accession. Once the discriminatory power of LIFS were

shown, the spectra from all accession were analyzed and

classifier induced as described below.

First, all spectra were pre-treated to remove electronic

and optical offset, and normalized by the area under the

curve, so only changes in the spectral profile will be con-

sidered. This pre-treatment enables the comparison among

several spectra. For LIFS-405, the baseline was corrected by

subtracting the average value of the intensities in the spec-

tral range of 425–430 nm from the whole collected spectra,

400–892 nm. For LIFS-560, the baseline was corrected by

subtracting the average value of intensities in the spectral

range of 1090–1100 nm of the whole collected spectra,

600–1140 nm. All this analysis was performed with soft-

ware developed by the group named DIAGNÓSTICO.

Second, these data were exported to an open source

software Weka for the induction of a classifier via regres-

sion (CVR) based on the combination of two techniques: a

model tree algorithm and a regression function, via

PLSR.25,33–36 This induced classifier is based on chemical

changes in citrus plants of different accessions. These

changes are identified by leaf fluorescence, which offers

information that is used to construct the classifier through

a confusion matrix obtained via CVR. For our fluorescence

data, 1593 points were used for LIFS-405 and 1680 points

for LIFS-560 as input to the classifier for data training and

data validation.

Partial least squares regression is a multivariate analysis

technique that makes a linear transformation on the original

data set, the input variables (fluorescence spectrum), and

determines the best correlation with the response vari-

ables, namely the sweet oranges accessions. This technique

has been widely used in the classification of diseases in

citrus25 and has shown to be very useful in the study of

separating citrus varieties which are genetically very close.

The classifiers induced by PSLR associate the sweet orange

accessions to numbers using a binarization process. The

process starts with the selection of a training set, to cali-

brate the regression model, and a test set, to validate the

generated model. Thus, value 1 is assigned for one acces-

sion of sweet orange and value 0 is assigned for the other

sweet orange accessions. For each test set, the model

shows values between 0 and 1. The closer the number is

to 1 the stronger the similarity between the test spectrums

to the reference class is. In order to validate the classifica-

tion model generated by CVR, the cross-validation method

was performed.36 This method separates the data set in n

folds or groups, and uses (n–1) of them for training the

classifiers and one for testing it. Then, the folder chosen

for testing the classifier was returned to the data set.

Iteratively, another fold was chosen for testing the classifier

and the remaining folders composed the training group so

the same procedure is adopted. This process was repeated

until all groups are trained and tested.

The classification of the spectral data sets was carried

out with ten randomly chosen cross-validation procedures

of tenfold. For all tests, ten components were assigned. The

choice of the number of components was made by analyz-

ing the highest success rate and lowest root mean squared

error (RMSE) as a function of the number of components

with significant statistical differences. The success rate was

obtained by the ratio of the number of correctly classified

samples and the total number of samples.

With the free software Weka, the spectra treatment

obtained with LIFS-405 and LIFS-560 were conducted

and, as a result, it was possible to mount a confusion

matrix. The columns of the confusion matrix show how

the leaves were classified by the generated model and the

rows show the actual varieties. Thus, the main diagonal

shows the correctness of the model. The values repre-

sented in the confusion matrix correspond to the rights

and wrongs obtained in the classification of the accessions

in percentage.

Results and Discussion

Despite all phenotypic differences between the sweet

orange groups, there is very little genotype variability

between them, which cause little success in using genetic

markers to characterize and identify each sweet orange

accession.16 For this purpose, LIFS was successful, as this

technique is based on the differences of the fluorescence

spectra characteristic for each orange accession. This sep-

arability is due to chemical changes in citrus leaves identi-

fied by leaf fluorescence that is specific for each

combination of canopy and rootstock.

Typical leaf fluorescence spectra obtained with LIFS-405

and LIFS-561 are shown in Figures 3 and 4. According to

Figure 3, the fluorescence spectra with LIFS-405 show two

distinct fluorescence bands: a blue–green emission between

400 and 630 nm, and a red to near-infrared (NIR) in the
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range of 650–800 nm.25 Both play an important role in the

construction of the induced classifier for citrus discrimin-

ation of different accession. The first band is strongly asso-

ciated with the carotenoids, plant cell wall, and with the

presence of secondary metabolites such as ferulic acid, fla-

vonoids, coumarin, and queracetin.23–25,37–40 The second

emission band possesses two peaks, one at 680 nm and

another at 730 nm. They represent the characteristic emis-

sion of chlorophyll fluorescence (ChlF).23–25,37–40 Figure 4

shows the typical fluorescence spectra obtained with the

LIFS-561 system, where the two emission peaks, at 680 nm

and 730 nm, are characteristic of chlorophyll fluorescence

emission (CHlF).26–29,40

Figures 5 and 6 show the score plot for three PCs,

PC1� PC2� PC3, of PCA analysis using the fluorescence

spectra (LIFS-405 and LIFS-561, respectively) of leaves from

different Pera sweet orange accessions grafted in Rangpur

lemon rootstock. One may see the existence of patterns in

both graphics.

Although all sweet oranges are very close genetically, it

is possible to observe three separate groups using both

LIFS systems for Pera accession. Accordingly, an induced

classifier will be able to be constructed with the aid of all

the fluorescence spectra information to better characterize

the leaves accession. In the next section, the induced clas-

sifier and the success rate are presented. The classifications

of each group of leaves cited in Tables 2 and 3 are shown

using the methods described above. A set of samples of

leaves from different accessions, called set 1, was measured

by both LIFS-405 and LIFS-560, and another set of leaves

(set 2) was measured only with the LIFS-405 system.

First Set of Leaves Analyzed

After performing ten executions of tenfold stratified cross-

validation runs to determine the number of components

responsible for the best results of classification, a confusion

matrix for all varieties was obtained by classification via

regression using PLS with ten components. For the correct

classification of ten accessions together, a global accuracy of

63% for LIFS-405 was obtained. Regarding LIFS-560, the

result was 60.5%. This may be contemplated in the confu-

sion matrix in Tables 4 and 5, respectively.

Analyzing the main diagonal of the confusion matrix, it is

possible to observe the great potential of the technique

once it was capable to separate all the accessions. From

the confusion matrix of Tables 4 and 5, it is possible to infer

that the classification error of the model is associated with

an increase in the number of sweet orange accessions. This

increase causes more confusion among them. Furthermore,

as shown in both tables, the success rate for this classifi-

cation depends on each combination of canopy and

rootstock, and the best result obtained was 96.8% with

LIFS-405 system for the Ipigua orange. Considering the

same variety, these results drops to 71% when the LIFS-

560 technique is applied, as shown in Table 5. The best

result obtained with the LIFS-560 technique concerns

Pera Mahle, with a success rate of 94% in correctly classify-

ing it from all other accession (Table 5).

In order to improve the discrimination among the

sweet orange accessions, ten accessions from the first set

were separated in three different groups according to their

similarities, as shown in Table 2. The confusion matrix

obtained for the first group (Pera Ipigua, Pera Mahle, and

Pera Olimpia) evaluated the fluorescence spectra obtained

from LIFS-405 and LIFS-560. They are presented in Tables 6

and 7, respectively. According to these tables, it is possible

to differentiate three sweet orange accessions, although

they are genetically similar. Observing the confusion

matrix of Table 6, the technique is able to differentiate

three different accessions of Pera. Pera Olimpia was

Figure 3. Typical fluorescence spectra of a leaf obtained with an

excitation light of 405 nm. This spectrum displays two different

bands that correspond to the blue–green fluorescence, in the range

of 450–630 nm, and the characteristic chlorophyll fluorescence in

the red to NIR region, in the range of 650–800 nm.

Figure 4. Typical fluorescence spectra of a leaf obtained with an

excitation light of 561 nm. This spectrum displays only the char-

acteristic chlorophyll fluorescence in the red to NIR region, in the

range of 650–800 nm.
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Figure 5. Principal component analysis using the fluorescence spectra (FIL-405) of leaves among Pera sweet orange accessions grafted

in Rangpur lemon rootstock.

Figure 6. Principal component analysis using the fluorescence spectra (LIFS-561) of leaves from different Pera sweet orange accessions

grafted in Rangpur lemon rootstock.

Table 4. Confusion matrix obtained when evaluating all ten accessions using the LIFS-405 technique.

Classified as

Real variety Baianinha Doppio Ovale Ipigua Mahle Olimpia Sanguinea Sanguinelli Mombuca

Del

Cauca

Baianinha 52.2% 8.8% 3.2% 0.0% 3.2% 0.0% 4.2% 0.0% 0.0% 16.6%

Doppio 4.3% 26.5% 0.0% 3.2% 0.0% 0.0% 0.0% 0.0% 0.0% 6.6%

Ovale 4.3% 0.0% 48.4% 0.0% 0.0% 4.2% 4.2% 3.2% 4.3% 3.3%

Ipigua 8.7% 0.0% 16.1% 96.8% 0.0% 0.0% 12.5% 3.2% 0.0% 6.6%

Mahle 0.0% 17.6% 3.2% 0.0% 90.3% 0.0% 4.2% 16.1% 4.3% 0.0%

Olimpia 0.0% 17.6% 6.5% 0.0% 0.0% 65.2% 0% 6.4% 4.3% 0.0%

Sanguinea 8.7% 11.7% 0.0% 0.0% 0.0% 13.0% 62.5% 0.0% 0.0% 10.0%

Sanguinelli 8.7% 11.7% 9.7% 0.0% 3.2% 17.4% 0.0% 61.3% 12.9% 0.0%

Mombuca 4.3% 2.9% 3.2% 0.0% 3.2% 0.0% 4.2% 6.4% 70.0% 0.0%

DelCauca 8.7% 2.9% 9.7% 0.0% 0.0% 0.0% 8.4% 3.2% 4.3% 56.6%
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differentiated from the other two accessions of Pera, Ipigua,

and Mahle with a success rate of 100%. For the same group

of accession, the model was able to separate and classify

three accessions of sweet orange Pera using LIFS-560. It is

shown in the main diagonal of the confusion matrix pre-

sented in Table 7. Higher confusion was observed in Table 7

than in Table 6. Consequently, with the LIFS-560 system,

the accuracy decreases slightly and the highest success rate

obtained is 94%, for Pera Ipigua.

The performance of methods based on the combination

of two techniques—a model tree algorithm and a regres-

sion function, via PLSR—was measured through two par-

ameters: sensitivity and specificity for discriminate the

sweet oranges accession. The best confusion matrix

(Table 6) was considered. For the evaluation of both par-

ameters the classified samples were separated in terms of

true positive (TP), true negative (TN), false negative (FN),

and false positive (FP). Table 8 shows the sensitivity and

specificity for the classification rate obtained in the matrix

shown in Table 6. The results have shown that the devel-

oped method, for the best classification rate, reaches an

average sensitivity and specificity of 95% and 97.5%,

respectively.

The second set of sweet oranges assembled is the pig-

mented accession (Doppio, Sanguinea, Sanguinelli, and

Mombuca). Tables 9 and 10 show the confusion matrix

obtained for these accessions. The global accuracies were

77% and 68% for the evaluation done with LIFS-405 and

LIFS-560, respectively. Sanguinea got the best success rate,

92%, in differentiation among the other three classes, when

the LIFS-405 system is used. With the aid of LIFS-560

system, the best success rate is 77% for Doppio.

For the last set of orange accession, consisting of

Baianinha, Ovale, and Del Cauca, the global accuracy

Table 5. Confusion matrix obtained when evaluating all ten accessions using the LIFS-560 technique.

Classified as

Real variety Baianinha Doppio Ovale Ipigua Mahle Olimpia Sanguinea Sanguinelli Mombuca

Del

Cauca

Baianinha 47.8% 0.0% 3.2% 3.2% 0.0% 0.0% 4.2% 8.7% 16.1% 16.7%

Doppio 13.0% 47.0% 0.0% 0.0% 0.0% 26.0% 16.7% 0.0% 9.7% 0.0%

Ovale 8.7% 8.8% 61.3% 6.4% 0.0% 4.3% 12.5% 0.0% 9.7% 3.3%

Ipigua 8.7% 0.0% 16.3% 71.0% 0.0% 0.0% 25.0% 0.0% 0.0% 13.3%

Mahle 0.0% 11.7% 3.2% 0.0% 94.0% 4.3% 0.0% 4.3% 29.0% 3.3%

Olimpia 0.0% 17.7% 0.0% 6.4% 3.2% 39.2% 0.0% 4.3% 0.0% 0.0%

Sanguinea 0.0% 0.0% 3.2% 9.7% 0.0% 8.7% 25.0% 0.0% 3.2% 0.0%

Sanguinelli 4.3% 5.9% 9.7% 0.0% 0.0% 0.0% 8.3% 61.0% 6.4% 3.3%

Mombuca 4.3% 0.0% 0.0% 0.0% 3.2% 17.4% 4.2% 14.4% 25.4% 16.6%

Del Cauca 13.0% 8.8% 3.2% 3.2% 0.0% 0.0% 4.2% 4.3% 0.0% 43.4%

Table 9. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-405 technique for pigmented

sweet oranges Doppio, Sanguinea, Sanguinelli, and Mombuca.

Classified as

real variety Doppio Sanguinea Sanguinelli Mombuca

Doppio 65% 18% 5% 12%

Sanguinea 8% 92% 0% 0%

Sanguinelli 16% 10% 68% 6%

Mombuca 9% 4% 4% 83%

Table 6. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-405 technique.

Classified as

real variety Ipigua Mahle Olimpia

Ipigua 94% 0 6%

Mahle 0 91% 9%

Olimpia 0 0 100%

Table 7. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-560 technique.

Classified as

real variety Ipigua Mahle Olimpia

Ipigua 94% 0 6%

Mahle 0 91% 9%

Olimpia 9% 4% 87%

Table 8. The sensitivity and specificity obtained for the classifi-

cation result among the pear variety presented in Table 6.

Ipigua Mahle Olimpia

Sensitivity 94% 91% 100%

Specificity 97% 95.5% 100%
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obtained among them is 77.23% with LIFS-405 and 85.83%

with LIFS-561. The same model was evaluated to construct

the confusion matrix for the fluorescence spectra data

measured with both systems which are presented in

Tables 11 and 12, respectively.

Apart from the difference between the success rates

obtained with both systems for the same group of acces-

sion, the classification evaluations of a smaller number of

accessions reduces confusion. This is due to the fact that

the descriptor number used for classification, 1593 points

for LIFS-405 and 1680 for LIFS-560, remains unchanged.

This way, the success rate shown in Tables 6, 7, 9, 10, 11,

and 12 increased when compared to the same accession in

Tables 4 and 5.

Analyzing the main diagonal confusion matrix of Tables 4

and 5, which corresponds to the success rate in correctly

classifying the orange accession, it is possible to observe an

increase in differentiation accuracy when they are mea-

sured with LIFS-405. These results are due to higher exci-

tation energy of LIFS-405, which may access multiple

fluorophores, not only chlorophyll. Thus, the fluorescence

spectra obtained with LIFS-405 get much more information

which may be taken into account in the differentiation

between the citrus varieties. Therefore, the second set of

leaves accessions was measured only with LIFS-405.

Second Set of Leaves Analyzed

This set was measured only with LIFS-405 once the differ-

entiation accuracy obtained in the previous set was better.

Following the same procedure as before, several runs of

cross-validation were performed to determine the number

of components responsible for the best results of classifi-

cation among ten different accessions. Again, a confusion

matrix for all varieties together was evaluated using classi-

fication via regression associated with a PLSR classifier. Ten

executions of tenfold stratified cross-validation with ten

Table 13. Confusion matrix obtained when evaluating all ten sweet orange accessions together using the LIFS-405 technique.

Classified as

Real variety

Lima

IAC9

Pera

Abril

Pera

Bianchi

Pera

Roberto

Gullo

Piralima

IAC11

Piralima

IAC2

Seleta

do Rio

Valencia

B

Valencia

Puka Westin

Lima IAC9 39.3% 10.0% 3.2% 3.3% 5.1% 0.0% 0.0% 13.8% 0.0% 0.0%

Pera Abril 21.4% 63.3% 0.0% 0.0% 5.1% 0.0% 3.0% 10.3% 0.0% 0.0%

Pera Bianchi 0.0% 0.0% 71.0% 23.3% 5.1% 6.7% 6.0% 0.0% 23.3% 0.0%

Gullo 3.6% 0.0% 3.2% 50% 0.0% 6.7% 0.0% 6.9% 10.0% 0.0%

Piralima IAC11 17.8% 6.7% 0.0% 0.0% 69.2% 23.3% 3.0% 13.8% 6.7% 0.0%

Piralima IAC2 3.6% 0.0% 6.5% 0.0% 5.1% 43.3% 0% 10.3% 6.7% 0.0%

Seleta do Rio 0.0% 3.3% 0.0% 0.0% 5.1% 3.3% 88% 0.0% 3.3% 0.0%

Valencia B 14.2% 13.3% 3.2% 0.0% 2.6% 6.7% 0.0% 27.6% 6.7% 9.7%

Valencia Puka 0.0% 0.0% 9.7% 13.3% 2.6% 6.7% 0.0% 6.9% 30.0% 0.0%

Westin 0.0% 3.3% 3.2% 10% 0.0% 3.3% 0.0% 10.3% 13.3% 90.3%

Table 10. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-560 technique for pigmented

sweet oranges Doppio, Sanguinea, Sanguinelli, and Mombuca.

Classified as

Real variety Doppio Sanguinea Sanguinelli Mombuca

Doppio 77% 9% 6% 8%

Sanguinea 17% 71% 4% 8%

Sanguinelli 19% 16% 62% 10%

Mombuca 4% 17% 17% 62%

Table 11. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-405 technique for Navel sweet

orange Baianinha, Ovale, and Vale Del Cauca.

Classified as

Real variety Baianinha Ovale Del Cauca

Baianinha 61% 26% 13%

Ovale 9.6% 84% 6.4%

Del Cauca 3.3% 10% 86.7%

Table 12. Confusion matrix obtained by analyzing the spectral

information obtained with LIFS-561 technique for Baianinha,

Ovale, and Vale Del Cauca.

Classified as

Real variety Baianinha Ovale Del Cauca

Baianinha 74% 4.3% 21.7%

Ovale 3.2% 96.8% 0.0%

Del Cauca 13.3% 0.0% 86.7%
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components were also performed and it was possible to

obtain a global success rate of 57.2% in correctly classifying

each variety as shown in Table 13.

As with the first set, the second set of leaves was sepa-

rated in three groups as presented in Table 3. For the first

group, composed of the Pera accessions (Abril, Bianchi,

and Roberto Gullo) the confusion matrix is depicted in

Table 13. In this case, 86.83% of the instances were cor-

rectly classified. Observing the confusion matrix of

Table 14, it is possible to see that the major confusion

was with Pera Roberto Gullo and the other two accessions.

Using the same model to assemble the confusion matrix

for the second group of accessions, it is possible to obtain

the confusion matrix shown in Table 15. The accuracy

in correctly classifying the orange accessions is 86.2%.

The accession with highest accuracy rate was Seleta do

Rio with a success rate of 97%.

Finally, Table 16 shows the confusion matrix obtained for

the third group in this set of accessions, composed of sweet

orange Ipigua, Piralima IAC 11, and Piralima IAC12. The

best success rate is 96.7% for Ipigua.

Conclusions

The results showed that LIFS, combined with statistical

methods, is capable of discriminating different varieties of

citrus based on the fact that the leaves of plants have multiple

fluorophores whose concentration depends on its genetics

and metabolism. Thus, it is possible to conclude that the

optical properties of citrus leaves may be different, depend-

ing on their genetic variety. As demonstrated in this work,

the success rate depends not only on the combination of

canopy and rootstock varieties, but also of the laser excita-

tion. The best results were obtained with LIFS-405 which has

an excitation wavelength in the violet range and is able to

access the information of several metabolites that compose

the leaf. With the aid of LIFS-405, it was possible to achieve a

100% success rate in differentiating Pera Olimpia.

The application of this study is very interesting for the

productive sector because it can result in economically

viable tools for new seedlings’ certification method and

early identification, cultivar protection, and germplasm core

collection. Besides, such equipment allows large-scale and

real-time monitoring for citrus early identification in breed-

ing programs. The spectroscopy may be used with success to

discriminate citrus orange accessions, which is a quick and

less expensive method when compared to others tools such

as molecular techniques and visual inspection. When it

comes to DNA markers, they are not as efficient as LIFS

in differentiating accessions from the same species. Besides,

LIFS is applicable in non-bearing nursery trees, which is an

advantage. In most cases, the morphological characterization

of citrus sweet orange cultivars may be only done post fruit

bearing and has no practical value to be used in a certified

program to produce and control the genetic background of

commercialized citrus nursery plants.
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