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Abstract
The soybean transcriptome displays strong variation along the day in optimal growth condi-

tions and also in response to adverse circumstances, like drought stress. However, no

study conducted to date has presented suitable reference genes, with stable expression

along the day, for relative gene expression quantification in combined studies on drought

stress and diurnal oscillations. Recently, water deficit responses have been associated with

circadian clock oscillations at the transcription level, revealing the existence of hitherto

unknown processes and increasing the demand for studies on plant responses to drought

stress and its oscillation during the day. We performed data mining from a transcriptome-

wide background using microarrays and RNA-seq databases to select an unpublished set

of candidate reference genes, specifically chosen for the normalization of gene expression

in studies on soybean under both drought stress and diurnal oscillations. Experimental vali-

dation and stability analysis in soybean plants submitted to drought stress and sampled dur-

ing a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX,
Golgin-84 and CYST) indeed exhibited greater expression stability than the conventionally

used housekeeping genes (ELF1-β and β-actin) under these conditions. We also demon-

strated the effect of using reference candidate genes with different stability values to nor-

malize the relative expression data from a drought-inducible soybean gene (DREB5)
evaluated in different periods of the day.
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Introduction
As sessile organisms, plants must endure environmental changes during the day and across
seasons. These environmental oscillations strongly affect light, temperature, nutrient and water
availability, acting as a powerful selective pressure that have shaped adaptive mechanisms in
plants during their evolutionary history. As a result, these organisms have developed a complex
molecular network that confers adaptive advantages by coordinating their metabolism with
predictable daily and seasonal changes, known as the circadian clock [1].

The circadian clock is composed of a core of interconnected transcriptional–translational
feedback loops, which are entrained by signals such as light and temperature to adjust metabo-
lism to the environment. In plants, the clock controls a number of physiological and develop-
mental processes. For example, the expression of chlorophyll biosynthesis genes is regulated by
the circadian clock to peak at the end of the night, which is an important mechanism to ensure
photosynthesis in subsequent light periods of the day, whereas the products of photosynthesis
modulate the rhythm [2]. The circadian clock also allows plants to coordinate flowering with
favorable seasons to increase their fitness [1], as well as it controls the rate of starch degrada-
tion [3] and nitrogen assimilation and utilization pathways [4].

In addition to normal day/night variations, plants are subject to other environmental varia-
tions via biotic and abiotic stresses. Among the abiotic stresses, drought stands out as the factor
with the greatest impact on yield of important crops worldwide, including soybean. Different
mechanisms are employed by plants to protect themselves against water deficits, including
changes in stomatal conductance [5], osmotic adjustment [6], the accumulation of osmopro-
tectant molecules [7], and the activity of antioxidant proteins [8]. Because the circadian clock is
known to improve organism fitness according to environmental conditions, a significant num-
ber of studies addressing the relationships between water deficit stress and the circadian clock
have been conducted, providing consistent evidence of this interaction [9–13].

The metabolic and physiological adjustments performed in response to drought stresses
usually involve the reconfiguration of the transcriptome [12,13], and therefore the analysis of
gene expression in response to water deficits during the day is an interesting strategy [10]. One
of the most sensitive methods for the quantification of gene expression is the fluorescence-
based quantitative real-time PCR (RT-qPCR), which is increasingly being used. The advantages
of this technique include its practical simplicity combined with the possibility of measuring
small amounts of RNA in a wide range of samples, rapidly and with high specificity.

Thus, RT-qPCR is an important tool that allows the relative quantification of transcript
abundance and can therefore be used to evaluate gene expression responses to environmental
changes, such as diurnal oscillations and abiotic stresses, including drought. However, because
most of the quantitative RNA data obtained are not absolute, but relative, accurate quantifica-
tion of gene expression relies on the use of appropriate reference genes. These genes should be
stably expressed, showing a transcript abundance that is strongly correlated with the total
mRNA present in the samples to allow the normalization of gene expression data [14]. Nor-
malization is a key step in RT-qPCR analysis, as it reduces/eliminates variations due to varia-
tions in RNA extraction, reverse transcription yields or amplification efficiency, allowing
comparisons of mRNA concentrations across different samples, playing a critical role in the
accurate quantification of relative gene expression [14]. Although several genes have been indi-
cated as good references, it is known that even housekeeping genes may exhibit altered expres-
sion in response to experimental treatments, sampling times and the life cycle [15–18].

In this context, a reference gene must be experimentally validated for specific tissues,
genotypes and experimental designs. The soybean genes TUA (Glyma08g12140), TUB
(Glyma03g27970), ELF1-β (Glyma13g04050), β-actin (Glyma15g05570) and GAPDH
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(Glyma06g01850) have been widely used as references in gene expression studies on drought
responses [15,19]. On the other hand, isopentenyl diphosphate (IPP2), actin and ubiquitin are
the most commonly used reference genes in studies investigating circadian/diurnal oscillations
[20–25]. Thus, no study conducted to date has evaluated the expression stability of reference
genes for the study of both water deficit stress and circadian oscillations in soybean. Hence, in
this study, after evaluating gene expression in response to drought during the day, we present a
novel set of reference genes suitable for the normalization of relative expression data from
combined studies on water deficit and diurnal oscillations.

Material and Methods

Selection of reference genes using the RefGenes tool
To evaluate the stability of genes expressed in response to drought during the day, we used the
RefGenes tool from the Genevestigator platform [26], available at [https://www.genevestigator.
com/gv/plant.jsp]. The Genevestigator platform provides a database of normalized and well-
annotated microarray experiments, allowing asses the transcriptome of several organisms; the
RefGenes tool enables searching for genes with minimal expression variance across a chosen
set of arrays at the Genevestigator platform. For the purposes of this study we performed analy-
sis of gene expression variance in 59 microarray libraries from soybean subjected to drought,
heat and distinct light periods. To select the candidate reference genes presenting range of
expression levels detected by RT-qPCR, we uploaded a list of the Gene Models (“Glyma”) from
reference genes commonly used for gene expression normalization in soybean, previously
described by Hu and colleagues (2009) [19], presented in Table 1.

Selection of reference genes using RNA-seq libraries
Under a second approach, we evaluated the expression stability of genes from 36 RNA-seq
libraries. These libraries were synthesized from leaves of the drought-sensitive soybean geno-
type BR16, subjected to moderate drought stress on V2 developmental stage, sampled over a 24
h timecourse, with 4h intervals [10]. These data are deposited in the NCBI’s Gene Expression
Omnibus [GEO; http://www.ncbi.nlm.nih.gov/geo/] repository and are accessible through
GEO Series accession number GSE69469 (geospiza.com/Products/AnalysisEdition.shtml). To
compare gene expression between different times and conditions, we log2-transformed the nor-
malized reads per mapped million (RPM) value.

In this analysis, we selected genes that exhibited minimal expression variance across the
libraries, presenting Coefficient of variation lower than 5%, with a range of expression similar
to that of commonly used soybean reference genes[19], presented in Table 1.

Table 1. Commonly used RT-qPCR reference genes from soybean, according to Hu and colleagues (2009).

Gene name Gene Model Description

CYP Glyma12g02790 Cyclophilin

TUB4 Glyma03g27970 beta Tubulin

SKIP16 Glyma12g05510 Ask-Interacting Protein 16

PEPKR1 Glyma10g38460 Phosphoenolpyruvate Carboxylase-Related Kinase 1

TIP41 Glyma20g26690 TIP41-like family protein

ELF1-β Glyma13g04050 elongation factor 1-B

TUA Glyma08g12140 alpha tubulin

β-actin Glyma15g05570 actin

GAPDH Glyma06g01850 GAPDH

doi:10.1371/journal.pone.0139051.t001
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Primer design
Primers for the new candidate reference genes were designed based on soybean Gene Model
sequences [http://www.phytozome.net/search.php?method=Org_Gmax] using the program
Primer3 Plus [27], available at [http://www.bioinformatics.nl/cgi-bin/primer3plus/
primer3plus.cgi]. The primer sequences were determined for the 3’ end of each gene whenever
possible, and the amplicons spanned up to 150 base pairs (bp). The primer sequences were sub-
jected to BLAST searches against the soybean genome [http://www.phytozome.net/search.
php?method=Org_Gmax] to verify the specificity of each primer, as recommended by the
Minimum Information for Publication of Quantitative Real-Time PCR Experiments guideline
(MIQE) [14]. The primers for the commonly used reference genes ELF1-β and β-actin were
selected from [28] and [29], respectively. The primers for the target gene (GmDREB5) were
selected from [30]. Standard curves were produced from serial dilutions of a cDNA pool to esti-
mate the efficiency of the PCR amplification with each pair of primers. Information on the
primers may be visualized in Table 2.

Plant material and treatment application
Plant material was obtained from experiments performed as described by Marcolino-
Gomes and colleagues [10]. Briefly, seeds from the soybean BR16 genotype, which exhibits

Table 2. Information on reference and target genes.

Gene
name

Gene Model Sense
primer

Primer sequence Temperature
melting (°C)

Amplicon
size (bp)

Amplification
Efficiency (%)

Primer
Concentration

(nM)

NUDIXa Glyma13g24060 F TGAGTGTTAGAAGGGCTACTGG 58.5 108 88.02 200

R AACTTTGCCAACGGCATC 59.7

CYSTa Glyma01g40510 F TTCTTGGATCGGGGAGAG 58.7 126 95.49 100

R GCTAGAAATGGCGAAAGAGG 59.1

FYVEa Glyma13g17500 F TTCTGTCTTCTGCAAGTGGTG 59.1 92 98.37 100

R GATCCCTCATCCATACATTTCAG 59.7

Golgin-
84a

Glyma08g05790 F TTGGACAAGGAGAGACTCCAC 59.3 121 98.57 100

R TGCGAGGCTACGAAAACTTC 60.5

NCL1a Glyma11g38000 F TCTTATCGGCATGGTTACGC 61.0 72 96.38 100

R ACATAACCAAACGCCAAAGC 60.0

RNA-poly
Mitovirusa

Glyma08g41240 F TCTCATCACCGATCCACTTG 59.6 114 98.72 100

R GCAAACTCTACAGCACCAGTTG 60.0

DNAJa Glyma10g44020 F GATTGGGATGTTCTTCACCAG 59.4 136 90.50 200

R ATGACCAAGCCGATGGTTAG 60.0

ELF1-βb Glyma13g04050 F GTTGAAAAGCCAGGGGACA 58.0 118 99.16 60

R TCTTACCCCTTGAGCGTGG 58.0

β-actin b Glyma15g05570 F GAGCTATGAATTGCCTGATGG 58.0 118 97.92 60

R CGTITCATGAATTCCAGTAGC 55.0

DREB5c Glyma12g33020 F TTGCCTACTACTACTCCTATATTCATTTCC 58.0 86 97.80 100

R CCTTGAAATACACGGAGCCTTAG 58.0

a New reference candidate genes
b Commonly used reference genes
c Target gene

doi:10.1371/journal.pone.0139051.t002
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drought-sensitive characteristics [31], were cultivated in peat pots (Jiffy) with Supersoil1

(Scotts Miracle-Gro Company, Marysville, Ohio, USA) under optimal growth conditions in
controlled growth chambers until reaching the V2 developmental stage [32], when water was
withheld to induce a moderate water deficit. Control plants were maintained near field capacity
for the unstressed treatment. The soil moisture was calculated by the gravimetric humidity
(GH), which corresponds to the percentage of water in the soil in relation to the dry weight of
the soil. The volume of irrigation was adjusted to 70% (GH) (near field capacity) for the
unstressed treatment, 30% GH for the moderate stress treatment. The pots were weighed twice
a day, and water was added to maintain the treatments at the desired GH values. The middle
leaflet of the first trifoliate leaf was collected from plants in each treatment group at 4 h inter-
vals from the time the lights came on (8:00 a.m. = Zeitgeiber Time (ZT) 0), during a 24 h time-
course (ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20), and were immediately frozen in liquid
nitrogen and stored at −80°C until further use. All of the experiments were conducted with
three biological replicates, with each replicate consisting of two plants, whose tissues were col-
lected together and pooled.

From RNA extraction to cDNA synthesis
Each replicate tissue set was ground to a fine powder in liquid nitrogen, and total RNA was iso-
lated using the TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. The
obtained RNA concentration and purity were measured using a spectrophotometer (Nano-
Drop, ND-1000), and contaminating DNA in the total RNA was removed using the Turbo
DNA-free kit, according to the manufacturer’s instructions (Life Technologies, Grand Island,
NY, USA). After DNAse treatment, the integrity of the molecules was analyzed on 1% agarose
gels stained with ethidium bromide, and high-quality total RNA was used to synthesize cDNA
strands (Superscript III First Strand Synthesis, Invitrogen/Life Technologies, Grand Island,
NY, USA). The quality of the cDNA and contamination with genomic DNA were examined
using a standard PCR assay with primers that spanned an intronic region of the β-actin soy-
bean gene. High-quality cDNA was used to analyze the transcripts in each treatment.

RT-qPCR analyses
Standard curves were produced from serial dilutions of a cDNA pool to estimate the efficiency
of the PCR amplification with each pair of primers. RT-qPCR amplifications were performed
in a 7300 RT-qPCR Thermocycler (Applied Biosystems/Life Technologies, Grand Island, NY,
USA) with the following cycling parameters: 50°C for 2 min, 95°C for 10 min and 45 cycles at
95°C for 2 min, 60°C for 30 seconds and 72°C for 30 seconds. Each amplification reaction con-
tained 2 μL of cDNA from serial dilutions, 60–200 nM each forward and reverse primer
(Table 2), 500 nM ROX (passive reference), 6.5 μL of Platinum

1

SYBR
1

Green qPCR SuperMix
(Invitrogen/ Grand Island, NY, USA), and ultrapure water to a final volume of 12.5 μL. Data
were collected during the extension phase, and dissociation curves were generated by heating
each reaction from 60 to 95°C and taking readings at one-degree intervals to verify the specific-
ity of the primers. A control sample, obtained via performing RT-qPCR with no template, was
also assayed to confirm that the samples were not contaminated. The primer concentrations
were adjusted to achieve efficiency rates higher than 85%, as detailed in Table 2.

After carrying out the efficiency analysis, the expression levels of the candidate reference
genes were analyzed separately at 6 time points (ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20) in
plants under control vs. drought stress condition in order to assess their expression stability
along the day. The expression of the target gene (GmDREB5-like; Glyma12g33020) [30] was
also measured under the experimental conditions described above. The reactions were
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performed in triplicate with cycling parameters similar to those described above for the ampli-
fication efficiency analysis.

Stability analysis
To validate and compare the suitability of the candidate reference genes for use in normaliza-
tion, we evaluated their expression stability in response to drought along the day under the
experimental conditions described above. For this purpose, Cycle threshold values (Ct) were
transformed into non-normalized relative quantities (Q; linear scale). Here, Q = EΔCt, where E
is the amplification efficiency, and ΔCt is the lowest Ct from the data set minus the sample Ct.
The non-normalized relative quantities were analyzed using NormFinder [33] and geNorm
[34] software to assess the expression stability of the reference genes.

Normalization of target gene expression
The relative expression level of the drought-responsive gene GmDREB5-like [30] was measured
in leaf samples from BR16 plants subjected to moderate drought, sampled over a 24 h time-
course, under the experimental conditions described above. For each time point (ZT0, ZT4,
ZT8, ZT12, ZT16 and ZT20), three biological replicates, with three technical replicates each,
were analyzed. Target expression was normalized using a combination of 2 reference genes
with high (FYVE and GOL84), intermediate (ELF1-β and β -actin) and low (DNAJ and NCL1)
expression stabilities. Plants grown under normal water conditions (control plants) were used
to calibrate relative expression.

The gene expression analysis was performed using the Rest2009 software package [35],
which allows the input of different amplification efficiencies for the reference and target genes
and provides the statistical significance of expression levels through randomization (Pair Wise
Fixed Reallocation Randomisation Test©), with 10,000 interactions and bootstrapping of the
data. At the randomization tests, the observed values were repeatedly and randomly reallocated
to the two groups and the apparent effect (expression ratio in our case) was noted each time.
The proportion of these effects which are as great as that actually observed in the experiment
gave us the P-value of the test. In the applied Pair Wise Fixed Reallocation Randomisation
Test©, for each sample, the CP values for reference and target genes were jointly reallocated to
control and sample groups (= pairwise fixed reallocation), and the expression ratios was calcu-
lated on the basis of the mean values. Hypothesis testing was conducted to determine whether
the differences between the control and treatment conditions were significant [35].

Results and Discussion

Screening of candidate reference genes
To date, most of the studies on reference genes have focused on validating a subset of com-
monly used reference genes for specific contexts [15,16,18]. Although these studies have their
merits, they attempt to identify the best candidates from a small set of genes. A recent analysis
demonstrated that reference genes are preferably selected by adopting a complete genome
strategy, rather than from a handful of commonly used reference genes [26]. In this context, we
searched reference genes showing high expression stability in 59 microarray libraries from soy-
bean subjected to drought stress, heat and different photoperiods [26].

This tool allowed us to perform in silico identification of genes showing high expression sta-
bility in 59 microarray libraries from soybean subjected to drought, heat and distinct light peri-
ods. The candidate reference genes obtained in this analysis were pre-validated by checking
their expression across all microarrays available on the Genevestigator platform (3458 arrays)
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(data not shown). The expression profiles of the five most stable new reference genes in
response to drought and to diurnal oscillations was compared with the expression of the com-
monly used soybean reference genes (Table 1), as shown in Fig 1.

Then, in a second approach, we selected genes that exhibited minimal expression variance
across 36 cDNA libraries synthesized from drought-stressed soybean plants sampled over a 24
h timecourse [10,36]. The expression profiles of the two most stable new reference genes and
the commonly used references are shown in Fig 2.

In summary, the data mining approaches using microarray and RNA-seq databases allowed
us to select a new set of candidate reference genes for validation via RT-qPCR, composed of
seven soybean genes: Glyma13g24060, Glyma01g40510, Glyma13g17500, Glyma08g05790,
Glyma11g38000, Glyma08g41240 and Glyma10g44020.

The majority of the selected candidate genes are related to the plant’s primary metabolism.
For example, Glyma01g40510 encodes a cysteine desulfurase (CYST) similar to nitrogen fixa-
tion S (NIFS)-like 1 from Arabidopsis; Glyma08g05790 encodes a protein that participates in
Golgi vesicles transport (Golgin-84) [37,38]; Glyma11g38000 produces an RNA (cytosine-5)-
methyltransferase (NCL1) involved in epigenetic modifications of tRNA [39,40]; and Gly-
ma13g17500 produces an FYVE domain protein, present in kinases and lipases in Arabidopsis,
that recognizes phosphoinositide signals [41].

The differential expression of some of the selected candidate genes has been reported during
biotic and abiotic stress responses. The gene Glyma13g24060, for example, encodes a protein
similar to a NUDIX hydrolase protein from Arabidopsis. The NUDIX hydrolase family is wide-
spread, from eukaryotes to Archaea, and consists of pyrophosphohydrolases that act upon sub-
strates with a general nucleoside diphosphate structure, including (deoxy)ribonucleoside
diphosphates and triphosphates, nucleotide sugars, coenzymes and RNA caps [42,43]. Mem-
bers of the NUDIX family have been reported to be induced by salt, drought, heat, and cold in
Chrysanthemum lavandulifolium [44]. Similarly, Glyma10g44020 encodes a protein from the

Fig 1. Expression of commonly used reference genes and new candidates frommicroarray databases. The in silico analyses were performed with
Genevestigator software, using data from soybean subjected to drought stress, heat and different photoperiods[27]. The box plots represent the variation in
the signal intensity (log2 scale). Interquartile range (IQR) values are shown for each gene across the dataset, represented by the middle boxes, which
encompass the middle 50% of scores for the group. The upper and lower whiskers represent scores outside the middle 50%. Outliers are plotted separately
as asterisks on the chart.

doi:10.1371/journal.pone.0139051.g001
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DnaJ/Hsp40 cysteine-rich domain superfamily, which is described as being involved in diverse
cellular processes (protein folding, translocation, and degradation) [45], including biotic and
abiotic stress responses [46–49]. However, analysis of the soybean NUDIX (Fig 1) and DNAJ
(Fig 2) genes in microarray and RNA-Seq databases showed high expression stability in
response to drought and diurnal oscillations, suggesting that these soybean genes could be reli-
able candidate reference genes for drought studies.

Furthermore, we identified a gene (Glyma08g41240) that encodes an RNA-dependent RNA
polymerase from a mitovirus (Fig 2). A recent study on the soybean mitochondrial genome
revealed the presence of a 0.5 kb insertion (at rps10 intron) that is 57.4% identical to a mito-
virus RNA polymerase gene, which might have been horizontally transferred during recent
evolution. Although the effect of this insertion remains unknown, analysis of the insert’s posi-
tion suggests that it might affect the function of the mitochondrial rps10 gene, which encodes
the ribosomal protein S10 [50].

Fig 2. Variation in the expression of commonly used reference genes and new candidates from the RNA-Seq database. The in silico gene
expression analyses were performed using data from soybean grown under drought stress across a 24 h timecourse. (A) The box plots represent the
variation in the signal intensity (log2 scale); the middle boxes represent the middle 50% of scores for the group; the upper and lower whiskers represent
scores outside the middle 50%. (B) Coefficient of variation (CV%).

doi:10.1371/journal.pone.0139051.g002
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The preliminary analysis of this set of genes (Figs 1 and 2) revealed that in the majority of
cases, the candidate reference genes presented less variation than the commonly used reference
genes selected from the literature [15,19]. Additionally, in silico pre-validation of the NUDIX,
CYST, FYVE, Golgin-84, and NCL1 genes across 3,458 microarrays using GeneVestigator plat-
form revealed that these genes are unresponsive to a wide variety of conditions, including abi-
otic stresses, such as heat, salinity, and cold, and show little variation between developmental
stage and genotypes, being responsive only to infections by Phytophthora sojae, Phakopsora
pachyrhizi and Bradyrhizobium japonicum (data not shown).

Stability analysis
To experimentally validate this new set of candidate reference genes, we examined their indi-
vidual properties and compared the stability of their expression with the commonly used refer-
ence genes ELF1-β and β-actin (Table 1) using RT-qPCR assays. In previous studies, ELF1-β
and β-actin showed high expression stability across different levels of drought [15,28,30]. How-
ever, no study conducted to date has investigated the expression stability of these genes during
the diurnal cycle. Validation was carried out on soybean leaves from plants subjected to a mod-
erate water deficit (30% of gravimetric humidity (GH)), sampled across a 24 h timecourse, with
4 h intervals, from 8:00 a.m. to 4:00 a.m., corresponding to Zeitgeber Time (ZT) 0 to ZT20.
The expression level of each reference gene was evaluated separately in drought-treated and
control plants at all sampling times (ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20).

To assess the stability values for the reference genes, we performed analysis using the Norm-
Finder [33] and geNorm softwares [34]. The NormFinder software employs a variance estima-
tion approach to rank genes according to combined inter- and intragroup expression variation
across a given set of experimental conditions, which were drought stress and diurnal oscilla-
tions in this case. The NormFinder [33] is known to perform in a more robust manner and
with less sensitivity toward the co-regulation of candidate genes compared with other software.
On the other hand, the NormFinder software may be less robust with small sample sizes com-
pared to the geNorm algorithm [33]. Thus, we performed additional stability analysis using
geNorm software [34] to compare the performance of the candidate genes using stability analy-
sis tools with different algorithms. In general, the results of geNorm analysis were similar to
those from NormFinder, with slight differences regarding ranking positions (Fig 3A and 3B).
This good consistence between both outcomes strengthens the robustness of the results
obtained. Small differences in rank position among the two software are expected because the
statistical algorithms used are distinct: the geNorm detects the two reference genes whose
expression ratios show the least variation from those of the other tested genes [34], whereas the
NormFinder takes intra- and intergroup variation into account for calculations [33].

According these stability analysis, many of the newer reference genes indeed exhibited
greater expression stability than the conventionally used reference genes (ELF1-β and β -actin)
(Fig 3A and 3B). The FYVE, NUDIX and Golgin-84 genes were the most stable, suggesting that
they are the most suitable for normalizing expression data from combined studies addressing
drought treatment and diurnal oscillation (Fig 3A and 3B).

Although most of the candidate reference genes performed well in response to the applied
experimental conditions, the NCL1 and DNAJ genes showed lower stability (Fig 3A and 3B).
The NCL1 gene produces an RNA (cytosine-5)-methyltransferase involved in epigenetic modi-
fications of tRNA [39,40]. The analysis of intragroup variation performed on NormFinder for
NCL1 revealed that under control conditions this was one of the least stable genes (Fig 4A),
whereas in stressed plants it was among the most stable (Fig 4B), indicating that NCL1 is not a
suitable reference gene for studies on gene expression oscillation during the day in plants
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under control conditions. Previous studies show that the oscillation of genes that cycle daily in
normal conditions may be altered due the imposition of abiotic stresses, like cold and drought
stress. The mRNA levels of some chestnut genes, like TOC1 and LHY cycle daily in seedlings
and adult plants, as expected. However, during chilling stress (4°C), mRNA levels of these
genes were higher and did not oscillate [51]. Similar events were observed in soybean plants
subjected to severe drought stress, where a general reduction in the amplitude of the daily oscil-
lation was observed for most clock genes, including the GmPRR3-like, GmPRR7-like, GmPRR9-
like, GmGI-like, GmZTL-like, and GmCHE-like genes [10].

Furthermore, these results illustrate that gene expression stability during the day may vary
in response to stressful conditions, like changes in the plant’s water status (e.g. normal hydra-
tion versus water deficit conditions).

In contrast, the expression of the DNAJ gene was unstable in both control and stressed con-
ditions (Fig 4). Genes from the DNAJ family have been reported to be drought responsive in
many species, and its lack of stability may therefore be explained in part by its possible involve-
ment in drought responses in soybean, as studies have reported that drought-responsive genes
oscillate in response to diurnal oscillations [10,12,13,30,52]. Additionally, the intragroup analy-
sis shows that Golgin-84 and FYVE (Fig 4A) are the most reliable reference genes for gene
expression normalization when studying diurnal oscillations in plants under normal water
conditions, whereas NUDIX and NCL1 (Fig 4B) are the most strongly indicated for use in stud-
ies under drought conditions. Furthermore, the intergroup variation analysis allowed us to
identify the genes NUDIX and DNAJ as the most and least stable genes, respectively, for data
normalization in studies comparing gene expression under control and drought stress, without
considering the time of day (Fig 4C).

Normalizing the expression of a target gene
A previous study showed that the normalization of soybean genes under circadian regulation
using unstable reference genes may lead to erroneous data interpretation [19]. To demonstrate

Fig 3. Stability analysis of candidate reference genes.Gene expression stability was measured in leaf tissues of soybean subjected to drought stress and
control conditions at different times of day (ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20). The analysis was performed with NormFinder and geNorm softwares.
Genes were ranked according to their stability values andM values from (A) NormFinder and (B) geNorm, respectively. The genes were plotted on the x-axis
from the most to the least stable.

doi:10.1371/journal.pone.0139051.g003
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the effect of data normalization using reference genes with different stability values in response
to drought stress during the day, we evaluated the relative expression of the drought-responsive
gene GmDREB5-like [30] using a combination of 2 reference genes with high (FYVE and
GOL84), intermediate (ELF1-β and β -actin) and low (DNAJ and NCL1) expression stabilities
(Fig 5). The GmDREB5 gene expression was previously investigated in response to drought in
short-term stress conditions [30], and its expression was normalized by ELF1-β and β –actin.
As expected, our results show that the expression of GmDREB5-like in response to drought

Fig 4. Intra- and intergroup variation of gene expression. The intragroup variation within the (A) control (non-stressed plants) and (B) stressed (plants
under drought stress) and (C) the intergroup variation are presented.

doi:10.1371/journal.pone.0139051.g004
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oscillates during the day, as previously described for this gene [30] and for other genes of the
DREB subfamily [10,53–58] (Fig 5).

However, our results demonstrated that choosing reference genes with diverse stability of
expression can lead to differences on gene expression data interpretation when evaluating com-
bined studies on water deficit and diurnal oscillations. As shown in Fig 5, at ZT16 the normali-
zation of GmDREB5-like gene using the least stable genes (DNAJ and NCL1) resulted in higher
expression levels than observed for normalization using genes with high (FYVE and GOL84)
and intermediate expression stability (ELF1-β and β –actin). Additionally, slight changes in
gene expression, such as the down-regulation of the target gene at ZT0 and ZT20, were
detected only by normalization using genes with high (FYVE and GOL84) and intermediate
expression stability (ELF1-β and β –actin) (Fig 5A). These results emphasize the importance of
selecting reference genes with stable expression for accurate gene expression analysis on
drought responses and diurnal oscillations.

Conclusions
Here, by analyzing experiments involving both drought and diurnal oscillations, we demon-
strated the importance of selecting reference genes under the specific studied conditions. From
a transcriptome-wide background, we selected a new set of candidate reference genes for the
normalization of data obtained in studies on drought and diurnal oscillations.

The experimental validation of this new set of candidate reference genes revealed that
FYVE, NUDIX and Golgin-84 were the most stably expressed genes in soybean plants under
control and drought conditions along the day, and are therefore considered the best reference
genes for the studied conditions. Our results highlight that the selection of reference genes is
crucial for the proper quantification of relative expression data obtained under these specific
experimental conditions.

Fig 5. Normalization of the target geneGmDREB5-like.Gene expression was measured in leaf tissues of
soybean subjected to drought stress at different times of day (ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20). The
raw data were normalized using a combination of 2 candidate reference genes with high (FYVE andGOL84),
intermediate (ELF1-β and β -actin) and low (DNAJ andNCL1) expression stabilities. The relative expression
ofGmDREB5-like under drought stress was determined after comparison with the control sample (non-
stressed plants). Asterisks indicate statistically significant changes in gene expression between drought
stressed and non-stressed plants. The analyses were performed using REST 2009 software.

doi:10.1371/journal.pone.0139051.g005
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