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an improvement of critical features, including transcrip-
tion, translation and post-translational modifications, in 
plant cells could make plant systems a safe and economical 
alternative for biopharmaceutical production. Hence, in this 
review, the most recent advances influencing the upstream 
and downstream processes involved in recombinant protein 
accumulation in plant cells are described. We also discuss 
how plant systems are becoming the benchmark for the 
production of several biopharmaceuticals.

Keywords  Heterologous expression · Host systems · 
Post-translational modifications · Plant-based 
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Introduction

Plant molecular pharming is the term related to the abil-
ity of plant materials to produce therapeutic proteins 
(Habibi et al. 2017). The emergence of molecular pharm-
ing as a reliable and novel production technology in 
recent decades is the result of years of work, opening new 
paths to minimizing the technical problems involved in 
yeast, bacterial, and mammalian platforms. Moreover, the 
identification and characterization of a promising regula-
tory pathway for the large-scale production of biophar-
maceuticals could strongly contribute to the benefits of 
this system (Fischer et  al. 2012). Molecular pharming 
technology presents several advantages, including (a) the 
production of low-cost biomass; (b) end-products lacking 
human toxicity; (c) the accumulation of complex proteins 
with correct and proper folding; and (d) straightforward 
methods for protein purification (Moustafa et  al. 2015). 
Furthermore, molecular pharming offers a flexible, scal-
able and diverse alternative method for producing new, 

Abstract  The use of plant systems as factories for recom-
binant protein production became a prominent alternative 
for pharmaceutical industries due to their high potential for 
protein accumulation. In the last decades, the application 
of plants for protein production has gained more attention, 
as plants represent an economic strategy that leads to high 
levels of purified and active proteins for the pharmaceuti-
cal sector. Currently, FDA approval of the first generation 
of recombinant proteins produced in carrot cells, taligluc-
erase alfa, demonstrated that plant cells have a significant 
capacity to express complex proteins for therapeutic use. 
Although plant systems still have technical and economic 
barriers that require improvements in future years, the opti-
mization of upstream and downstream components affect-
ing protein accumulation is considered a key feature in the 
development of new pharmaceutical proteins. Therefore, 
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patent-protected biopharmaceuticals and biosimilars, 
expanding product opportunities based on rapidly grow-
ing ‘biobetter’ molecule markets (Zimran et al. 2011).

Although the plant-based pharmaceutical industry is 
still in an early stage of development, many biopharma-
ceuticals are already in the preclinical and clinical devel-
opment pipeline. For instance, the commercial develop-
ment of taligluceraseα (Protalix®, Israel; http://protalix.
com/), used for the treatment of Gaucher’s disease, is a 
significant breakthrough in molecular pharming. Mono-
clonal antibodies, such as palivizumab and rituximab, 
moss-GBA (glucerase), moss-aGal (agalsidase) and other 
biosimilars, are next-generation plant-made recombi-
nant proteins that represent the beneficial attributes of 
plant cell culture as a promising resource of complex 
protein production (Grabowski et al. 2014; Niederkrüger 
et al. 2014). Moreover, the insulin produced in safflower 
(SemBioSys Genetics, Canada; http://www.sembiosys.
com) and the HIV-neutralizing monoclonal antibody pro-
duced in tobacco (Pharma-Planta; Germany; http://www.
pharma-planta.net) were developed based on transgenic 
plant manufacturing.

Medicago Inc. (Québec, Canada; http://www.medicago.
com) is now working on a phase II clinical trial with influ-
enza VLP (H5) accumulated in Nicotiana benthamiana 
through agroinfiltration technology. Table  1 summarizes 
some of the plant-based vaccines for human and animal 
diseases.

Although plant platforms have many advantages in the 
production of biopharmaceuticals, future investigations 
will be required to invigorate the final product and to over-
come the significant challenges and risks associated with 
large-scale production of biopharmaceuticals. For instance, 
regulatory unreliability and global concerns regarding the 
intrinsic yield of recombinant proteins are some of the bar-
riers encountered by molecular pharming users. Hence, the 
identification and characterization of factors influencing 
protein accumulation levels are necessary. The yield may 
be divided into endogenous and exogenous factors that 
regulate protein accumulation in plants. Protein accumula-
tion can be regulated by several steps, including (a) genetic 
elements (transcription, translation and post-translation) 
(Shinmyo and Kato 2010); (b) epigenetic factors induc-
ing gene expression; and (c) environmental factors. Spe-
cific host platforms and the subcellular targeting of pro-
teins to specific compartments are also considered critical 
parameters that contribute to the increase of recombinant 
protein yield (Fig. 1). Therefore, visualization and optimi-
zation of these features could be pre-eminent in mediat-
ing translational activity and boosting the amount of end-
products within plant systems (Silverman et  al. 2013). In 
this review, we first describe the upstream and downstream 
features affecting recombinant plant production and new 

perspectives on the optimization and improvement of these 
parameters are also discussed.

Expression cassette collection

An expression cassette is known as an important construct 
for high-level production of recombinant proteins in a host 
plant. Expression cassettes can be classified according to 
the number of cistrons (recombinant genes) within the cor-
responding mRNA. Monocistronic cassettes are suitable for 
expressing single proteins with synthesis driven by their 
endogenous regulatory sequences (Al-Rubeai 2011). They 
can either be provided by separated plasmids or be cloned 
into a single vector, leading to a higher prospect for the 
synergistic transfection of all genes of interest (Al-Rubeai 
2011). In the case of single vectors, more than one protein 
can be expressed in the same cassette, although sequence 
length can be a restricting factor for complete integration 
into the plant genome, which means that an increasing 
number of linked transgenes leads to a lower probability 
of integration. The expression of all these factors can ran-
domly result in genetic rearrangements and fragmentations 
that eliminate one or more transgenes from this process 
(Naqvi et al. 2010).

Bicistronic cassettes commonly use viral-derived inter-
nal ribosome entry sites (IRES) (Houdebine and Attal 
1999; Lopez-Lastra et  al. 2005) to bypass the 5′-cap-
dependent translation process through a ribosomal skip 
mechanism. However, this approach is not widely used 
because the ORF expression level downstream of the IRES 
is usually decreased (Hennecke et  al. 2001) Nevertheless, 
polycistronic cassettes can be used in an operon-like struc-
ture (Osbourn and Field 2009). Polycistronic cassettes are 
efficient and very useful for metabolic engineering pur-
poses in plants, such as for secondary metabolite expres-
sion via the addition of whole heterologous metabolic 
pathways (Mozes-Koch et al. 2012). Cassettes carry out the 
body of required elements to increase the transcription rate 
(Clark and Pazdernik 2013) (Fig. 2).

The selection of a suitable promoter is an important fac-
tor for boosting gene expression via binding and interaction 
with trans-actin factors (Moustafa et al. 2015). Expression 
vectors can harbour either endogenous/homologous pro-
moters or exogenous/heterologous promoters in relation to 
the host species. The plant promoter database (http://ppdb.
agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi) provides variety of 
core promoter structure and regulatory element groups for 
Physcomitrella patens, Oryza sativa, Arabidopsis thaliana, 
and Populus trichocarpa (poplar) (Hieno et al. 2014).

However, some heterologous promoters are commonly 
used in plants (Twyman et  al. 2013). For example, the 
CaMV35S (Cauliflower Mosaic Virus 35S RNA subunit) 
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Table 1   Summary of vaccines and recombinant proteins produced by plant systems

Abbreviation Full name Function Plant host Yield References

NVCP VLP Virus-like particles 
Norwalk capsid 
protein

Used as vaccine for 
diarrhoeal disease

N. benthamiana 10 ± 0.3 mg/ml Lai and Chen (2012)

VEGF Vascular endothelial 
growth factor

Stimulates vasculogen-
esis and angiogenesis

Moss 480–656 µg/g DW Baur et al. (2005)

ESAT-6 Early secretory anti-
genic target

Immunodiagnosis of 
active tuberculosis

A. thaliana 49 µg/g FW Rigano et al. (2004)

rHBsAg Hepatitis B surface 
antigen

Anti-hepatitis B Solanum tuberosum 97.1 ng/g FW Sunil Kumar et al. 
(2006)

Aβ Human b-amyloid Alzheimer’s disease Tomato 80 ng/ml Youm et al. (2008)
H5 VLP H5 Virus-like particle H1N1 influenza vac-

cine candidate
N. benthamiana N/A Greer (2015)

EIII Domain III of dengue 
virus E glycoprotein

Used as a vaccine to 
prevent infection by 
the dengue virus

N. tabacum cv. MD609 0.25% of TSP Kim et al. (2009)

ETEC Enterotoxigenic 
Escherichia coli

Used as vaccines for 
preventing ETEC 
diarrhoea

Corn 1 mg Tacket et al. (2004)

Poly HIV Multi-epitope fusion 
protein from the 
human immunodefi-
ciency virus

HIV vaccine candidate Moss 3.7 µg/ g FW Orellana-Escobedo et al. 
(2015)

VP1-FMDV Viral protein of foot 
and mouth disease 
virus

Used as feedstuff 
additives to induce 
protective systemic 
antibody response in 
animals

Stylosanthes guianen-
sis cv. Reyan II

0.1–0.5% TSP Wang et al. (2008)

IgG1 IGN314 Glyco-optimized 
version of antibody 
IGN311

Used to diagnose 
tumour-associated 
glycosylation pattern 
Lewis Y

Moss N/A Kircheis et al. (2012)

AChE-R Human acetylcholinest-
erase

Used as organophos-
phate bioscavengers

N. benthamiana 30 mg/kg FW Evron et al. (2007)

PRX-105 PEGylated plant-
derived recombinant 
human acetylcho-
linesterase-R

Parkinson’s disease; 
Poisoning

Tobacco N/A Atsmon et al. (2015)

rCV-N Recombinant cyanovi-
rin-N

Anti-HIV microbicide Soybean 350 μg/g of dry seed 
weight

O’Keefe et al. (2015)

GRFT Griffithsin HIV-1 entry inhibitor Rice 223 μg/g dry seed 
weight

Vamvaka et al. (2016a)

FGF Fibroblast growth 
factor

Formation of blood 
vessels

A. thaliana 32.9 μg/g dry seed 
weight

Yang et al. (2015)

hPH-20 Human hyaluronidase Facilitates penetration 
of the cumulus cell 
layer by digesting 
hyaluronic acid

A. thaliana N/A Li et al. (2014)

BT-VLP Bluetongue virus-like 
particle

Used as a vaccine 
against Bluetongue 
virus

N. benthamiana N/A Thuenemann et al. 
(2013)

EIC Ebola immune complex Used as an anti-Ebola 
virus

N. benthamiana 50 µg⁄g FW Phoolcharoen et al. 
(2011)

HIV-neutraliz-
ing antibody 
2G12

– HIV entry inhibitor Rice 42 μg/g dry seed 
weight

Vamvaka et al. (2016b)
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vector is highly compatible with the transcription machin-
ery of dicots and is commonly used for compact expression 
cassettes; however, CaMV35S activity may be decreased 
in some tissue and cells, such as newly developed tissues 
(Biłas et al. 2016). In this case, the region between nucleo-
tides −90 and 208 acts as an enhancer and plays a key role 
in increasing the promoter activity. Act-1 and Ubi-1 are 
other examples of promoters that show more compatibility 
with the transcription machinery of monocots (Kang et al. 
2008). The efficiency of polyubiquitin promoters PvUbi1 
and PvUbi2 derived from switchgrass showed several fold 
higher constitutive expression when it was compared to the 

efficiency of the CaMV35S and OsAct1 promoters (Mann 
et  al. 2011). Additionally, non-classical promoters were 
used for both monocots and dicots, such as the CmYLCV 
(Cestrum Yellow Leaf Curling Virus) promoter (Stavolone 
et al. 2003) and the pPLEX series promoters (Schünmann 
et al. 2003), respectively.

The efficiency of several commonly inducible (such as 
alcA, PR-1 and ACE1) and tissue-specific promoters (such 
as 2S albumin promoter, arc5-I promoter, CHS and RB7) 
has been reported in plants (Twyman et al. 2013). Recently, 
a β-oestradiol-inducible promoter has been used to cre-
ate the TRANSPLANTA collection in A. thaliana (Coego 

Table 1   (continued)

Abbreviation Full name Function Plant host Yield References

hGH Human growth hor-
mone

Simulates growth, cell 
reproduction, and cell 
regeneration

Soybean 2.9% TSP da Cunha et al. (2014)

Hfix Human coagulation 
factor IX

Used to treat type B 
Christmas disease

Soybean 0.23% TSP da Cunha et al. (2014)

FH Complement factor H Used in treatment of 
atypical haemolytic 
uremic syndrome 
(aHUS), mem-
branoproliferative 
glomerulonephritis 
II (MPGN II) or 
age-related macular 
degeneration (AMD)

Moss 25.8 µg/g DW Buttner-Mainik et al. 
(2011)

Fig. 1   Schematic overview of sequence features impacting protein regulation. Inside factors include transcription, translation, mRNA process-
ing and stability, and protein folding, and outside factors include host platform, culture condition, and subcellular localization
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et al. 2014) and to establish a stable gene expression sys-
tem in P. patens (Kubo et al. 2013) for identification of the 
biological functions of transcription factors (TFs), while 
TFs can regulate gene expression in all organisms. Moreo-
ver, the efficacy of synthetic cis-acting motifs in transgenic 
tomato has been investigated, and it was compared with the 
efficiency of native CaMV35S and DECaMV35S promot-
ers (Koul et al. 2012). Interestingly, the synthetic cis-acting 
modules led to increased transgene expression in tomato in 
comparison to the native promoters.

In contrast to the chemically inducible system developed 
to control transgene expression, a physical approach is con-
sidered safer and more applicable in terms of spatiotem-
poral resolution and the toxic effects of gene expression 
(Kang et  al. 1999; Amirsadeghi et  al. 2007; Muller et  al. 
2014). Thus, the use of chemically inducible transgene 
expression in plant cell cultures seems to be undesirable. 
In comparison to a chemical inducer, light was considered 
a compatible source for the bioproduction of recombinant 
proteins with high temporal resolution. In this context, a 
red light-switchable promoter has been developed to con-
trol transgene expression in the moss P. patens (Muller 
et al. 2014).

Additionally, multimeric protein subunits or different 
independent proteins can be expressed and assembled 
in planta using a single ORF (sORF) through linkage to 
the 2A peptide from foot-and-mouth virus (Luke et  al. 
2015) or inteins (interspacing polypeptide blocks of func-
tional protein parts) (Evans et al. 2005). The 2A strategy 
is largely used for producing important proteins, such as 
a multi-epitope and low-cost candidate vaccine against 
cysticercosis using the so-called Helios2A polyprotein 
system (Monreal-Escalante et al. 2015). Although the 2A 
peptide is known to trigger the auto-cleavage and release 
of separate subunits, this mechanism occurs before the 

proteins enter the endoplasmic reticulum (ER). Other-
wise, inteins ensure that the entire polypeptide is targeted 
to the ER and that autocleavage occurs in the lumen to 
guarantee a balanced protein expression level in an equi-
molar ratio (Kunes et  al. 2009). Once inside the ER, 
exteins—protein subunit blocks flanking inteins—can be 
joined via protein splicing through a mechanism that is 
desirable for protein multimerization (Hauptmann et  al. 
2013), for instance, or they can be separately released 
(O’Brien et al. 2010). Interestingly, this last approach is 
very suitable for expressing recombinant antibodies, but 
has only been performed for mammalian cells (Gion et al. 
2013).

Thus, considering all these possibilities, cassettes can 
also be shuffled according to their order in the vector back-
bone, or they can be rearranged in different orientations 
for expression (in tandem—the 5′ and 3′ ends are kept in 
the same orientation related to the other cassette—or sand-
wich—the 5′ and 3′ ends of each cassette are inverted to 
each other in a reversed orientation) (Al-Rubeai 2011). 
However, regardless of the vector setup, it is important to 
ensure that the coding DNA sequence (CDS) of interest has 
efficient control elements for translation initiation. In this 
way, it is advisable to provide an appropriate ribosome-
binding site (RBS) for plant machinery via the addition of 
a eukaryote-derived RBS (Kozak sequence—consensus: 
GCCRCCATG) immediately upstream of the initiation 
codon (Kozak 1999; Mohammadzadeh et  al. 2015) in the 
case of nuclear genes, or to adapt the CDS and its surround-
ing elements when performing chloroplast transformation. 
Most plastid mRNAs harbour Shine-Dalgarno (SD)-like 
sequences with a similar role, even though their distances 
from the initiation codon are not conserved. Furthermore, 
the initiation codons (e.g., AUG, GUG) can vary for plastid 
transgenes (Cardi et al. 2010).

Fig. 2   Schematic of a gene expression cassette. An expression cassette is a DNA sequence that carries out the body of required elements to 
increase the transcription rate. Each of these elements could be optimized to boost the expression rate
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Codon usage

Codon bias is a crucial step in regulating synthetic gene 
expression in a plant platform as it can influence numer-
ous processes associated with protein production (e.g., 
RNA processing, protein translation and protein folding). 
Through evolutionary mechanisms, plant hosts developed 
similar substitutions of rare codons with favourable ones 
to reach a desired nucleotide distribution, as rare codons 
can inhibit protein translation (Gould et  al. 2014). Gene 
expression based on codon usage can be predicted using 
diverse metrics, which have been reviewed by (Lindgreen 
2012). Additionally, the codon usage database (http://
www.kazusa.or.jp/codon/) released values on the number 
of times each codon is used per 1000 codons and the total 
number of times each codon is known to be used.

Codon usage optimization in plants was reviewed 
(Serres-Giardi et al. 2012), and it was demonstrated that 
rare codons and AU-rich destabilizing sequences may 
result in mRNA decline, reducing recombinant protein 
expression in plants (Laguía-Becher et  al. 2010). The 
correlation between GC content, codon usage, and gene 
expression has also been reported in plants (Palidwor 
et  al. 2010). These findings show the counterintuitive 
effect of GC content on determining the codon usage. 
Similar to these findings, the dominant effect of GC-
biased genes on nucleotide distribution was reported in 
many seed plants (Serres-Giardi et  al. 2012). Moreover, 
the influence of GC bias in codon context has been rec-
ognized for a set of codons but not for individual codons.

Codon usage optimization boosts gene expression and 
influences the amount of transgene expression more than 
1000 fold (Gustafsson et al. 2004). In this context, (Frank-
lin et al. 2002; Gisby et al. 2011) demonstrated significant 
increases in expression (75- to 80-fold) after codon opti-
mization. In a recent study, (Kwon et al. 2016) the impor-
tance of codon usage optimization was shown with increas-
ing levels of gene expression (4.9- to 7.1-fold or 22.5- to 
28.1-fold) in lettuce and tobacco chloroplasts, respectively. 
The expression of recombinant protein was very low when 
heterologous genes were transferred into Chlamydomonas 
reinhardtii chloroplasts without codon usage optimization 
(Ishikura et al. 1999). In this way, there are various methods 
to evaluate the effect of codon usage on gene expression 
(Box 1) and to provide the best tools for codon optimiza-
tion. The codon adaptation index (CAI) was used to esti-
mate the expression level of heterologous genes. Genome-
specific CAI must be used for optimal protein production 
as the nuclear, mitochondrial and chloroplast genomes 
may show different codon biases. For instance, a compara-
tive study on the codon bias patterns of chloroplasts and 
their host nuclear genes demonstrated that the GC content 
of entire genes and the three-codon positions were higher 
in nuclear genes than in chloroplast genes, demonstrating 
different genomic organization and mutation pressures in 
nuclear and chloroplast genes (Liu and Xue 2005). Codon 
biases can boost expression efficiency by influencing trans-
lation rates and decreasing susceptibility to gene silencing 
(Heitzer et al. 2007).

Previous reports stated that the translational elongation 
step is affected by codon bias optimization (Irwin et  al. 

Box 1   Proposed statistical methods for the analysis of codon bias

Frequency of optimal codons (Fop) (Ikemura 1981)
 This index represents the rate of favourable codons to synonymous codons. This method is used for the quantification of codon preferences and 

for the prediction of gene expression levels
Relative synonymous codon usage (RSCU) (Sharp et al. 1986)
 This index evaluates codon bias patterns in whole genomes for a specific codon. It represents the observed number of existing codons divided 

by the expected number of similar codons. The value of RSCU will be 1 if the frequency of synonymous codons for an amino acid is the 
same

Codon adaptation index (CAI) (Sharp and Li 1987)
 This index represents a geometric tool of relative adaptiveness to evaluate each codon. CAI measures the percentage of codons that are the 

most abundant choice in any organism. This method is also applied for the prediction of gene expression levels and for the analysis of codon 
usage in different organisms

tRNA adaptation index (tAI) (dos Reis et al. 2004)
 This index consists of codon adaptations to intra-cellular tRNA pools. tAI estimates the wobble interactions among tRNAs and codons. This 

method is good for the prediction of gene expression from any nucleotide sequence
Effective number of codons (ENc) (Suzuki et al. 2004)
 This index determines several synonymous codons in the sequence. Compared to CAI, this method does not require a set of references express-

ing the gene and optimal codons to evaluate codon bias. ENc can evaluate codon usage evenness
Synonymous codon usage order (SCUO) (Wan et al. 2004)
 This method is based on Shannon’s information theory and allows an analysis of the correlation between codon bias and GC composition. 

SCUO can assess codon bias for different genomes at the same time

http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/
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1995). Moreover, many works provided evidence of codon 
bias optimization on translation efficiency in prokaryotes 
and eukaryotes (Duret 2002; Mueller et  al. 2010; Cole-
man et  al. 2011). These findings indicate that codon con-
text effects are significantly correlated with the abundance 
of tRNA isoacceptor molecules on the ribosome surface. 
Moreover, post-translation modifications might be affected 
by codon bias as silent mutations within the transcript, 
resulting in unwanted protein instability and misfold-
ing (Brest et  al. 2011). Nevertheless, it is important to 
observe that these complex correlations are still not fully 
recognized and that our knowledge of the effects of codon 
sequence changes during translation and post-translational 
modification are somewhat limited. Moreover, we should 
keep in mind that the optimization of codon usage is not 
the only factor in obtaining high level expression of recom-
binant proteins, as various factors affect recombinant pro-
tein levels.

Characterization of untranslated regions (UTRs)

A recent study reported that the transcript sequence or 
the region close to the start codon AUG can be crucial 
for translation efficiency (Kim et  al. 2014). Hence, the 
sequence located 21  bp upstream of the start codon was 
identified as a significant feature for determining transla-
tion efficiency in A. thaliana. However, how this region 
can affect translation efficiency was not fully determined, 
although it was previously shown that mRNA folding of the 
sequence near the initiation codon might strongly influence 
translation efficiency (Plotkin and Kudla 2011). Moreover, 
this conserved region in plants is required for translational 
initiation factors to recruit ribosome subunits for start 
codon recognition (Simon and Miller 2013).

5′ UTR introns are other sequences that can influ-
ence gene expression by boosting the steady-state ratio of 
mRNA and by correlating with polyadenylation factors in 
plants (Rose 2008; Morello et al. 2011; Rose et al. 2011). 
Although introns are not part of translated regions and 
should be removed by splicing processes, in certain cases, 
5′ UTR introns act as transcriptional enhancers to influence 
gene expression. In this context, the 5′ UTR intron of the 
rice rubi3 gene was shown to boost gene expression up to 
29-fold in transgenic rice cells (Lu et al. 2008). Addition-
ally, the effect of 5′ introns on stimulating gene expres-
sion in seeds has been confirmed, as the maize Adh1 intron 
increased the production of the reporter gene (Callis et al. 
1987).

Genes harbouring a 5′ UTR intron of actin (act) genes 
from P. patens can also increase the production of human 
vascular endothelial growth factor by influencing the activ-
ity of upstream promoter regions (Weise et  al. 2006). In 

this way, the regulatory properties of riboswitches as non-
coding and conserved elements located in the untranslated 
regions have been studied in plants (Cheah et  al. 2007; 
Croft et al. 2007), and they indicate that riboswitches can 
regulate gene expression via splicing and alternative 3′ end 
processing of mRNAs (Wachter et al. 2007). How this con-
served element affects splicing in plants was reviewed by 
(Bocobza and Aharoni 2014).

Another example of a 5′ UTR intron used in Nico-
tiana tabacum was demonstrated by (Herz et  al. 2005). 
They developed novel types of plastid transformation vec-
tors harbouring 5′ UTR to increase expression levels. The 
expression levels were strongly increased when the 5′-UTR 
of phage 7 gene 10 was used. Therefore, the improvement 
of expression cassette design based on the 5′ UTR intron 
region may increase the likelihood of producing recombi-
nant proteins at economically feasible levels for commer-
cial applications. Understanding the expression-promoting 
mechanism of the 5′ UTR intron region of Act genes can 
open new possibilities for vector design based on a moss-
derived expression system in the near future.

RNA secondary structure

Among various features affecting gene translation, mRNA 
secondary structure plays a key role in the process (Kim 
et al. 2010; Sun et al. 2012). Its negative outcome on trans-
lation can reduce protein yields, making mRNA secondary 
structure a decisive factor for the regulation of gene expres-
sion (Gaspar et  al. 2013). mRNAs are the most complex 
group of cellular RNAs, and they originate not only from 
transcription itself but also from numerous modification 
reactions, such as precursor mRNA (pre-mRNA) splicing, 
capping, polyadenylation, and 3′ end processing. Further-
more, the association of mRNAs with protein complexes 
and factors results in the regulation of mRNA translation 
and metabolism (Wachter 2014). Therefore, screening 
the functional capabilities of RNA folding might identify 
sequence features that contribute to gene regulation in plant 
molecular pharming. Based on high-throughput structure 
mapping analysis, coupled with transcriptome data from 
different RNAs, it is clear that the abundance of mRNA 
transcripts, transcript half-life in the cytoplasm and the 
probability of the secondary structure that is formed in the 
transcript can affect the regulation of gene expression since 
the formation of a stable structure in an RNA strand can 
increasingly affect the expression quality of a targeted pro-
tein (Farrell 2007).

A global view on protein expression could provide 
insights into translation regulation mechanisms occur-
ring at the level of initiation and in early stages of elon-
gation. Previous works have revealed the dramatic effect 
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of variable mRNA structural stability on coding portions 
(Ullrich et al. 2015). The stable structure next to the start 
codon might inhibit initiation and elongation by providing 
a longer pause during ribosome movement, which conse-
quently, can affect the regulation of co-translational protein 
folding (Xie 2015).

In this context, measurements of ribosome movement 
along mRNA set a correlation between ribosome transla-
tion, codon usage and mRNA secondary structure (Mao 
et  al. 2014). Notably, when adjacent ribosomes are close 
together, the mRNA secondary structure between them will 
be weakened and will then disappear; as a result, differ-
ent ribosomes might encounter the structure with different 
folding strengths at the same site.

It is noteworthy that the significant competition between 
transcripts to bind ribosomes is similar to the competition 
of mRNAs, which bind initiation factors with high affin-
ity to synthesize as much protein as mRNAs with a lower 
binding affinity. In this context, the formation of second-
ary structure can be preclusive. For instance, the deter-
rent effect of mRNA secondary structures, which suppress 
mRNA scanning via ribosomes when they form in 5′ leader 
sequences, has been demonstrated for plants (Farrell 2007). 
Some important characteristics of mRNA structure, such 
as the thermodynamic stability of the hairpin and its posi-
tion, can affect the degree of translation inhibition. In this 
case, a highly stable hairpin in front of an AUG codon can 
efficiently repress translation, while hairpin with low stabil-
ity that is downstream of an initiation codon can increase 
translation. One of the systematic studies reported in plant 
systems unveiled the correlation between mRNA second-
ary structures and protein expression (Wang and Wessler 
2001). The formation of an RNA hairpin into the 5′ leader 
sequence of the Zea mays Lc gene, which is involved in 
the anthocyanin biosynthetic pathway, has been reported 
to suppress translation since the creation of mutation and 
deletion within the RNA hairpin increased the amount of 
protein production by enhancing the ribosome’s ability to 
load onto the mRNA. There are convincing reports show-
ing that mutations and deletions within hairpins decreased 
hairpin stability and increased protein expression (Wang 
and Wessler 2001).

Moreover, the combined effect of mRNA secondary 
structure and codon usage in highly translated mRNAs 
causes a short ribosomal distance in structural regions, 
eliminating the structures during translation, which 
leads to a high elongation rate. RNA structural motifs 
can alter the stability of RNA backbones by exhibiting 
more regions for ribosome–RNA interactions. For exam-
ple, the identification of the glmS (glutamine-fructose-
6-phosphate amidotransferase) ribozyme (Winkler et  al. 
2004) and an allosteric self-splicing intron (Lee et  al. 

2010) as domains within mRNAs affect gene regulation 
by ribozyme-containing mRNA domains. Hence, ribos-
witches have regulatory properties. Interestingly, these 
domains facilitate mRNAs to adjust gene expression 
without associating with regulatory factors (Penchovsky 
and Stoilova 2013).

Previously, forms of a plant riboswitch, thiamin 
pyrophosphate (TPP), were characterized as ligands and 
were found to regulate thiamin biosynthesis in plants 
and algae (Cheah et  al. 2007; Croft et  al. 2007). Ribos-
witches control gene expression in plants by the splicing 
and alternative 3′ end processing of mRNAs (Wachter 
et  al. 2007). How the structural rearrangement of the 
TPP aptamer affects splicing in plants was previously 
reviewed by Bocobza and Aharoni (2014). Their find-
ings indicate that ribosome stepping and mRNA unwind-
ing are force-dependent because the mechanistic nature 
of this force relies on ribosomal distance. Counterintui-
tively, the portended correlation between strong mRNA 
folding and translating ribosomes has been proposed, and 
the stronger folding of more abundant mRNAs results in 
the slower evolution of more highly expressed genes and 
proteins. Therefore, it unveils the impact of natural selec-
tion at the mRNA level in constraining protein evolu-
tion (Park et al. 2013). However, no systematic study has 
been reported in plant systems that unveils the correla-
tion between mRNA secondary structures and the higher 
expression levels of recombinant proteins.

Subcellular targeting

The overexpression of a targeted gene via cellular com-
partments has gained more attention in recent years. 
However, in addition to the optimization of the exog-
enous mechanism involved in recombinant protein pro-
duction, endogenous factors related to housekeeping 
genes and essential metabolism are features limiting the 
increased yield of recombinant proteins. This limitation 
could influence the accumulation of recombinant proteins 
that require post-translational modification in the ER 
through the activation of the unfolded protein response 
(UPR) (Thomas and Walmsley 2015).

Furthermore, directing recombinant proteins to subcel-
lular organelles creates an environment low in proteases 
and helps to increase protein production and recovery 
(Schillberg et al. 1999; Fischer and Emans 2000). In addi-
tion to the ER and oil bodies, proteins can be targeted to 
the vacuoles, apoplast, and plastids, and they can even be 
directed to a hydroponic medium in plant roots (Horvath 
et al. 2000; Doran 2006).
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Cytoplasm accumulation

Usually, cytoplasm targeting is an unfavourable strategy 
for the accumulation of proteins due to several reasons, 
including the presence of chemical reduction–oxidation 
reactions that result in the production of unfolded proteins; 
the secretion of proteases; the effectiveness of the Ubiqui-
tin Proteasome Pathway (UPP), which is responsible for 
the identification and degradation of unfolded proteins; 
and the lack of post-translational modifications for correct 
folding, assembly or/and stability of recombinant proteins 
(Benchabane et  al. 2008). Thus, different strategies can 
be applied to circumvent these challenges. An alternative 
could be the co-expression of protease inhibitors to mini-
mize protein degradation during storage in the cytoplasm 
(Egelkrout et al. 2012). For example, a tomato cathepsin D 
inhibitor (CDI) expressed in potato leaves showed an aver-
age increase of 35–40% in leaf protein content for intrinsic 
and transgenic proteins in the cytosol (Goulet et al. 2010). 
The use of fused proteins or other “tags” can also assist 
in protein recovery and stability. In some cases, they can 
increase protein accumulation in the cytosol and resistance 
to proteolysis (Amin et  al. 2004). Moreover, recombinant 
protein accumulation in subcellular organelles, such as the 
ER, chloroplast and oil bodies, is an alternative strategy 
to circumvent the lability of cytoplasm targeting (Alvarez 
et al. 2010; Giddings et al. 2000; Torrent et al. 2009).

Organelle accumulation

The ER is an ideal region to increase protein accumulation 
and improve protein assembly, as well as to control glyco-
sylation (Aebi 2013). The ER is a region with a low quan-
tity of proteases, and the presence of a high concentration 
of chaperones can assist recombinant proteins in post-trans-
lational folding and stability (Nuttall et al. 2002). Previous 
studies demonstrated that the apoplast targeting of recombi-
nant antibody fragments, when retained in the ER, yielded 
3.8  µg/g of protein in O. sativa cells. The same antibody 
fragment, when produced in tobacco cells, corresponded to 
0.064% of the total soluble protein (Table 1) (Fischer et al. 
1999; Torres et  al. 1999). However, ER addressing is not 
recommended for proteins that require downstream modi-
fications in the Golgi, vacuoles and chloroplast (Doran 
2006).

Furthermore, the accumulation of antibodies directed to 
the ER using (SE)/(H)/(K)DEL signal peptides increased 
2- to 10-fold compared to proteins lacking retention signals 
(Conrad and Fiedler 1998). In addition, the use of N-termi-
nal γ-zein proline-rich sequences to target proteins to the 
ER and protein bodies (PBs) increased the stable accumu-
lation of proteins in seeds (Torrent et al. 2009).

The use of apoplasts to store different human recombi-
nant proteins expressed in tobacco plants—such as human 
serum albumin and human granulocyte–macrophage 
colony-stimulating factor (hGM-CSF)—significantly 
increased protein yield (Table  1) (Sijmons et  al. 1990; 
James et  al. 2000; Ramirez et  al. 2000). In some cases, 
however, targeting an organelle for protein accumulation 
does not imply that different tissues or organs will store the 
same concentration of recombinant protein. For example, 
when the silk-like protein DP1B was directed to vacuoles, 
transgenic Arabidopsis seed cells presented higher con-
centration levels of the recombinant protein than leaf cells 
(Yang et al. 2005).

The chloroplast is another compartment used for the 
production of recombinant proteins, as it provides several 
advantages during protein accumulation, including the 
production of a large copy number of inserted genes and 
the absence of gene silencing (Michelet et  al. 2011). The 
mechanism of gene expression in the chloroplast is regu-
lated at the transcriptional and post-transcriptional lev-
els (Stern et al. 2010). It was previously reported that this 
mechanism could be controlled by chloroplast-produced 
signals (Michelet et  al. 2011). The chloroplast genome is 
assembled as operons that are transcribed as polycistronic 
transcriptional units and it shows prokaryotic and eukary-
otic properties, as the control of chloroplast gene expres-
sion, including transcription, post-transcriptional process-
ing, translation, and post-translational modifications, is 
similar to that of prokaryotic and/or eukaryotic systems 
(del Campo 2009). Moreover, chloroplasts offer a location 
with a low content of proteases, and they perform tran-
scription, translation post-transcriptional processing and 
post-translational modifications. These organelles also offer 
high transgene stability over continuous generations, mak-
ing them a secure bio-containment system, as the genes are 
not transmitted via pollen (Dufourmantel et al. 2006; Gray 
et al. 2009).

Many recombinant proteins have already been targeted 
to chloroplasts in order to increase protein accumulation 
and stability, such as human growth hormone (Staub et al. 
2000), human serum albumin (Fernandez-San Millan et al. 
2003), cholera and tetanus toxin fragments (Daniell et  al. 
2001; Tregoning et al. 2003), and a thermostable xylanase 
(Leelavathi et  al. 2003). In addition, increased levels of a 
recombinant cellulose from Thermobifida fusca expressed 
in tobacco corresponded to 10.7% of the total soluble pro-
tein due to accumulation in the cell chloroplasts (Gray et al. 
2009). In a recent work, the expression and development 
of several antigens and vaccines were reported for algae 
chloroplasts (Specht and Mayfield 2014). The green micro-
algae chloroplast provides a unique space for the assembly, 
folding and post-translational modifications of transgenic 
proteins (Fletcher et  al. 2007; Chebolu and Daniell 2009; 
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Specht et  al. 2010) through cis-acting units, including 5′- 
and 3′ UTRs and promoters that affect transcription, mRNA 
stability and translation (Michelet et al. 2011).

Post-transcriptional gene silencing (PTGS) is considered 
a key parameter in low-level protein accumulation. There-
fore, PTGS suppression might lead to boosts in protein pro-
duction. In addition, targeting proteins to various cellular 
compartments, coupled with an agroinfection approach, is 
a new strategy to increase protein accumulation. A novel 
technology for accumulating recombinant protein has been 
established in Nicotiana benthamiana using a suppressor of 
PTGS and specific sub-cellular localization (Azhakanan-
dam et  al. 2007). Amplicon-plus Targeting Technology 
(APTT) demonstrated remarkable efficacy for increasing 
the accumulation levels in chloroplasts by creating fusions 
between the recombinant protein and different targeting 
peptides. APTT can overcome existing troubles regarding 
agroinfection systems, making them economically feasible 
and promising large-scale production of recombinant pro-
tein in a short period of time.

Host system

The selection of a suitable host plant and the consideration 
of its effect on the efficiency of recombinant protein accu-
mulation are important key strategies for boosting intrinsic 
yield. There are economic issues affecting the selection 
of plant hosts as suitable benchmarks for the production 
of recombinant proteins. These economic factors include 
storage property, scalability and transportation, the cost of 
downstream processing, the potential of a short-time scale 
and edibility (Obembe et  al. 2011). Additionally, efficient 
transformation and regeneration may contribute to the 
selection of a host plant as an amenable resource for recom-
binant protein production. However, it is not possible to set 
a perfect single system with all economic features, as every 
system has its own advantages and disadvantages that need 
to be considered as signposts for selecting the best system 
for protein production. As currently reviewed (Thomas and 
Walmsley 2015), there is a significant correlation between 
host benchmarks and endogenous molecular mechanisms, 
such as protein folding, glycosylation profiles, and chaper-
one pools. Moreover, the endogenous proteolytic activity 
of the host system might severely affect protein stability 
during expression, extraction, and harvesting (Pillay et  al. 
2014). Hence, modification of the host system can signifi-
cantly increase the accumulation of recombinant proteins 
in plant systems (Egelkrout et  al. 2012). In this context, 
cellular and molecular factors can contribute to the accu-
mulation of recombinant proteins, which is correlated with 
the rate of synthesis and degradation of the desired protein. 
Understanding the association between flux (explained as 

the rate limiting step) and metabolic pathway, as well as 
identifying the limiting reaction event during protein accu-
mulation in the host system, can increasingly influence pro-
tein production (Morandini 2013).

Furthermore, the replacement of the host plant pathway 
with a non-host plant pathway through metabolic engineer-
ing might facilitate increased recombinant protein produc-
tion. For example, the accumulation of bacterial polyesters 
(polyhydroxyalkanoates) was reported by introducing the 
microbial pathway into plants (Poirier 2001). In another 
similar work, bacterial genes related to the generation of 
butanetriol, a useful precursor for the synthesis of several 
drugs, was applied into A. thaliana (Abdel-Ghany et  al. 
2013). However, toxic side effects on plant growth pro-
duced by metabolic engineering are considered limiting 
factors for the accumulation of these metabolites in plant 
systems (Keasling 2012; Zingaro and Papoutsakis 2012). 
The toxic side effects could be decreased by the identifi-
cation of intermediate metabolites involved in toxicity and 
their direction to specific organelles (Bornke and Broer 
2010).

Leafy crop‑based expression

Leafy crops, including tobacco, lettuce, and alfalfa, are well 
established in the commercialization of biopharmaceuti-
cals due to the many expectations regarding their biomass 
efficiency and capability at a massive scale. For example, 
the ability of transgenic tobacco (N. tabacum) to produce 
1-100 tons of biomass per hectare per year makes this plant 
a reliable platform for the production of a high concentra-
tion of biopharmaceuticals. Moreover, easy genetic trans-
formation and regeneration are favoured by using tobacco 
as a laboratory model in terms of molecular pharming. 
Therefore, both scalability and successful gene expression 
history make tobacco a pioneer for the production of vari-
ous biopharmaceuticals (Twyman et al. 2003). In this con-
text, Kentucky BioProcessing (USA) uses its proprietary 
stable nuclear platform in tobacco to produce an oral subu-
nit vaccine for Norwalk virus (NoroVAXX) (http://www.
kentuckybioprocessing.com). Moreover, the oral delivery 
of bioencapsulated transmucosal carrier cholera toxin B 
subunit (CTB) fused with green fluorescent protein (GFP) 
expressed in tobacco chloroplast genome could be used to 
tackle brain failure, especially in terms of the blood–brain 
barrier (BBB) and blood–retinal barrier (BRB), using a 
mouse model (Kohli et al. 2014). The results of this inves-
tigation showed that the oral administration of CTB-GFP 
resulted in binding to intestinal GM1 receptors and the 
release of fused protein (CTB) into the circulatory system. 
In this context, the long-term stabilization of plant-based 
protein reduced the high cost of oral delivery of neurother-
apeutic proteins in terms of the BBB and BRB. A drawback 

http://www.kentuckybioprocessing.com
http://www.kentuckybioprocessing.com
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of tobacco is its inherent production of a large number of 
toxic compounds, which interfere with downstream pro-
cessing, as well as its protein instability due to secreted pro-
teolysis enzymes (Rosales-Mendoza et  al. 2010; Obembe 
et al. 2011; Stoger et al. 2014). It is worth bearing in mind 
that these drawbacks decrease the value of leafy crops for 
the production of recombinant proteins. In this context, 
many researchers have focused on ways to minimize these 
adverse effects and boost the capacity of leafy crops for the 
production of recombinant proteins.

Seed‑based expression system

Seed-based expression systems provide a good platform 
for the production of recombinant proteins at massive and 
minute levels. (Stoger et al. 2014). In both cases, the high 
cost of process development, such as bioreactor-based pro-
duction, would be reduced. Moreover, this system could 
resolve problems related to leafy crops, including proteo-
lytic degradation, protein instability and decreased activity 
of recombinant proteins due to long-term storage (Nochi 
et  al. 2007; Faye and Gomord 2010). Most importantly, 
seeds can be used to create master and working cell cul-
ture platforms (Paul et  al. 2013). As an example, Ventria 
Bioscience (Fort Collins, USA; http://www.ventria.com/) 
developed the large-scale production of human serum albu-
min based on rice seeds. The worldwide demand for this 
recombinant protein is approximately 500 tons per year 
(Chen et al. 2013b).

A seed-based expression system is also an excellent plat-
form for the production of orally administered vaccines and 
antigens. Orally delivered vaccines contribute to the reduc-
tion of immunogenicity via systemic humoral and cellular 
immune responses in the gut and mucosal surface (Wood-
row et al. 2012). Seed-based oral immunotherapy presents 
a cost-effective system for the production of T-cell epitope 
peptides or recombinant hypoallergens. Compared to a 
purified vaccine, an orally administered antigen produced 
in transgenic seed plants shows more resistance to gastro-
intestinal enzymes, due to the bioencapsulation of the vac-
cine via plant cell barriers, such as protein bodies (Takaiwa 
2009). Several studies have demonstrated the benefits of 
encapsulation, including increased resistance to enzymatic 
digestion and stronger immune response (Chikwamba 
et al. 2003; Takagi et al. 2010; Takaiwa 2011; Suzuki et al. 
2012). Additionally, the delivery of orally administered 
vaccines (attenuated vaccines) may reduce the possibil-
ity of reversion to virulence, guaranteeing a high immune 
response of the vaccine (Stoger et al. 2014). Therefore, the 
ability of transgenic rice seed to produce T cell epitope 
peptides of Cry j I and Cry j for the induction of a high 
mucosal immune response to allergen pollen in mice is a 

good example of a drug orally administered by plant seeds 
(Takagi et al. 2005).

Moreover, the expression and accumulation of an orally 
administered vaccine in plant seeds facilitate the deliv-
ery of autoantigens to mucosal surfaces while maintain-
ing a high immune response (Lakshmi et  al. 2013; Kohli 
et al. 2014). Thus, rice, barley and maize seeds have been 
explored as commercial benchmarks for recombinant pro-
tein production. Given the numerous advantages of seed-
based expression, Pharma-Planta Consortium (http://www.
pharma-planta.net/) and ProdiGene Inc. (USA; http://www.
prodigene.com/) adopted and developed the commercial 
production of HIV microbicide and bovine trypsin using 
the maize seed platform. Ventria Bioscience established 
an Expressed-Tec system in rice seeds for the production 
of various biopharmaceuticals, including lactoferrin and 
lysozyme, transferrin, and human albumin (Tang et  al. 
2010; Zhang et al. 2010). An Icelandic biotechnology com-
pany (http://www.orfgenetics.com/), ORF Genetics, uses its 
proprietary ORFeus platform in the endosperm of barely 
seed to accumulate a range of cytokines and human growth 
hormones.

Fruit and vegetable expression systems

Fruits and vegetables are the last categories of transgenic 
host plants that have contributed to the production of vac-
cines. The capability of oral vaccine delivery is recognized 
as a benefit of this system over conventional production. 
This ability not only removes the required purification step 
for recombinant protein but also enables the distribution 
of the product in the absence of a cold chain process (Paul 
et al. 2013; Stoger et al. 2014).

Currently, Protalix Biotherapeutics released some oral 
therapeutic enzymes into clinical trials using lyophilized 
carrot cells, including a modified version of the recombi-
nant alpha-Galactosidase-A protein (PRX 102) in phases 
1/2 of clinical trials; PRX-106 (Oral antiTNF), which has 
completed phase I of a clinical trial; PRX-105, a biode-
fence drug, in phase 1; and PRX-112 (Oral glucocerebrosi-
dase for Gaucher’s Disease), which has completed phase I 
(Wolfson 2013).

Due to the benefits of molecular pharming for the pro-
duction of recombinant proteins in terms of stability and 
scalability, the EU Pharma-Planta consortium provided a 
new project establishing the commercial production of two 
HIV antibodies, 2G12 and 2F5, using maize and tobacco 
platforms (Rademacher et al. 2008; Paul et al. 2011). This 
project resulted in the GMP-compliant development of 
recombinant protein 2G12 using transgenic tobacco and 
launched to a phase I clinical trial, indicating the success 
of molecular pharming in microbicide protein production. 
Nevertheless, the accessibility of molecular pharming 

http://www.ventria.com/
http://www.pharma-planta.net/
http://www.pharma-planta.net/
http://www.prodigene.com/
http://www.prodigene.com/
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products to underdeveloped countries and their connec-
tion to the global health network requires a cost-efficient 
production and development infrastructure, which can be 
offered by transgenic plants.

Moss‑based expression system

Recently, a moss-based expression system has been 
exploited for the accumulation of high-value biopharma-
ceuticals. The moss P. patens is a reliable system for the 
production of recombinant proteins, as stable genetic 
transformation and endogenous gene disruption are easily 
achieved. The latter is beneficial for knocking out genes 
involved in the addition of a non-human glycogen struc-
ture onto the protein sequence, enabling moss to express 
humanized glycoprotein (Reski et  al. 2015). Moreover, 
protein secretion and product stability in the medium add 
versatility to this system, as proteolytic degradation has 
not been reported so far. Thus, protein homogeneity and 
purification costs are advantages of this system. Recently, 
several human proteins were expressed using a moss sys-
tem, including asialo-erythropoietin (AEPO) (Parsons et al. 
2012), placental secreted alkaline phosphatase (SEAP) 
(Gitzinger et al. 2009), complement factor H (FH) (Buttner-
Mainik et al. 2011), epidermal growth factor (EGF), hepat-
ocyte growth factor (HGF) (Niederkrüger et al. 2014), and 
multi-epitope fusion protein from human immunodefi-
ciency virus (Poly HIV) (Orellana-Escobedo et  al. 2015). 
The German company Greenovation Biotech GmbH (http://
www.greenovation.com/) developed a highly stable and 
high-yielding strain of P. patens as a benchmark for the 
establishment of several recombinant proteins involved in 
orphan diseases, such as Fabry’s Disease, Gaucher’s Dis-
ease, atypical haemolytic uremic syndrome (aHUS), and 
Pompe Disease.

Transient expression‑based systems: 
agroinfiltration and agroinfection

Transient gene expression is an efficient, cost-effective and 
time-saving strategy for yielding high amounts of recombi-
nant proteins, as genetic transformation is a slow process, 
requiring months or years to generate transgenic plants due 
to regeneration protocols (Hefferon 2012). In addition, it 
is a genome integration-independent strategy, and conse-
quently, it is not affected by position effects, existing in a 
stable transformation once the expression vector remains 
as an episomal DNA molecule. Moreover, transient gene 
expression can be detected within 3 h after plasmid deliv-
ery, reaching an expression threshold after 18–48  h and 
remaining transcriptionally active for approximately 10 
days. Besides these features, transient expression can 

contribute to overcoming concerns on biosafety issues 
(Komarova et al. 2010).

In plants, transient gene expression is usually accom-
plished using Agrobacterium tumefaciens in agroinfiltration 
experiments by infiltrating bacterial cell suspensions into 
leaf cells with the consequent delivery of T-DNA to the 
host cells (Circelli et al. 2010). Furthermore, an A. tumefa-
ciens approach can be coupled with replicating plant virus 
genomes in a virus-based replicon system, whose advan-
tages rely on viral properties: viruses are small, can be eas-
ily manipulated, have a simple infection process and are 
able to replicate at high levels. These properties make them 
ideal vectors for heterologous expression and a suitable 
alternative to stable transgenic systems (Lico et al. 2008).

In some reports using viral-based systems, high-level 
expressions were achieved for different biopharmaceu-
ticals, such as full-size mAbs and VLP (Virus-like par-
ticle) vaccines, showing a much higher yield from 0.5 to 
0.8 mg per gram of fresh-leaf biomass (Giritch et al. 2006; 
Huang et al. 2010; Pogue et al. 2010). To achieve this, viral 
genomes were cloned as full-length complementary DNA 
(cDNA) into the desired expression vector through gene 
replacement, gene insertion or gene fusion (Ronald 2007). 
Hence, replicon systems belong to two possible catego-
ries: independent-virus (inoculated as virions or isolated 
viral genomes, and the infection activity is triggered by 
cell-to-cell and systemic movement spreading) or minimal-
virus (viral vectors lacking cell-to-cell movement capacity, 
which allows the efficient expression of larger recombinant 
proteins). In general, replicon systems are derived mainly 
from RNA virus genomes (e.g., Potexvirus, Tobamovi-
rus, Comovirus, Potyvirus, Tobravirus, Closterovirus, and 
Sobemovirus) (Pogue et al. 2010).

Minimal-virus infection is usually coupled with agro-
infiltration in an Agrobacterium-mediated delivery sys-
tem defined as agroinfection, which is practical technique 
because it does not require any delay associated with sys-
temic spreading. Moreover, it is able to trigger high-level 
replication and, consequently, very large amounts of pro-
teins in a shorter period than independent-virus infec-
tion (Pogue et al. 2010). Furthermore, due to the method, 
most of the infiltrated area provides synchronous transgene 
expression once at least 96% of the cells become infiltrated 
(Komarova et al. 2010).

Some plant species (e.g., A. thaliana, Nicotiana spp.) 
are also able to trigger PTGS against replicon transgenes, 
resulting in an accumulation failure of transcripts as a con-
sequence of their sequence-specific targeting and destruc-
tion (Mallory et al. 2002). Accordingly, to maintain a very 
high level of replication, PTGS can be overcome through 
the co-expression of viral or non-viral silencing suppres-
sors (e.g., Tombusvirus P19 protein; Potyvirus P1/HC-
Pro proteins; pectin methylesterase inhibitors; and Pol 

http://www.greenovation.com/
http://www.greenovation.com/
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II-directed short noncoding RNAs), which enhance mRNA 
stability and improve heterologous expression (Komarova 
et al. 2010).

During the last years, multi-component viral vectors 
were commonly used for these purposes, and DNA sys-
tems were developed and shown to be feasible and efficient 
for driving protein expression (Huang et  al. 2009). These 
Geminivirus-based systems have already been used for 
VLP-based vaccine and monoclonal antibody production 
(Huang et al. 2010). Once the recombinant protein is pro-
duced, the leaves must be harvested for protein extraction 
and complete purification as required for biopharmaceuti-
cal production.

A recent significant development in the area of agroin-
filtration is using “deconstructed” viral vectors. In this new 
type of vector, unnecessary viral genome components for 
the function of plasmid expression are removed, which 
leads to the assembly of larger transgenes while keeping 
viral replication and transcription (Chen et al. 2013a). The 
MagnICON system represents an efficient and robust gene-
transferring technology for the transient expression of biop-
harmaceuticals in plant platforms. Using this system, the 
need for plasmid delivery based on complicated methods 
of generating RNA is eliminated. The MagnICON system 
provides an efficient system without functional infectious 
proteins because of the deletion of the CP gene, whereas 
the yield and speed of viral system are maintained. Moreo-
ver, this technology is able to integrate the posttranslational 
processing of plant systems for the production of complex 
proteins (Chen et al. 2013a). Numerous proteins have been 
expressed by this system, and the high-level production of 
desired proteins demonstrated up to 1 mg per gram of fresh 
weight in a short period of time (7–10 days after agroinfil-
tration) (Giritch et al. 2006; Lai et al. 2010; Phoolcharoen 
et al. 2011; He et al. 2012; Lai and Chen 2012). Currently, 
with the help of this system, the well-documented biophar-
maceutical ZMapp™, which is composed of three human-
ized monoclonal antibodies, is manufactured in Nicotiana 
for the treatment of Ebola infections (http://mappbio.com/). 
The development of this system will efficiently contrib-
ute to using plant transient expression systems as a robust 
and prominent platform for the commercial production of 
pharmaceuticals.

Conclusion

Plant benchmarks have been engineered as expression vehi-
cles for the production of different recombinant proteins. 
The secretion of produced proteins and their simple puri-
fication process provide an economical alternative to other 
systems. Moreover, plant-produced proteins are safer than 
those derived from other benchmarks. The development of 

plant systems for high protein accumulation is a priority as 
a large-scale concept. Several features, from transcription 
to translation, regulate protein production, and they need to 
be considered before beginning the steps of protein produc-
tion. Currently, successful optimization resulted in good 
protein secretion at high levels (>30% TSP), and there are 
valuable databases and online software that can screen and 
evaluate many characteristics influencing protein accumu-
lation. Different approaches can be selected, combined, 
and used as strategies to improve protein expression lev-
els in plants. Among them, numerous parameters could be 
altered, which are related to the genetic elements that con-
stitute the expression vector used to drive heterologous pro-
tein expression and their orientation within the backbone. 
There are also several molecular strategies for controlling 
glycosylation patterns to obtain the desired glycoforms, and 
these strategies vary from molecular tools for gene silenc-
ing to subcellular targeting. The latter can also be used for 
storage purposes to optimize and enhance protein accumu-
lation, which, when coupled to viral-based replicon sys-
tems, might overexpress proteins at high levels.
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