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Abstract 
The study was conducted using physiological approach to identify rice accessions with superior performance 
when subjected to infra-optimum temperatures during initial development phase (V2-V4). Forty-two rice 
genotypes composed by background essentially indica, japonica and indica/japonica cross with a broad genetic 
and ecological diversity were used. Plants were grown under initial optimum temperatures gradient (OTG - 
22/32 °C night/day) until V2 stage; subsequently were subjected to infra-optimum temperature gradient (ITG - 
13/17 °C night/day) during three days; after all genotypes returned to OTG conditions for seven days to recovery. 
Principal components analysis (PCA) highlighted that the three principal components account for 75.16% of 
total variation at the end of evaluated period. There were similar contributions of effective quantum yield (Y(II) - 
stress) and electron transport rate variables after recovery period (ETR - recovery) for PC1. Interestedly, 
genotypes highly responsive under initial OTG which showed fast initial biomass accumulation were also highly 
sensitive to stress when subjected to ITG, with accentuated decreases in their physiological performance. Sel. TB 
1211-3 line, CTB 1419, CTB 1444, CTB 1455 and AB 13720 progenies showed greater performance for 
physiological analyzed variables, being potentially useful for breeding efforts aiming improve cold tolerance in 
rice at initial phase. 

Keywords: Oryza, cold tolerance, chlorophyll fluorescence, rice physiology, chilling, extreme climate events 

1. Introduction 
The increasingly occurrence of extreme climate events and those forecast to occur yet in the century wave us that 
our current decisions will determine the size of the climatic impacts on earth life in the next years. Although is 
unclear the impacts of these changes on agricultural sustainability, in the current year the CO2 concentration 
reached unprecedented registered levels on earth surface (about 403 ppm) (Olivier et al., 2017). In this way, add 
to challenges associated to feed more than nine billions people in the next decades (Jacquemin et al., 2013; Fan 
et al., 2014), an additional question is related to how to supply the food crescent demand for world growth 
population in face of increasingly uncertainties about climate stability; which could lead to change of rain regime, 
besides of increases in frequency of heat and cold waves as predicted to be increasingly common in next decades. 
In this sense, abiotic and biotic stresses are the major constraints for agricultural productivity on the global scale 
and projected climate changes could increase their negative effects in the future (Brito et al., 2010; Diola et al., 
2011; Brito et al., 2011; Diola et al., 2013; Weber et al., 2014; Brito et al., 2016; Guimarães et al., 2017; 
Lisei-de-Sa et al., 2017; Moura et al., 2017a; Moura et al., 2017b) and its increasingly frequency of occurrence 
will probably influence the plant species distributions, productivity, carbon balance and negatively impacting on 
physiological resilience capacity of plants in a specific environment. Thus, is imperative to consider that the 
major challenge is how to overcome this barriers increasing rice production using less land, water, chemicals, 
and labor; additionally, considering the need to conserve the environmental and natural resources of degradation. 
In this way, efforts and new strategies are necessary to be included in the breeding program aiming to accelerate 
the construction of new plant types for new economics and climate scenarios. 
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Rice (Oryza sativa L.) is one of the most relevant staple food for more than half of the world’s population (Fan et 
al., 2016). Rice production must be increased by 70% until 2050 to supply the growing demand for food, take 
into account the growth population and economic development (Godfray et al., 2010). For rice early 
development, which involve an adequate germination and seedling establishment, this specie require 
temperatures situated between 20 and 35 °C (Yoshida, 1981). Stress by infra-optimum temperatures occurs when 
the temperature falls below 17 °C resulting in poor germination, slowing seedling biomass accumulation, besides 
poor stand establishment and, consequently decreases of the yield components and productivity (Shakiba et al., 
2017; Zhao et al., 2017). In this sense, according to the historic weather record, from years 1971-2000 
(http://agromet.cpact.embrapa.br/estacao/mensal.html), in Brazil southern, specifically in Rio Grande do Sul 
state were cropped about 70% of Brazilian rice (1.1 million hectares approximately) (Conab, 2017), the coldest 
period is situated between mid-May to the mid-October. Our historic weather data are evidencing an increase in 
the temperatures oscillations during rice crop development. Heat and cold waves are becoming increasingly in 
last decades; especially during September and mid-October when rice crops are still at an early stage of plant 
development.  

Despite of the high sensitivity of rice to infra-optimum temperatures, the variability in the germplasm bank 
should be exploited, where range of infra-optimum temperature tolerance exist among accessions of indica and 
japonica subspecies. Even though considering that indica ssp accessions are more sensitive to this specific stress, 
the increased use of japonica ssp in breeding programs around world has allowed the insertion of valorous 
alleles, which needs to be identified, dissected and used to accelerate the breeding processes aiming to develop 
cultivars with improved tolerance to infra-optimum temperatures.  

In this way, whereas great progresses have been made in the cost-efficiency and high-throughput analyses of 
genetic information as results of “omics” advances, and by increasingly availability of phenotyping platforms 
able to be used in large-scale, yet exist gaps and bottlenecks which difficult the association of external 
morphometrics parameters to physiological phenotyping and/or the mechanisms related to plant stress responses. 
As discussed by different authors, efforts should be done by multidisciplinary expertise allowing that complex 
traits could be broken down into individual components; beyond to be dissected, validated and checked across 
different scales to become useful as physiological proxy underlying processes used for plants in response to a 
specific stimulus.  

Although different studies have demonstrated the effects of infra-optimum temperatures on rice physiological 
performance, most of these studies have been carried out under unique and static temperature for night and also 
for day period; what reduce its consistency when compared with realistic and dynamic environment changes in 
the field, where plants will be subjected in the future. By other side, studies conducted under field conditions yet 
involve laborious procedures, besides leads to increases in the trial errors resultant of variability in the soil 
chemicals composition, physical properties and management practices. Thus, aiming to increase consistency of 
generated data in this study, a physiological phenotyping platform was used allowing to simulate temperatures 
gradient during night and day periods, beyond control of humidity, carbon dioxide quantity, ethylene levels, light 
intensity and its spectral quality. Other devices such as fluorometer imaging, infra-red camera, root scanners and 
infra-red gas analyzer integrate this phenotyping platform.  

In this sense, this study aimed to apply non-invasive physiological procedures, via chlorophyll fluorescence 
parameters to phenotype multiple genotypes in response to infra-optimum temperature; in addition, adopted 
multivariate analysis to discriminate those with great potential to be included in new efforts in the breeding 
program aiming to obtain lines/cultivars with improved resilience in face to infra-optimum temperatures 
occurrence. 

2. Material and Methods 
2.1 Plant Materials 

The study was based on our previews trials from Embrapa’s Rice Breeding Program and involved forty-two rice 
genotypes composed by background essentially indica, japonica and indica/japonica cross with a broad genetic 
and ecological diversity (Table 1). For this purpose was included two cold-tolerant genotypes named as Tomoe 
Mochi and Diamante based in our previous trials, which compounded our genetic materials in the study. 
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Table 1. Genotypes of the Embrapa’s rice breeding program from different origins and genetic background used 
for this study. 

Genotypes Crossing combinations Sub-species 

86914-IR 891-7-2-1 Unavailable source Japonica 

HSC 16 Unavailable source Indica 

LTB 06012 Unavailable source Indica 

LTB 050055 CNA 8621/CNAi 9025 Indica 

LTB 050151 BRS-7 Taim/CL Sel. 720 Indica 

LTB 07041 CL 113-4-1-1/CL 591 Indica 

LTB 07048 IR 3825-B-B-23/CL 591 Indica 

AB 10572 BRA 01016/BRA 02676 Indica 

AB 10501 CNAx12967-B-2-B-8-B Indica 

AB 13002 BRA 01330/CNAx 11208-B-21-B Indica/Japonica 

AB 13008 BRS Fronteira/BR IRGA 409 Indica 

AB 13012 BRS Querência/IRGA 417 Indica/Japonica 

AB 12597 BRA 01028/IRGA 419 Indica 

AB 11502 IRGA 417/IRGA 419 Indica 

AB 13715 CNA 5/3/1-29-B-B-4-B/BRA 040081 Indica/Japonica 

AB 13720 BRA 01330/CNAx 11208-B-21-B Indica/Japonica 

AB 14001 BRS Fronteira/BR IRGA 409 Indica 

AB 13006 BRS Fronteira/BR IRGA 409 Indica 

AB 13689 SCS 112/IRGA 417 Indica/Japonica 

AB 13003 Sel. Em SC 766 Indica/Japonica 

CTB 1414 Sel. TB 1211-1/BRS-6 Chuí Indica/Japonica 

CTB 1417 Sel. TB 1211-2/BRS Pampa Indica/Japonica 

CTB 1418 Sel. TB 1211-2/BRS-6 Chuí Indica/Japonica 

CTB 1419 Sel. TB 1211-2/IRGA 424 Indica/Japonica 

CTB 1421 Sel. TB 1211-3/IRGA 424 Indica/Japonica 

CTB 1424 Sel. TB 1211-5/IRGA 424 Indica/Japonica 

CTB 1425 AB 10004/BRS Pampa Indica 

CTB 1442 Sel. TB 1211-1/AB09007 Indica/Japonica 

CTB 1444 Sel. TB 1211-1/BRA051108 Indica/Japonica 

CTB 1445 Sel. TB 1211-1/BRA 051077 Indica/Japonica 

CTB 1447 Sel. TB 1211-2/INTA Puitá CL Indica/Japonica 

CTB 1449 Sel. TB 1211-2/BRA051077 Indica/Japonica 

CTB 1450 Sel. TB 1211-3/INTA Puitá CL Indica/Japonica 

CTB 1454 Sel. TB 1211-5/BRA 051108 Indica/Japonica 

CTB 1455 Sel. TB 1211-5/BRA051077 Indica/Japonica 

CTB 1457 AB 10007/BRS 6 Chuí Indica/Japonica 

Sel. TB 1211-1 CL 113-4-1-1/CL 591 Indica/Japonica 

Sel. TB 1211-2 CL 113-4-1-1/CL 591 Indica/Japonica 

Sel. TB 1211-3 CL 113-4-1-1/CL 591 Indica/Japonica 

Sel. TB 1211-5 CL 113-4-1-1/CL 591 Indica/Japonica 

Diamante Tolerant check Japonica 

Tomoe Mochi Tolerant check Japonica 

 

2.2 Growth Conditions and Temperature Treatments 

Rice plants were grown in plastic trays filled with non-sterile substrate composed of a mixture of plant substrate 
(black peat, vegetable compost, pH 5.8±0.2, electric conductivity (mS/cm) 0.7±0.2, water retention capacity (%) 
80.0, N (%) 0.04, P2O5 (%) 0.04 and K2O (%) 0.05. Immediately after sowing, the materials were maintained at 
the Embrapa’s phenotyping platform (PhenoSTRESS) during all trial period (Figure 1).  
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were placed with an inclination of 42° relatively to vertical position and covered with black plastic sheet to 
exclude light from the soil and roots, leaving small slits for seedlings to emerge. Before sowing, the rhizotrons 
were watered to field capacity and the plants were maintained at 80% of its field capacity during all trial period. 
Similarly as described before (at V2control, V2+3 daysstress and V3/V4recovery) root imaging acquisition was done 
using a camera (Sony Cyber Shot DSC-HX1, Optical Zoom 20X) and the photographed images were analyzed 
with WinRHIZO PRO Pro image analysis system (Regent Instruments, Inc., Quebec City, QC) to estimate total 
root length (sum of the lengths of all roots in the root system), total root surface area, total root volume, average 
root diameter, length and surface area and RLD of roots in 0-50 cm soil depth. 

2.6 Biomass Determination 

After recovery period, in the rizotrons, the total shoot and root dry weight were quantified harvesting each plant 
separately; these organs were immediately subjected to oven drying for 72 h at 70 °C for biomass 
determinations. 

2.7 Statistical Procedures 

The data was submitted to analyses of variance being carried out using SigmaPlot version 13 (Systat Software 
Inc., San Jose, CA, USA). In addition, principal component analysis (PCA) was performed to identify those 
potentially more tolerant to infra-optimum temperatures among genotypes and excluding those redundant 
evaluated parameters. These PCA step-by-step procedures allowed us to exclude sixteen redundant 
morphometrics and physiological variables which showed equal contributions. Subsequently, data from those 
contrasting genotype for each evaluated parameters were again subjected to ANOVA procedures aiming to test 
existence of the interaction between the different points evaluations and genotypes; when statistically 
significance was detected, unfold statistical procedures were done to quantify the effects of each genetic 
background within each point physiological analysis (before stress imposing, at the end of stress period  and at 
recovery) (SigmaPlot 13.0 - Systat Software San Jose). Subsequently, the Least Significant Difference (LSD) 
among the means was statistically analyzed using Student-Newman-Keuls test (p < 0.05). 

3. Results 
In this way, is needed to remember that rice plant has an optimal temperature threshold situated between 20 and 
35 °C (Yoshida, 1981). Thus, soil and air temperatures bellow of this threshold during initial phases can lead to 
decreases in germination rate, slow biomass accumulation, increases in plant mortality and, consequently 
reducing plant stand per area, negatively affecting its yield components.  

In our study, a multivariate analysis via PCA was performed on various physiological variables under 
investigation and three principal components (PCs) were considered. PC1, PC2 and PC3 contributed to 
variations of 39.08, 22.70 and 13.48%, respectively (Figures 3A and 3B). PCs indicated that three important 
components accounted for 75.26 percent of the total variation among traits in rice genotypes when subjected to 
stress conditions. Although the first component assigned 39.08 percent of total variation between traits with 
significant contribution of total root and shoot dry mass, is very important emphasize that the fast biomass 
accumulation performance shown by some genotypes occurred in the first days after plants germination, before 
stress imposing. Additionally, was evident that these parameters were nearly orthogonal with physiological 
measured variables. Therefore, highlighting that genotypes showing better physiological performance nearly 
always were those with lower shoot and root dry mass at the end of trial period. PCA procedures allowed us to 
uncover and consequently discriminate the Sel. TB 1211-3, CTB 1419, CTB 1444, CTB 1455 and AB 13720 
genotypes which showed greater performance for the physiological analyzed variables (Figures 3C and 3D). 
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repair its metabolic pathways considering that the analyses were done seven days after the end of the stress 
period.  

Finally, even though great advances in sensors and devices technologies for plant phenotyping in large-scale are 
now available, there are limitations to associate selected genotypes obtained via image approach to a 
physiological trait that contribute decisively for those performance; especially considering that the most of 
available phenotyping platforms can only quantify the morphometrics data, such as leaf and shoot area e plant 
biomass accumulation. In this way, as demonstrated by our study, not always a fast biomass accumulation can be 
translated in greater physiological performance. Thus, in breeding program where multiples genotypes need to 
be characterized routinely, strong efforts should be put in the development and validation of robust physiological 
and non-invasive approaches to overcome the bottlenecks existent between our capacity associated to underling 
mechanisms that play the major roles in external and morphometrics phenotypic traits. These advances could 
allow us to integrate them as useful tolls in a breeding program routine aiming to construct the better plant 
ideotype for a specific environment. 

Summarizing, the chlorophyll fluorescence appear as an useful tool for discriminating multiples genotypes when 
subjected to infra-optimum temperatures; beyond allow to probe the photosystem II state functioning in a 
non-invasive form, what is very interesting considering the possibility to return at the same leaf target area to 
monitor photochemistry changes performance across different stress scales. These selected genotypes (Sel. TB 
1211-3 line and the CTB 1419, CTB 1444, CTB 1455 and AB 13720 progenies) showed greater performance for 
at least of physiological analyzed variables; showing similar performance as shown by tolerant checks for at 
least one of the physiological evaluated variables. As before described, valorous japonica alleles probably are 
being introgressed as result of used cross combinations, considering that all selected genotypes are originated 
from indica/japonica cross. Therefore, these selected genotypes can be useful as sources for breeding efforts 
aiming the improvement of rice for cold tolerance at initial stages of plant development.  
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