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ABSTRACT

Rapid diagnosis of symptoms caused by pest attack, diseases and nutritional or physiological disorders 
in apple orchards is essential to avoid greater losses. This paper aimed to evaluate the efficiency of 
Convolutional Neural Networks (CNN) to automatically detect and classify symptoms of diseases, 
nutritional deficiencies and damage caused by herbicides in apple trees from images of their leaves 
and fruits. A novel data set was developed containing labeled examples consisting of approximately 
10,000 images of leaves and apple fruits divided into 12 classes, which were classified by algorithms 
of machine learning, with emphasis on models of deep learning. The results showed trained CNNs can 
overcome the performance of experts and other algorithms of machine learning in the classification of 
symptoms in apple trees from leaves images, with an accuracy of 97.3% and obtain 91.1% accuracy 
with fruit images. In this way, the use of Convolutional Neural Networks may enable the diagnosis 
of symptoms in apple trees in a fast, precise and usual way.
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1. INTRODUCTION

Approximately 25% of apple production is lost by attack of pests, diseases and nutritional disorders 
of plants. A rapid and efficient diagnosis of these situations is essential to avoid greater losses. It is 
estimated that 80 to 90% of the damage caused by pests and diseases which attack the culture of the 
apple tree occurs in the leaves and fruits. Among these diseases, scab of apple tree and the spot of 
Glomerella are the most important ones (Valdebenito-Sanhueza et al., 2008). In the case of pests, 
where leaves and fruits serve as food source or hosts, the major issues are due to the attacks of the 
fruit fly, fruit moth and big caterpillars (Kovaleski, 2004). On the other hand, the disturbances caused 
by the excess or lack of nutrients are visible mainly in the leaves during the vegetative growth phase 
(Nachtigall et al., 2004).

A correct diagnosis is essential in order to define strategies of management and control, and 
consequently for the rational use of fertilizers and pesticides. One main obstacle towards a quick 
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diagnosis is the need for trained experts, making it costly to cover large areas in a timely manner. 
Moreover, experts often specialize in different issues, increasing the rate of misdiagnosis.

Some approaches exist to try and reduce the dependency on experts. A widely used one is a 
simple printed guide containing photos and explanations on how to diagnose a wide range of issues 
(Valdebenito-Sanhueza et al., 2008). Expert Systems, often built on top of Case-Based Reasoning 
algorithms, are applied to some cultures - e.g. vine (Fialho et al., 2012). These systems still require 
considerable amounts of training and are often not very accurate, mainly due to the typically very 
large number of questions required to be answered by the user and the sensitivity to wrong answers.

The concept of using machine learning to detect symptoms in plants has been shown to be a 
promising alternative in recent years, where several studies using different approaches have been 
carried out to identify or classify symptoms in cultivated plants. Rumpf et al. (2010) aimed to 
discriminate diseased from non-diseased sugar beet leaves, to differentiate between the three types 
of diseases and to identify diseases even before specific symptoms became visible. The authors 
used Support Vector Machines with a radial basis function as kernel to perform the identification 
and classification of symptoms of healthy or unhealthy leaves. As input they used nine spectral 
vegetation indexes, related to physiological parameters as features for an automatic classification, 
resulting in classification accuracies up to 97% on sugar beet leaves and diseased leaves, up to 86% 
classification accuracy between the three diseases symptoms and accuracy between 65% and 90% 
for pre-symptomatic detection of plant diseases.

Al-Hiary et al. (2011) proposed a methodology to automatically detect and classify plant leaf 
diseases from images. The process consists of six main phases: image acquisition, image pre-
processing, image segmentation, feature extraction, statistical analysis and classification by a MLP. 
The authors used 32 samples for each of the six classes of leaves. Features were manually defined 
as 10 texture features extracted from the image.

A Perceptron Multilayer for classifying grape leaf diseases was used by Sannakki et al. (2013). 
Clustering was used to segment the image into groups, followed by lesion and manually defined 
feature extraction. They used a very small dataset (33 examples) and were able to achieve perfect 
accuracy in an also-small (4 examples) test set.

Revathi and Hemalatha (2014) focus on cotton leaf spot diseases. The authors used a dataset 
with 270 images divided into 6 disease classes. Features were manually defined, consisting of leaf 
edge, color and texture features. A Cross Information Gain Deep Forward Neural Network was used 
to perform the classification, resulting in an overall accuracy of 95%. Mohanty et al. (2016) proposed 
using GoogLeNet for the classification of leaf diseases in different cultures, using a dataset with 
54306 images from different laboratories, divided in 38 classes, and a cluster computer to process 
the data, resulting in accuracy of 99.35%.

With the popularization of the techniques of artificial intelligence and machine learning for the 
classification of images, large banks of images were created, which were used to test the efficiency 
of the new techniques developed. Thus, several techniques were searched for a lower error rate in 
the classification of the images present in this image bank. One of the techniques that stood out for 
this classification task was the Convolutional Neural Network (CNN).

Krizhevsky; Sutskever; and Hinton (2012) conducted the training of a deep convolutional neural 
network to classify ImageNet and obtained the best result ever reported using the sub-sets presented 
in the ILSVRC-2010 and ILSVRC-2012 competitions. The architecture used had five convoluted 
layers and three completely connected layers, with a training time between five and six days. This 
architecture obtained an error rate in the top-1 and top-5 sets of 38.1% and 16.4%, respectively, using 
a set of five networks.

Based on the results obtained by Krizhevsky; Sutskever; And Hinton (2012), Simonyan and 
Zisserman (2014) made modifications to the proposed architecture using small convolutional filters 
(3x3) in order to perform better than those previously proposed. In addition, another focus was on 
the depth of the network, which could be increased by the fact that the filters were smaller in size. In 
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this architecture were present sixteen convoluted layers and three completely connected layers. The 
error rate in the top-1 and top-5 sets were 23.7% and 6.8%, respectively, using a set of two networks 
and multi-crop and dense evaluation techniques.

Moreover, CNNs have been shown to be good alternatives in the most different problems of 
computer vision, such as character recognition (Lecun et al., 1998), face recognition (Lawrence et 
al., 1997) and object categorization (Yu; Xu; and Gong, 2009).

On this paper, we extend the work developed in (Nachtigal et al., 2016), as we continue to analyze 
the possibility to automatically identify symptoms of important disorders present in apple orchards 
(Malus domestica Borkh) using only photographs of leaf and fruits, developing a new dataset of labeled 
images, containing five common disorders in leaves (deficiency of potassium and magnesium, apple 
scab, glomerella stains and damage caused by herbicide) and five important disorders in fruits (scab, 
alternaria rot, bull’s eye rot, penicillium rot and calcium deficiency – bitter pit).

2. MATERIAL AND METHODS

The methodology consists of building a dataset containing labeled examples of ten types of issues 
commonly affecting apple orchards. This dataset was randomly partitioned into training, validation 
and test subsets. The training and validation subsets were used to train and optimize a Convolutional 
Neural Network and a Multilayer Perceptron (as a baseline) techniques. The test set was then used to 
assess the performance of the resulting classifiers and was also presented to experts for classification.

2.1. Dataset
The datasets were built by harvesting leaves and fruits from three species of apple trees (Maxigala, 
Fuji Suprema and Pink Lady) and photographing each leaf or fruit over a white background. Each 
sample was then subjected to laboratory tests to properly identify the underlying disorder which was 
then used to label the image. Harvesting occurred between January and April 2015 from orchards 
located in the southern part of Brazil, at Embrapa Uva e Vinho – Estação Experimental de Fruticultura 
de Clima Temperado.

Healthy leaves and five disorders were selected among those collected, as they are the most 
prevalent in the region. Selected symptoms represent two damages caused by nutritional imbalances 
(deficiency of potassium and magnesium), two diseases damage (apple scab - caused by the fungus 
Venturia inaequalis and Glomerella stains - caused by the fungus Glomerella cingulata) and damage 
caused by herbicide (glyphosate). Table 1 summarizes the leaf dataset. As for the fruits, five symptoms 
were also selected, based as they are the most prevalent in the region and the damage caused have a 
superior economy importance, along with healthy fruits. These symptoms are: one disorder caused 
by nutritional imbalances (calcium deficiency - bitter pit) and four disorders caused by diseases (scab, 
alternaria rot, penicillium rot and bull’s eye rot). Table 1 summarizes the fruit dataset.

The identification of the disorders was conducted by a group of professional agronomist 
researchers specialized in these symptoms and with ample experience in plant nutrition and plant 
pathology. Also, to further support these professionals, published specialized books (Nachtigall et 
al., 2004; Valdebenito-Sanhueza et al., 2008) were used, providing technical information on the 
symptoms. Figures 1 and 2 exemplify the evaluated symptoms on leaves and fruits, and the Table 1 
identify the number of samples collected for each symptom and healthy samples.

After the harvest and identification of fruit and leaves, a camera with the resolution of 12 MP 
was used to capture the images of each sample. A white background was used to photograph each 
leaf or fruit separately. An agronomist further analyzed the images, in order to verify if the symptoms 
classifications were possible, based on what was present on the images. A few images which presented 
defects or were outside the capture standards used were discarded.

In order to reduce errors and properly establish a ground-truth, three strategies were employed 
by the experts to properly diagnose each issue:
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1. 	 For symptoms caused by nutritional imbalances, samples of normal leaves and leaves with 
potassium and magnesium deficiency symptoms were selected, each consisting of 100 leaves. 
The samples then were dried at 60◦ Celsius in a forced air circulation greenhouse until a constant 
weight and forwarded to the laboratory for chemical analyzes in order to quantify the total 

Figure 1. Leaves with symptoms of: (A) Potassium deficiency; (B) Magnesium deficiency; (C) Scab damage; (D) Glomerella 
damage; and (E) Damage caused by herbicide

Figure 2. Fruits with the symptoms of: (F) Scab; (G) Alternaria rot; (H) Bull’s eye rot; (I) Penicilium rot; and (J) Calcium deficiency 
– bitter pit
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concentrations of nutrients (potassium and magnesium). The analysis results show that samples 
with symptoms effectively represent the deficiencies of potassium and magnesium. In the 
analytic results for samples of normal leaves and potassium deficiency ones, it was proved that 
the chosen leaves with visual symptoms of potassium deficiency (which originated the images for 
this symptom in the dataset) contained only 38% of the potassium concentration compared with 
ordinary and healthy leaves. The analytic results for samples of normal leaves and magnesium 
deficient leaves (at two levels of severity), verified that the sample leaves with visual symptoms 
of magnesium deficiency (also originating the images for this symptom in the dataset) contained 
63% and 40% of the magnesium concentration in relation to normal leaves. As for the fruits, 
100 samples of pulp and peels were collected, both normal fruits (without symptoms) and fruits 
with symptoms of calcium deficiency. The samples were then sent to the lab, for the chemical 
analysis, aiming at the quantification of total calcium concentrations. The analytic results of the 
samples represent effectively the calcium deficiency. These results of the pulp and peel samples, 
which possess calcium deficiency symptoms, demonstrated that these samples had only 78% and 
65% of the calcium concentration found in healthy pulp and peel fruits, respectively;

2. 	 For symptoms caused by disease damage on leaves (apple tree scab - caused by the fungus Venturia 
inaequalis - and Glomerella’s stains - caused by the fungus Glomerella cingulata), and on fruits 
(apple tree scab - caused by the fungus Venturia inaequalis, alternaria rot – caused by the fungus 
Alternaria alternata, bull’s-eye rot induced by Cryptosporiopsis perennans and Penicilium rot 
caused by the fungus Penicillium expansum), samples were selected with symptoms previously 
identified for the each of the diseases. These samples were incubated for multiplication of the 
causative agent (fungus) and after was performed the isolation of fungi and their characterization 
and identification using a microscope, allowing the proof of causal agents and their damage on 
apple tree leaves and fruits. The obtained results proved that samples with diseases symptoms 
effectively represent the selected diseases;

3. 	 For symptoms caused by herbicide damage (glyphosate), it was decided to conduct chemical 
analysis in order to quantify the total concentrations of nutrients which could possibly cause 
confounding of symptoms in cases where the nutrients concentrations were below normal. 
This decision was due the fact that the analysis of the herbicide’s active principle is difficult to 
characterize, once it is rapidly degraded on the plant after its absorption and origin of toxicity 

Table 1. Number of leaves and fruits collected for each class

Issue Number of Leaves Collected Number of Fruits Collected

Potassium deficiency 341 -

Magnesium deficiency 355 -

Scab damage 391 -

Glomerella stain 558 -

Herbicide damage 325 -

Healthy leaves 569 -

Alternaria rot - 490

Calcium deficiency - 434

Penicillium rot - 702

Bull’s eye rot - 486

Scab - 931

Healthy fruits - 1327
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symptoms. Then, samples with herbicide damage symptoms were put through the same protocols 
for nutritional analysis, which results showed these samples did not effectively present any 
nutritional disorders. Since the samples of leaves with symptoms caused by the herbicide 
glyphosate (in three levels of severity) were not different from the nutrient concentrations of 
normal leaves, all nutrients are within the range considered as standards for apple orchards 
(Nachtigall et al., 2004).

2.2. Pre-Processing, Training and Evaluation
All images were re-sized to a resolution of 256x256 pixels. In order to have a balanced dataset, we 
randomly selected 290 examples (labeled images) for each of the five classes containing symptoms. 
The resulting 1450 images were divided into three subsets. A test subset (hold-out set) was created 
by randomly choosing 15 images of each class. The remaining examples were furthered partitioned 
in a training set (192 examples, 70%) and validation set (83 examples, 30%). This division of subsets 
was due to the fact that when comparing machine learning techniques to experts, large test subsets 
would become exhausting for experts to classify, possibly increasing human error to the results.

As for the fruit dataset, 430 examples (labeled images) were randomly selected for each of the 
five classes containing symptoms and for the healthy fruits. The resulting 2580 images were divided 
into three subsets. A test subset (holdout set) was created by randomly choosing 43(10%) images of 
each class. The remaining examples were further partitioned in a training set (271 examples, 70%) 
and validation set (116 examples, 30%). Since there was no classification by experts on the fruit 
dataset, a larger hold-out test set was possible.

The tested learning algorithms were trained over the training set using different parameters and 
configurations and then applied to the validation set. The best performing (over the validation set) 
parameters of each algorithm were then trained over training and validation examples and applied 
to the test set. This procedure was adopted in order to avoid over fitting the results to the training or 
validation set. The test set was also used by the experts for them to provide their classifications, so 
that a direct comparison was possible. Hence, all results reported in this paper are for the test set.

Furthermore, in order to analyze the number of samples needed for a satisfactory classification, 
smaller training subsets were created, randomly selecting 5, 10, 20, 50, 100, 150, 200, and 250 samples 
from each class containing symptoms. These training subsets were then tested using the previous test 
subset, without any changes in the network configuration after the validation process was finished.

After evaluating the CNN approach by comparing it’s results with MLP networks and experts, 
275 randomly selected healthy leaves were then added to the train subset, and 15 randomly selected 
healthy leaves were added to the test subset, in order to evaluate the network capacity to distinguish 
healthy leaves from the five symptoms chosen.

The evaluation of the results was done by calculating the overall accuracy of each classifier and 
analyzing the resulting confusion matrix, also the metrics recall, precision and kappa (Landis and 
Koch 1977) were used.

2.3. Convolutional Neural Network
For this paper, Caffe (Jia et al., 2014) and DIGITS (NVIDIA 2015) were the tools used to help in 
building, training and testing Convolutional Neural Networks. Multiple architectures were tested, 
ranging from shallow networks with 4 layers to deep networks using small (3x3) convolution filters 
as shown in (Simonyan and Zisserman 2014).

The best results over the validation set were obtained by the AlexNet architecture (Krizhevsky 
et al., 2012). This network consists of five convolutional layers, some of which are followed by max-
pooling layers, and three fully-connected layers followed by soft-max and dropout regularization. The 
training parameters were as follows: batch size of 2; a step learning policy was added with a gamma 
of 0.2; training through a maximum of 300 epochs.
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One of the issues faced, was the hardware limitations, where in large datasets it is common to 
use multiple high end GPU cards for faster and deeper learning (Mohanty et al., 2016), the hardware 
used for this research is the following: Geforce GTX 760 GPU, Intel(R) core(TM) i7 860 @ 2.80GHz 
CPU, 16 GB RAM.

2.4. Baseline Algorithms
In order to provide a baseline comparison to CNNs, was applied Multilayer Perceptrons to the dataset, 
using the same training methodology applied for CNNs. Multilayer Perceptron (MLP), was chosen 
for being closely related to CNNs. Shallow MLPs were able to achieve high accuracy on tasks such 
as digit recognition (Cho 1997), image classification (Hara et al., 1994) and feature extraction (Ruck 
et al., 1990).

DIGITS was used to build and test the MLPs. Different shallow architectures were tested. The 
best configuration consisted of two hidden layers with 200 and 500 neurons, respectively, with one 
unit for each class at the output layer and 65536 input units (256x256 pixels).

2.5. Classification by Experts
To collect the classification by experts, we asked 7 volunteer researchers specialized in apple trees to 
classify the images in the test set, including the agronomist who collected the leaves for the database, 
since he had a greater knowledge on the chosen disorders. These experts are further specialized in 
different fields of research, such as plant pathology or plant nutrition.

Each expert was given a form (Figure 3) to choose, for each image, one of the five classes. Healthy 
leaves were not shown to the experts, because in the field leaves that seem healthy are not chosen 
in order to classify a disorder. Each expert was shown the images in a succession over a random 
permutation. They were not given the correct answers and no time limit was enforced.

After storing the form answers, a voting system was developed in order to best evaluate the 
machine learning algorithms with experts. The motivation to create this voting system was because 
not all experts have knowledge of different research areas, and in real case scenarios more than one 
expert could be called to diagnose possible leaf disorders.

In order to create a final answer, the voting system analyzed which symptom had the most votes 
for each image in the form. Also, in case of a tie between symptoms, the votes of experts which had 
a higher overall accuracy were chosen.

Figure 3. Example of image presented in the form shown to experts
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3. RESULTS AND DISCUSSION

Figure 4 presents the overall CNN accuracy when different number of images per class are used for 
training and tested against the hold-out test set. The graph shows a logarithmic increase on accuracy 
when training set is increased. The curve largely levels off for samples larger than 200 images, 
evidencing that the number of samples collected was adequate.

Table 2 shows the final CNN confusion matrix when applied to the hold-out test set. The overall 
accuracy was of 97.3%, with only two incorrect classifications. The MLP, applied to the same test 
set, resulted in an accuracy of 77.3%.

Table 3 shows the individual accuracy obtained from the 7 consulted experts, also showing their 
specific field of research. We can observe that accuracy varies considerably across experts. The 
best result (93.3%) is worse than the result obtained by the CNN, but the average (71.9%) was much 
worse and below that obtained by the MLP. Table 4 presents the confusion matrix of the experts 
when aggregated by voting, where it can be seen that the overall accuracy improves significantly.

Table 5 summarizes the results. The best accuracy was obtained by the CNN, with a 97.3% 
accuracy, followed by the voting system with 96.0% accuracy, the best expert with 93.3% accuracy, 
and the MLP network with 77.3% accuracy. Figure 5 shows the Confidence interval (IC1−α(p)) for 
the classifiers, using a 99% confidence level. It is possible to observe that all techniques are much 
better than random choice and that aggregated experts and the CNN have comparable performance 
and both are better than the MLP. A second experiment was conducted, introducing healthy leaves to 
the dataset. In this case, only the CNN was tested. The same distribution of 275 images for training 
and 15 images for testing was used.

No changes were made in the configuration of the CNN network in order to avoid an over fitting 
to the results. With healthy leaves in the training and test groups, the CNN was able to achieve 
accuracy of 96.67%, as shown in Table 6. It is possible to observe that the trained CNN is able to 
attain perfect accuracy when distinguishing between healthy and unhealthy leaves. This is expected, 

Figure 4. Relation between the number of samples used for learning and the accuracy obtained in the symptoms classification. 
The solid line represents a logarithmic best-fit function over the data points (circles).
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Table 2. Confusion Matrix resulting from CNN classification on the hold-out set

CNN

Label 
image

Symptomin 
leaves Glomerella Herbicide Magnesium 

def.
Potassium 

def. Scab Recall Precision

Glomerella 15 0 0 0 0 100.0% 93.3%

Herbicide 0 15 0 0 0 100.0% 100.0%

Magnesium 
def. 0 0 15 0 0 100.0% 100.0%

Potassium 
def. 0 0 0 14 1 93.3% 100.0%

Scab 1 0 0 0 14 93.3% 93.3%

Accuracy 97.3%

Kappa 0.97

Table 3. Field of research and accuracy obtained by each expert when classifying images in the hold-out test set

Subject Field of Research Accuracy

1 Soil 93.3%

2 Plant pathology 92.0%

3 Post harvest 90.6%

4 Plant pathology 70.6%

5 Plant nutrition 60.0%

6 Crop science 60.0%

7 Environmental management 37.3%

Average - 71.9%

Table 4. Confusion Matrix resulting from the aggregation of the classifications provided by human experts

Voting System - Experts

Label 
image

Symptom in 
leaves Glomerella Herbicide Magnesium 

def.
Potassium 

def. Scab Recall Precision

Glomerella 15 0 0 0 0 100.0% 100.0%

Herbicide 0 14 1 0 0 93.3% 100.0%

Magnesium 
def. 0 0 14 0 1 93.3% 93.7%

Potassium 
def. 0 0 0 14 1 93.3% 100.0%

Scab 0 0 0 0 15 100.0% 88.2%

Accuracy 96.0%

Kappa 0.95
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Table 5. Summary of the results of the leaf dataset, ordered by accuracy

Technique Accuracy

CNN 97.3%

MLP 77.3%

Voting system 96.0%

Highest Accuracy Expert 93.3%

Figure 5. Confidence intervals with 99% confidence level, with normal approximation for each share of accuracy

Table 6. Confusion Matrix resulting from CNN classifications on a hold-out test set when healthy leaves are added to the 
dataset

CNN

Label 
image

Symptom 
in leaves

Glomerella Herbicide Magnesium 
def.

Potassium 
def.

Scab Healthy 
leaves

Recall Precision

Glomerella 15 0 0 0 0 0 100.0% 93.7%

Herbicide 0 15 0 0 0 0 100.0% 100.0%

Magnesium 
def.

0 0 15 0 0 0 100.0% 93.7%

Potassium 
def.

0 0 0 14 1 0 93.3% 100.0%

Scab 1 0 1 0 13 0 86.6% 92.8%

Healthy 
leaves

0 0 0 0 0 15 100.0% 100.0%

Accuracy 96.6%

Kappa 0.96
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as the disorders all display strong symptoms on the leaves, but an additional classification error is 
now made when distinguishing between disorders.

One possibility to improve classification is to train a CNN to first distinguish between healthy 
and unhealthy and then another to further distinguish between disorders. Indeed, a CNN trained on 
a binary healthy/unhealthy class is also able to attain 100% accuracy, hence allowing the use of the 
disorders-only CNN.

Table 7 shows the CNN confusion matrix when applied to the fruit train and hold-out test set. 
The overall accuracy was of 91.1%. Lower results on fruit classification were expected, as the fruit 
images were taken from different angles, allowing a better view of the symptom, but possibly making 
the learning task more challenging. As seen on Table 6, the applied CNN on the fruit hold-out test 
set were also able to achieve 100% accuracy when distinguishing healthy fruits.

4. CONCLUSION AND FUTURE WORK

In this paper we proposed the use Convolutional Neural Networks to assist on the task of identification 
and classification of apple tree disorders from leaf images. We used a novel dataset consisting of leaf 
images containing five known disorders, all confirmed by laboratory tests, and compared the results 
of a CNN to that of a MLP and experts.

Our results show that a CNN based on the AlexNet architecture is able to significantly outperform 
the baseline MLP, showing comparable performance to that of a group experts and outperforming 
any single expert. When applying the CNN to the fruit dataset, we were also able to achieve desirable 
results. Moreover, perfect accuracy was obtained when only distinguishing between healthy and 
unhealthy leaves or healthy and unhealthy fruits.

We conclude that CNNs compose a viable and useful option for this task, with more robust 
classifications than single human experts. In this sense, an automated system based on the trained 
model could contribute towards diagnosis reliability and cost reduction.

Compared to previous works, our approach does not require specialized equipment to capture 
the images or any sort of feature extraction or engineering. The CNN is able to learn relevant features 

Table 7. Confusion Matrix resulting from CNN classifications on the fruit hold-out test set

CNN - Fruits

Label 
image

Symptom 
in fruits

Alternaria 
rot

Calcium 
def.

Penicillium 
rot

Bull’s 
eye 
rot

Scab Healthy 
fruits Recall Precision

Alternaria 
rot 40 0 1 1 1 0 93.0% 87.0%

Calcium 
def. 0 43 0 0 0 0 100.0% 89.6%

Pinicillium 
rot 4 2 35 2 0 0 81.4% 87.5%

Bull’s eye 
rot 0 3 4 35 0 1 93.3% 100.0%

Scab 2 0 0 1 39 1 90.7% 97.5%

Healthy 
fruits 0 0 0 0 0 43 100.0% 95.5%

Accuracy 91.1%

Kappa 0.89
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from the data, to which we attribute the improved performance. This also allows for the general 
approach to be used in different disorders or even cultures with changes only to the dataset. This is 
important to allow for the automatic improvement of the model when more data is made available.

Although the SVM technique showed high accuracies in the related work, when applied the same 
methodology as the other techniques, using no pre-processing or feature extraction, the results did 
not achieve more than 60% accuracies, therefore they were not included in this article.

Several lines of future work are being planned. We are expanding the current dataset to make 
available more diverse examples. While we have shown that more examples obtained in the same way 
will only provide marginal improvements, the introduction of more diversity (e.g. different backgrounds 
and light conditions) could allow for better performance. We are also introducing additional disorders 
and cultures to test how the approach scales with these settings.

Different architectures are also being considered. We believe that a combination of more examples 
and improved architecture could lead to a system that can consistently outperform experts. Finally, 
we aim at integrating our methodology into working systems that can be used on the field, in less 
controlled conditions.
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