XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15 SETEMBRO DE 2017 FORTALEZA - CE

Avaliação da Produção e Resistência à Vassoura-de-Bruxa de Clones de Cupuaçuzeiro no Nordeste Paraense⁽¹⁾

<u>Jack Loureiro Pedroza Neto</u>⁽²⁾; Rafael Moysés Alves⁽³⁾; José Raimundo Quadros Fernandes⁽⁴⁾; Thalita Gomes dos Santos⁽⁵⁾; Abel Jamir Ribeiro Bastos⁽⁶⁾; Saulo Fabrício da Silva Chaves⁽⁷⁾

(1) Trabalho executado com recursos da Embrapa Amazônia Oriental (EMBRAPA).

⁽²⁾ Estudante de Agronomia; Universidade Federal Rural da Amazônia (UFRA); Bolsista EMBRAPA; Belém, Pará; pedrozaagro@gmail.com; ⁽³⁾ Pesquisador Doutor em Genética e Melhoramento de Plantas; EMBRAPA; ⁽⁴⁾ Técnico Agrícola; EMBRAPA; ⁽⁵⁾ Estudante de Agronomia; UFRA; Bolsista EMBRAPA; ⁽⁶⁾ Estudante de Agronomia; UFRA; Bolsista EMBRAPA; ⁽⁷⁾ Estudante de Agronomia; UFRA; Bolsista EMBRAPA;

RESUMO: O cupuaçuzeiro é uma fruteira nativa da região amazônica, com importância econômica no mercado e no desenvolvimento da região. O objetivo deste trabalho foi avaliar o desenvolvimento vegetativo, a produção de frutos e a incidência de vassoura-de-bruxa, em clones de cupuaçuzeiro. O experimento foi instalado em Tomé-Açu, 2005. Foi adotado espaçamento de 6,0 m x 4,0 m para o cupuaçuzeiro, consorciado com pimenteira do reino. O delineamento experimental foi de blocos casualizados, 25 clones, cinco repetições e três plantas por parcela. As variáveis de respostas foram desenvolvimento vegetativo (2006 e 2007), produção de frutos e incidência do fungo Moniliophthora perniciosa, causador da doença vassoura-de-bruxa, durante nove safras (2007/2008 até 2015/2016). Os resultados revelaram que, no tocante ao desenvolvimento vegetativo, não houve grande diferença entre os genótipos, 13 materiais destacaram-se em altura, 18 tiveram diâmetro de tronco semelhante. Na produção de frutos, houve bastante variação. O clone 7 (Inada) apresentou superioridade desde as primeiras safras, frente aos demais, ficando com a média de 25,3 frutos/planta/safra, e diferiu de todos os materiais. Entretanto, também merecem destaque os clones 4, 5, 6 e 9 (Inada), clones 15 (Hantani), 17 (Muroi), 24 (BRS Manacapuru) e 28 (Itaqui), os quais não diferiram entre si. 84% dos clones não sofreram ataques da vassoura-de-bruxa, indicando boa resistência. A seleção dos materiais mais produtivos e com resistência ao patógeno, permitirá a entrada destes, no programa de melhoramento do cupuaçuzeiro, ampliando a base genética dos materiais que serão futuramente disponibilizados aos produtores.

Termos de indexação: Melhoramento genético; *Theobroma grandiflorum*; clones resistentes.

INTRODUÇÃO

O *Theobroma grandiflorum* é uma frutífera originária da região amazônica, que ainda detêm áreas com populações silvestres, além de cultivos exercidos por pequenos e médios produtores (Carvalho et al., 2004). O fruto do cupuaçuzeiro é muito utilizado na indústria alimentícia e química, incentivando o aumento de produção, para gerar renda ao mercado local (Calzavara et al., 1984).

É considerada uma cultura recente, em escala comercial, apesar de ser uma das frutíferas mais cultivadas da região. O aumento das áreas de plantio demanda pesquisas de diferentes ordens, especialmente na linha de melhoramento genético, visando aprimorar a produção de frutos, bem

PROMOÇÃO

XXX CBA CONGRESSO BRASILEI **DE AGRONOMIA**

12 à 1 SETEMBRO DE 2017 FORTALEZA

como, desenvolver materiais resistentes às principais moléstias (Alves & Ferreira, 2012).

Um dos entraves existentes e que afeta drasticamente os cultivos de cupuaçuzeiro é a doença vassoura-de-bruxa, causada pelo fungo Miniliophthora perniciosa, que ataca as regiões meristemáticas da planta, causando hipertrofia e secamento nos ramos, diminuindo a produção de flores e frutos. Este fato também incentiva a busca de materiais genéticos mais resistentes e tolerantes a ação do fungo, para que diminua o prejuízo dos produtores (Alves et al., 2009; Alves et

O estudo teve por objetivo avaliar 25 clones de cupuacuzeiro, em nível de campo, possivelmente resistentes à vassoura-de-bruxa, além de computar a produção de frutos e o desenvolvimento vegetativo durante os dois primeiros anos, a fim de colher subsídios para selecionar os genótipos mais promissores, para incorporá-los ao programa de melhoramento genético do cupuaçuzeiro, e recomendar materiais confiáveis aos produtores.

MATERIAL E MÉTODOS

O experimento foi instalado no ano de 2005, em uma propriedade comercial de cupuaçuzeiro, Fazenda do Sr. Elias Covre, no município de Tomé-Acu, Pará. O solo local é do tipo Latossolo Amarelo textura média, com clima úmido correspondendo ao tipo Ami, de acordo com a classificação de Köppen. A temperatura média gira em torno de 26°C, com umidade relativa do ar de 85% e precipitação média anual de 2.300 mm (Bolfe & Batistella, 2011).

Quanto ao espaçamento, foi adotado 6,0 m x 4,0 m para o cupuaçuzeiro, consorciado com pimenteira do reino em 2,0 m x 2,0 m. Com o ataque de fusariose que afetou todas as plantas de pimenteira, a partir do oitavo ano o cupuaçu passou a ficar solteiro.

O delineamento experimental utilizado foi em blocos casualizados, utilizando-se 25 tratamentos (clones resistentes), com cinco repetições e três plantas por parcela. A avaliação do vigor vegetativo aconteceu nos dois primeiros anos de plantio (2006 e 2007), os dados de produção de frutos e incidência de vassoura-de-bruxa foram coletados de forma individual, durante nove safras (2007/2008

Foi estimada a média de desenvolvimento vegetativo de cada árvore, levando e consideração a altura (m) da planta e o diâmetro (cm) do caule, medido a 50 cm da base da planta, a média da produção de frutos/planta/safra e a taxa de incidência da doença por planta/safra.

Os dados foram submetidos à análise de variância e as médias foram comparadas pelo teste de Tukey ao nível de 5% de probabilidade, utilizando o programa estatístico GENES (Cruz, 2013).

RESULTADOS E DISCUSSÃO

Os resultados da **Tabela 1** mostram que não houve grandes diferenças entre os genótipos avaliados, quanto ao desenvolvimento vegetativo, sendo que 52% dos materiais tiveram altura de planta semelhante (clones 20, 7, 1, 3, 4, 6, 14, 15, 16, 17, 22, 23 e 25), assim como, 72% dos genótipos (clones 7, 20, 4, 1, 3, 5, 6, 8, 9, 13, 15, 16, 18, 21, 22, 23, 24 e 25) apresentaram similar diâmetro de tronco.

Esse desenvolvimento vegetativo inicial demonstra que o estado nutricional das plantas estava adequado, pois a média geral do experimento foi de 1,95 m e 4,21 cm, para altura e diâmetro, respectivamente.

A análise de produção de frutos, destaca o clone 7, com média de 25,3 frutos/planta/safra, como o mais produtivo. Esta produção foi praticamente o dobro da média geral da quadra, e superior em seis frutos/planta/safra que o segundo material mais produtivo, o clone 4, com 19,2 frutos/planta/safra. Este, que foi o segundo melhor posicionado, não diferiu de outros sete materiais (5, 6, 9, 15, 17, 24 e 28). Assim como neste experimento, o material 7, também obteve destaque no estudo feito por Rodrigues (2015), onde se manteve superior aos demais clones (25,55 frutos/planta/safra). Pela persistência da alta produtividade, pode ser considerado o principal material de recomendação para

PROMOÇÃO

REALIZAÇÃO

XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

os produtores.

Tabela 1: Valores médios de clones de cupuaçuzeiro, instalados em ensaio de competição clonal em T. Açu – PA, avaliados, quanto à altura de planta (m) e diâmetro do caule (cm) nos anos de 2006 e 2007; produção de frutos (número de frutos/planta) e incidência de vassoura-de-bruxa nas safras de 2007/2008 a 2014/2015. Belém – Pará, 2017.

Clone	Procedência	Altura (m)		Diâmetro (cm)		Número de frutos/planta		Incidência de vassoura-de-bruxa (%)
1	INADA	2,10	abc	4,16	abcdef	12,28	defghi	0,0
3	INADA	1,99	abcdef	4,42	abcd	12,86	cdefgh	0,0
4	INADA	2,00	abcdef	4,58	ab	19,24	b	0,0
5	INADA	1,92	cdef	4,37	abcd	15,01	bcdef	0,0
6	INADA	2,05	abcde	4,52	abc	17,95	bc	0,0
7	INADA	2,25	ab	4,67	а	25,30	а	0,0
8	INADA	1,84	cdefg	4,05	abcdef	13,01	cdefgh	0,0
9	INADA	1,86	cdefg	4,27	abcde	16,41	bcde	6,7
12	KIMURA	1,70	fg	3,94	cdef	10,49	fghi	0,0
13	LAURO KATO	1,83	cdefg	4,13	abcdef	9,11	ghi	6,7
14	MARCELO	2,10	abcd	3,94	cdef	11,93	defghi	0,0
15	HANTANI	2,06	abcde	4,46	abc	16,50	bcd	0,0
16	HANTANI	2,09	abcd	4,23	abcde	9,82	fghi	0,0
17	MUROI	1,97	abcdef	4,03	bcdef	14,42	bcdefg	0,0
18	HOSHINA	1,81	cdefg	4,52	abc	11,07	efghi	6,7
19	WATANABE	1,84	cdef	3,92	cdef	9,67	fghi	0,0
20	CEPLAC 1	2,26	а	4,60	ab	7,09	i	0,0
21	SEKO	1,92	cdef	4,26	abcde	11,86	defghi	0,0
22	174	1,97	abcdef	4,07	abcdef	11,46	defghi	6,7
23	186	2,04	abcde	4,37	abcd	11,38	defghi	0,0
24	215	1,94	bcdef	4,30	abcd	15,99	bcde	0,0
25	622	2,05	abcde	4,32	abcd	13,19	cdefgh	0,0
26	ITAQUI (Prog. 35/4)	1,55	g	3,81	def	8,39	hi	0,0
27	ITAQUI (Prog. 35/5)	1,78	defg	3,65	ef	10,38	fghi	0,0
28	ITAQUI (Prog. 20/5)	1,74	efg	3,56	f	14,78	bcdef	0,0
Média Geral Coeficiente de Variação %		1,95 6,91		4,21 6,35		13,18 17,19		

*Médias seguidas de mesma letra minúscula na vertical, não diferem entre si, ao nível de significância de 5%, pelo teste de Tukey.

Fonte: Embrapa Amazônia Oriental.

Quanto à incidência da vassoura-de-bruxa, foi possível perceber que apenas 16% dos materiais (clones 9, 13, 18 e 22), foram afetados pelo ataque do patógeno, e que os materiais mais produtivos mantiveram-se livres da doença.

Na avaliação feita por Almeida et. al (2013), as progênies que estavam afetadas pela *M. perniciosa* foram os materiais 3, 17 e 21, sendo apenas 3 plantas de cada progênie. A poda fitossanitária foi

PROMOÇÃO

XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

suficiente para controlar, nestes materiais, a ação de fungo, entretanto, os materiais citados neste experimento sofreram ação, em baixa quantidade.

CONCLUSÕES

O clone 7 (Inada) por suas características de alto vigor, produção e resistência à vassoura-de-bruxa, deverá ser recomendado para o plantio em pequena escala. Assim como, deverá seguir o processo normal do programa de melhoramento do cupuaçuzeiro, e ser avaliado em ensaios de larga escala. Outros genótipos que também merecem ser incorporados ao programa são os clones 5, 6, 7 (Inada), 15 (Hantani), 17 (Muroi) e 28 (Itaqui).

O clone 7 foi um dos genótipos mais vigorosos e o mais produtivo. O clone 20 também foi altamente vigoroso, porém, teve baixa produção. Isso indica que, plantas vigorosas na fase de imaturidade, não serão necessariamente as mais produtivas.

REFERÊNCIAS

ALMEIDA, O. F. de; ALVES, R. M.; BARBOSA, J. N. do N; FERNANDES, J. R. Q. Análise de desenvolvimento vegetativo e produção de clones de cupuaçuzeiro em dois ambientes no município de Tomé-Açu, Pará. In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA, 17, e SEMINÁRIO DE PÓS-GRADUAÇÃO DA EMBRAPA AMAZÔNIA ORIENTAL, 1., Belém, 2013. Anais. Belém: Embrapa Amazônia Oriental, 2013. 4p.

ALVES, R. M. Recomendações técnicas para o plantio de clones de cupuaçuzeiro. Comunicado Técnico, 151. Embrapa Amazônia Oriental. Belém. 2005. 4p.

ALVES, R. M.; RESENDE, M. D. V. de; BANDEIRA, B. dos S.; PINHEIRO, T. M.; FARIAS, D. C. R. Evolução da vassoura-de-bruxa e avaliação da resistência em progênies de Cupuaçuzeiro. Revista Brasileira de Fruticultura, Jaboticabal, v. 31, n. 4, p. 1022-1032, 2009.

ALVES, R. M.; FERREIRA, F. N. BRS Carimbó – A nova cultivar de cupuaçuzeiro da Embrapa Amazônia Oriental. Comunicado Técnico, 232. Embrapa Amazônia Oriental. Belém. 2012. 8p.

BOLFE, E.L.; BATISTELLA, M. Análise florística e estrutural de sistemas silviagrícolas em Tomé-Açu, Pará. Pesq. Agropec. bras. vol. 46, n° 10. p. 1139-1147. Brasília. 2011.

CALZAVARA, B. B. G.; MULLER, C. H.; KAHWAGE, O. N. C. Fruticultura tropical: o cupuaçuzeiro; cultivo, beneficiamento e utilização do fruto. Belém: EMBRAPA CPATU, Documento 32, 1984. 101p.

CARVALHO, J. E. U. de; MÜLLER, C. H.; ALVES, R. M.; NAZARÉ, R. F. R. de. Cupuaçuzeiro. Comunicado Técnico, 115. Embrapa Amazônia Oriental. Belém. 2004. 3p.

CRUZ, C. D. GENES - a software package for analysis in experimental statistics and quantitativegenetics. Acta Scientiarum, v. 35, n. 3, p. 271-276, 2013.

RODRIGUES, J. D. B.; MEDEIROS, S. do R.; FERNANDES, J. R. Q.; TEIXEIRA, A. L.; ALVES, R. M. Análise preliminar de clones de cupuaçuzeiro nas condições ambientais do Estado do Pará. In: SEMINÁRIO ANUAL DE INICIAÇÃO CIENTÍFICA DA UFRA, 13., Belém, 2015. Anais. Belém: UFRA. 1p.

PROMOÇÃO

REALIZAÇÃO

