XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

Crescimento Micelial de *Colletotrichum* sp. Isolado de Sumaumeira em diferentes regimes de luz e Meio de Cultura⁽¹⁾

Ruth Linda Benchimol⁽²⁾; <u>Ana Karoliny Alves Santos</u>⁽³⁾; Thaís dos Santos Palmeira⁽⁴⁾; Cássia Cristina Chaves Pinheiro⁽⁵⁾; Carina Melo da Silva⁽⁶⁾; Noemi Vianna Martins Leão⁽⁷⁾.

(1) Trabalho executado com os recursos da Embrapa Amazônia Oriental.

Pesquisadora do Laboratório de Fitopatologia da Embrapa Amazônia Oriental, Belém, PA (ruth.benchimol@embrapa.br) (3) Graduanda em Agronomia; Universidade Federal Rural da Amazônia, Belém, PA, (karolinyalves.ufra@gmail.com);); (4) Eng. Florestal; Universidade Federal Rural da Amazônia, Belém, PA, (thaispalmeira04@gmail.com); (5) Graduanda em Agronomia; Universidade Federal Rural da Amazônia, Belém, PA, (cassiapinheiro002@gmail.com); (6) Doutora em Agronomia; Universidade Federal Rural da Amazônia, Belém, PA, (carinamelosilva@hotmail.com); (7) Pesquisadora do Laboratório de Sementes Florestais da Embrapa Amazônia Oriental, Belém, PA, (Noemi.leao@embrapa.br)

RESUMO: A planta da sumaumeira (*Ceiba pentandra*), pertencente à família Bombacaceae, é mundialmente conhecida por suas múltiplas utilidades e qualidade da madeira. No entanto, essa cultura pode ser atacada, na fase de viveiro, por fitopatógenos que prejudicam o desenvolvimento e a qualidade das mudas. Objetivou-se avaliar o efeito da luminosidade e de diferentes meios de cultura no crescimento micelial *in vitro* de *Colletotrichum* sp., patógeno isolado de folhas de mudas de sumaumeira . Foram testados os meios de cultura BDA, Extrato de Malte e V8, em placas de Petri, no centro das quais foram colocados discos de micélio do patógeno, sendo mantidas à temperatura de 25±2 °C, sob os regimes de luminosidade claro contínuo, escuro contínuo e alternado (12 horas claro/ 12 horas escuro). O delineamento experimental foi inteiramente casualizado, em esquema fatorial 3x3, com cinco repetições. Foi avaliado o diâmetro das colônias e calculado o Índice de Velocidade de Crescimento Micelial (IVCM) do patógeno. O maior IVCM do patógeno foi observado no meio V8, sob regime claro contínuo, quando comparados aos demais tratamentos, sendo estas condições as mais indicadas para futuros estudos que envolvam o cultivo de *Colletortrichum* sp.

Termos de indexação: Luminosidade, Ceiba pentandra, Sumaúma.

INTRODUÇÃO

A Sumaumeira (*Ceiba pentandra* (L) Gaerth.), pertencente à família Bombacaceae, é mundialmente conhecida por suas múltiplas utilidades e qualidade, em razão de suas características físico mecânicas, da disponibilidade e da trabalhabilidade. Devido à alta qualidade da sua madeira para a indústria de laminados, a sumaumeira tem sido intensivamente explorada ao longo das últimas décadas. No Brasil, a madeira da sumaumeira é utilizada para a confecção de compensados, móveis e batentes de portas e janelas. (PAES et al., 2010).

PROMOÇÃO

REALIZAÇÃO

XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

Dentre as doenças que atacam a sumaúma tem-se o fungo do gênero colletotrichum sp., que pode se manifestar em locais como sementes e folhas, prejudicando assim a germinação e desenvolvimento da Sumaúma (PITTA *et al.*, 1990; PIZZINATO *et al.*, 1996). Sendo este fungo associado ao clima quente e alta umidade, tendo sua ocorrência aumentada na época chuvosa. (KUROZAWA & PAVAN, 1997).

O gênero *Colletotrichum* compreende inúmeras espécies, entre saprófitas e fitopatogênicas, sendo estas responsáveis pela antracnose, doença que causa danos consideráveis em um grande número de culturas (SANTOS et al., 2005).

A dificuldade em conseguir isolados esporulantes, ou mesmo padronizar condições ideais para a esporulação de fungos fitopatogênicos, é um dos principais problemas enfrentados por grupos de pesquisa que visam à identificação de cultivares resistentes (CRUZ et al.,2009). Sabe-se que a composição do meio de cultura, a temperatura e a luminosidade determinam a quantidade e qualidade do crescimento micelial e esporulação dos fitopatógenos (DHINGRA; SINCLAIR 1995).

O presente trabalho teve por objetivo avaliar o efeito de diferentes regimes de luminosidade e meios de cultura no crescimento micelial de *Colletotrichum* sp. isolado de folhas de Sumaúma.

MATERIAL E MÉTODOS

O isolado de *Colletotrichum* sp. utilizado neste estudo foi obtido de amostras foliares de mudas de sumaumeira cultivadas no viveiro de espécies florestais da Embrapa Amazônia Oriental, no qual estas tinham manchas de coloração escura e desuniforme que se espalhavam por toda a folha e apresentavam sintomas característicos de uma doença chamada antracnose,. As amostras foram encaminhadas para o Laboratório de Fitopatologia da mesma Instituição para isolamento e cultivo do patógeno. No processo de isolamento, pequenos fragmentos de tecido foliar doente foram esterilizados (álcool a 70% durante 30 segundos, seguido de Hipoclorito de Sódio a 2%, durante um minuto) e plaqueados em meio de AA (Ágar-Água). Após três dias de incubação à temperatura de 24 °C e fotoperíodo de 12h claro/12h escuro, o micélio do patógeno foi repicado para o meio de cultura BDA (Batata-Dextrose-Ágar), para multiplicação do mesmo.

Discos de micélio do patógeno (\emptyset = 5 mm) foram repicados para placas de Petri contendo os meios BDA (200 g de batata cozida, 20 g de dextrose, 20 g de ágar e 1000 mL de água destilada), Extrato de Malte (20 g de extrato de malte, 20 g de ágar e 1000 mL água destilada) e V8 (100 mL de suco V8, 20 g de CaCO₃, 20 g de ágar, 900 mL de água destilada). As placas foram incubadas em câmaras de armazenamento do tipo BOD sob temperatura constante de 25 \pm 2°C e em diferentes regimes de luminosidade: escuro contínuo), claro contínuo e alternado (12 h claro/12 h escuro).

As avaliações foram feitas medindo-se o diâmetro das colônias diariamente durante oito dias. Os dados foram utilizados no cálculo do Índice de Velocidade de Crescimento Micelial (IVCM) do patógeno, descrita por Oliveira (1991), onde o IVCM foi calculado de acordo com IVCM = Σ (D – Da)/N, sendo D= diâmetro médio atual da colônia; Da= diâmetro médio da colônia no dia anterior e N= número de dias após a inoculação.

O delineamento experimental utilizado foi inteiramente ao acaso, com cinco repetições, em arranjo fatorial 3x3. A análise estatística de variância foi feita pelo teste F (p-valor≤0.05) e as médias de crescimento foram comparadas pelo teste de Scott-Knott (p-valor≤0.05).

PROMOÇÃO

REALIZAÇÃO

ORGANIZAÇÃO

CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

RESULTADOS E DISCUSSÃO

O crescimento micelial de *Colletotrichum* sp. foi observado em todos os meios de cultura testados. E houve interação entre os meios de cultura e os regimes de luminosidade (Tabela 1). O meio de cultura V8 no regime de luz contínua resultou em maior IVCM do patógeno, apresentando-se superior aos demais tratamentos. Os meios BDA e Extrato de Malte não apresentaram diferença estatística significativa entre si nos regimes de luminosidade claro e escuro, no entanto no regime de luminosidade alternado (12 h claro/12 h escuro) em meio de Extrato de Malte, o patógeno apresentou maior IVCM. De acordo com Hanada et al. (2002), a luz age como foto-inibidor do crescimento micelial, o que pode explicar porque esses tratamentos apresentaram valor inferior quando avaliados no regime de luminosidade escuro. Esses resultados podem estar relacionados à atividade microbiana que é regulada, além das condições nutricionais, pela temperatura, disponibilidade de água e outros fatores, como concentração de prótons e suprimento de oxigênio (GOMES; PENA, 2016).

Tabela 1 - Crescimento micelial de *Colletotrichum* sp. (mm), isolado de sumaumeira, em diferentes meios de cultura, sob três regimes de luminosidade.

Meio de Cultura ²		
BDA	MALTE	V8
27,24 bB	29,00bB	43,06 aA
26,2 bB	26,01 bB	31,42 aA
27,56 bB	32,39 aA	32,29 aA
	27,24 bB 26,2 bB	BDA MALTE 27,24 bB 29,00bB 26,2 bB 26,01 bB

CV = 24.73

Para Oliveira et al. (2010), as variações nos resultados podem estar relacionadas ao aproveitamento do patógeno em relação aos meios de cultura utilizados, assim como a necessidade de luz para o crescimento e esporulação de fungos é muito variável, até mesmo entre isolados da mesma espécie.

PROMOÇÃO

REALIZAÇÃO

¹Médias de três repetições por tratamento. Médias seguidas das mesmas letras minúsculas (linhas) e maiúsculas (colunas) não diferiram estatisticamente entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade. ²BDA = Batata-dextrose-ágar; MALTE = Extrato de malte-Ágar-; V8 = Suco de V8- CaCO₃-ágar.

XXX CBA CONGRESSO BRASILEIRO DE AGRONOMIA

12 à 15
SETEMBRO DE 2017
FORTALEZA - CE

CONCLUSÕES

O crescimento micelial do fungo *Colletotrichum* sp., isolado de sumaumeira, é favorecido pelo meio de cultura V8, independente do regime de luz.

REFERÊNCIAS

CRUZ, M. F. A.; PRESTES, A. M.; MACIEL, J. L. N. Esporulação de *Pyricularia grisea* em diferentes meios de cultura e regimes de luz. **Ciência Rural**, v.39, p.1562-1564, 2009.

DHINGRA, O. D.; SINCLAIR, J. B. Basic Plant Pathology Methods. Lewis Publishers, Boca Raton, Florida.1995.

GOMES, E. M. C.; PENA, R. C. M. Isolamento, caracterização morfológica e avaliação do crescimento micelial e esporulação em diferentes meios de cultura de cepas do fungo Q*uambalaria* sp. **Biota Amazônia,** Macapá, v. 6, n. 4, p. 59-63, 2016.

HANADA, R. E.; GASPAROTTO, L.; PEREIRA, J. C. R. Esporulação de *Mycosphaerella fijiensis*em diferentes meios decultura. **Fitopatologia Brasileira.** n 27, p. 170-173. 2002.

KUROZAWA, C.; PAVAN, M. A. Doenças das curcubitáceas. In: KIMATI, H.; AMORIN, L.; BERGAMIN FILHO, A.; CAMARGO, L. E. A.; REZENDE, J. A. M. **Manual de fitopatologia**. São Paulo: Editora Agronômica Ceres, v.29, p.325-337: Doenças das plantas cultivadas. 1997.

OLIVEIRA, J.A. Efeito do tombamento fungicida em sementes no controle de tombamento de plântulas de pepino (Cucu-mis sativas L.) e pimentão (Capsicum annanum L.). Dissertação (Mestrado em Fitossanidade) — Escola Superior de Agricultura de Lavras, Lavras. 111f. 1991.

OLIVEIRA, J.; ALEXANDRE, E.R.; SILVA, E.K.C.; SILVA, R.L.X.; OLIVEIRA, S.M.A. Estudos do crescimento micelial sobre isolados de Lasiodiplodia theobromae. In: Jornada de ensino, pesquisa e extensão, 5., 2010, Recife. **Resumos**. Recife: UFRPE, p.3-3. 2010.

PAES J.B.; FONSECA, C.M.B.; LIMA, C.R..; SOUZA, A.D. Eficiência do óleo de candeia na melhoria da resistência da madeira de sumaúma a cupins. **Cerne**, Lavras, v. 16, n. 2, p. 217-225, 2010.

PITTA, G. B. P.; CARDOSO, R. M. G.; CARDOSO, E. J. B. N. **Doenças das plantas ornamentais,** São Paulo: Instituto Brasileiro do Livro Científico, 186p. 1990.

PIZZINATTO, M. A.; BOVI, M. L. A.; CONSOLINI, F.; SPIERING, S. H. Ocorrência de doença em pupunheira (*Bactris gasipaes*) no Estado de São Paulo. *Summa Phytopathologica*, v.22, n.1, p.53, 1996.

SANTOS, J. dos; REY, M. dos S.; ROSSETO, E.A.; PIEROBOM, C.R. Crescimento e esporulação de três raças de Colletotrichum lindemuthianum (Sacc. & Magn.) sob quatro condições de luminosidade. **Revista Brasileira de Agrociência**, Pelotas, v. 11, n. 4, p.493-495, 2005.

PROMOÇÃO

REALIZAÇÃO

ORGANIZAÇÃO