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Challenges

The Brazilian Amazon region is perceived a most precious
biome due to its various globally relevant functions and
resources. The Amazon forest is considered a key control
for the global and regional climate system (Trumbore et al.
2015; Coe et al. 2017) and is a principal driver for the
global and regional water cycle (Castello and Macedo
2016; Getirana 2016; Gimeno et al. 2012). It is home to a
unique share of Earth’s genetic resources (Laurance et al.
2012; Pimm et al. 2014; Myers et al. 2000) as well as a rich
human cultural heritage which includes indigenous popu-
lations yet unexplored (Walker et al. 2016; Pringle 2014).
The Brazilian savannah ecosystems, known as Cerrado,
add another set of unique wildlife habitats (Simon et al.
2009). Both ecosystems represent important resources for
the Brazilian and global economy, yet there are still serious

issues regarding sustainable natural resources manage-
ment. Up until today, the ongoing destruction of both eco-
systems has stirred attention worldwide.

More than 750,000 km2 of pristine forest has been lum-
bered in the Amazon between 1970 and 2013 (Nogueira et al.
2015; INPE 2017). During this period, deforestation rates
have steadily increased until 2003/2004 (INPE 2014;
Nepstad et al. 2014), and then slowed down as a result of
political will and enforcement until 2013 (Boucher et al.
2013; Hansen et al. 2013; Nepstad et al. 2014). Since then,
its rate is again increasing (Schönenberg et al. 2015; INPE
2016). Similarly, the Cerrado has also become subject to sig-
nificant land use change (Jepson 2005; Beuchle et al. 2015; de
Oliveira et al. 2017). The conversion of both ecosystems into
cattle pastures and agricultural land already considerably af-
fected biodiversity (Lees and Peres 2006), but also carbon (C)
stocks and emissions, and the consequences for environment
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and society, are currently under debate, also in the context of
climate change (Fearnside 2005; Cox et al. 2000; Malhi et al.
2008; Schaldach et al. 2018). The Brazilian Amazon is one of
the world’s largest biomass carbon pools, containing approx-
imately 149 Mg C ha−1 (Nogueira et al. 2015). The risk of
releasing all this carbon into the atmosphere explains a large
part of the attention being currently paid to the fate of the
Amazon rainforest. A change in land use (LUC), from forest
to anything else, implies massive releases of C, which are
expected to boost atmospheric carbon dioxide concentration
[CO2] with potentially catastrophic consequences for Earth’s
climate system. Apparently, Brazil is the place where human
society seems to have the most immediate control of LUC-
associated C emissions into the atmosphere (Fearnside and
Laurance 2004; Fearnside et al. 2009). A loss of 2.7 mil-
lion km2 of rainforest by 2050 and of another 0.5 million km2

of Cerrado have been predicted from an early millennium
perspective (Soares-Filho et al. 2006; Resck et al. 2000).
Even today, at the basis of much slower deforestation rates,
trend scenarios see losses of 144,000 km2 rainforest and
47,000 km2 savannahs only in the states of Mato Grosso and
Pará (Göpel et al. 2018) or around 800,000 km2 rainforest in
the total Amazon biome until 2030 (Aguiar et al. 2016). If
such trend continues unaltered, a tipping point of the planet’s
climate system is feared to be triggered, with irreversible con-
sequences for the whole planet (Lenton et al. 2008; Nepstad
et al. 2008; Boers et al. 2017).

The Brazilian Government and international organisations
have developed a number of different action programs which
aim at the development of sustainable land management prac-
tices in the context of climate change mitigation and nature
conservation (e.g. related to the Kyoto Process, Brazilian
ABC Program, National Climate Change Policy of Brazil,
Amazon Fund; Assunção et al. 2015; Fearnside 2005;
Nepstad et al. 2014; Soares-Filho et al. 2010; Strassburg
et al. 2014). Officially, Brazil plans to reduce deforestation
in the Amazon by 80% by 2020 (Soares-Filho et al. 2010)
and initially made successful efforts to reach the objective
by reducing clear cutting ofmature forest from 27,772 km2 a−1

in 2004 to 4571 km2 a−1 in 2012 (INPE 2017) as a result of
public policy and frontier governance (PPCDAm, Plan for the
Protection and Control of Deforestation in the Amazon; Soy
Moratorium; Cattle Moratorium, Arco Verde+, Critical
Counties program, Amazon Region Protected Areas
Program; Nepstad et al. 2014; Tollefson 2015). Since
August 2014, however, deforestation has begun to soar again.
This drastically illustrates that Bthe battle for the Amazon is far
from won^ (Fearnside 2015) and that monitoring (Detection
of Deforestation in Real Time–DETER) and effective inspec-
tion via Brazilian governmental institutions (e.g. IBAMA)
must be accompanied by an increased understanding of the
socio-economic driving forces and political aspects in the
global, national and regional agro-economic development

(Nepstad et al. 2014; Schönenberg et al. 2015). In fact, prop-
erty rights in the Amazon region are still not well regulated
and the lack of law enforcement gives rise to wariness of
smallholder farmers and a very volatile colonisation pattern
(Benatti and Fischer 2018). Profits from timber logging and
agricultural production drive a cascade of land use change,
starting with pioneer cattle ranching on freshly cleared forest,
with industry-style soybean production following a few years
after. With this, more financial power enters the region, facil-
itating the construction of paved roads and railways to im-
prove accessibility to markets and ports and to further increase
the profits (Barona et al. 2010; Boucher et al. 2013; Fearnside
2005; Macedo et al. 2012; Meyfroidt et al. 2013; Richards
2012). Initially, such land use change processes in the south-
ern Amazon region were first triggered by global market in-
centives (demand for beef and soybean-based feedstock), but
as a result of increasing policy interventions since 2004
(PPCDAm, Soy and Cattle Moratoria), these drivers are now
temporally decoupled from land use displacement (soybean
expansion in Mato Grosso and deforestation with cattle
expansion at the pioneer front in Pará; Gollnow and Lakes
2014).

To date, deforestation has been concentrated in the Barc of
deforestation^ along the eastern and southern edges of the
Amazon (see Fig. 2 in Barni et al. 2014). Before 2004, more
than half of the forest clearing in the Amazon region occurred
in the state of Mato Grosso, Brazil’s largest producer of cotton
(59%), maize (37%) and soybean (30%; CONAB 2017), and
many studies have investigated the impact of deforestation on
various ecosystem services (Davidson et al. 2012; Laurance
et al. 2012). However, similar studies for the Brazilian
Cerrado biome are rare. The Cerrado covers around 204 mil-
lion hectares of Central and part of Northern Brazil (IBGE
2013). Due to rainfall seasonality, soil fertility, drainage prop-
erties and the occurrence of fire, the Cerrado structure ranges
from the treeless Bcampo^ to a relatively dense forest of trees
of approximately 15 m in height (Neri et al. 2012). Indeed, its
biodiversity is very high, including the existence of endemic
species. However, its current state is also at risk of being
irreversibly destroyed; a reduction of around 50% of its natu-
ral vegetation cover has been observed in the last decades
(Beuchle et al. 2015; Rocha et al. 2011) and climate change
is expected to add to this (Lima et al. 2017). Although defor-
estation is still the dominant transition form, portions of the
Cerrado are experiencing a recovery of secondary woody veg-
etation (Redo et al. 2013).

A large body of literature on the Amazon region addresses
the impact of LUC on ecosystem services (ESS), including C
sequestration and climate regulation, in a separated manner
and with partly contradictory results (Fearnside 2005).
However, holistic examinations on multiple ESSs and their
relation to local drivers and actors are scarce among these
studies. Next-generation assessments of land use and climate
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change impacts on local and global climate, biodiversity and
society along the southern Amazon land use frontier will need
to follow an inter- or even transdisciplinary approach to cap-
ture the full range of interactions in the coupled socio-
ecological system. This special issue reports the highlights
of such an attempt, summarising results of a bilateral
Brazilian-German research program which has been active
in the period between 2011 and 2016.

Regional focus

The research activity puts its focus at the section of the BR-163
highwaybetweenCuiabá inMatoGrossoandNovoProgresso in
Southern Pará, at the southern marge of the Brazilian rainforest
(Fig.1).Along its route, thehighway followsahistorical landuse
gradientwhichpasses through threedistinct zonesof agricultural
expansion and development. Around the city of Cuiabá, notable
agricultural land use started around 1975 and has expanded
northwards ever since. The pioneer front then passed through

the area of Sinop during the 1990s and reached southern Pará
approximately 10 years later. Today, Central Mato Grosso is a
highly industrialised area, with large-scale soybean, cotton and
maize production. Northern Mato Grosso is still dominated by
intensive cattle ranching, which in Southern Pará only recently
started to replace timber logging as the main income source for
the local pioneer communities. TheBR-163 is an excellent illus-
tration of all the problems associatedwith pioneer front develop-
ment in theAmazon(Brandoet al.2013). It iscontinuouslybeing
pavednorthwards toimprovetheconnectionbetweenthesoyand
cotton production region in Northern Mato Grosso with the ex-
port harbour of Santarem (Coy and Klingler 2011) (Fig. 1).

The land use gradient parallels a climatological gradient,
from the Cerrado biome in the semi-humid tropics at central
Mato Grosso to the evergreen rainforest of the humid tropics
in Pará (Fig. 1). Along this gradient, the mean annual precip-
itation increases from 1700 mm at Cuiabá to 2100 mm in the
southern Amazon, while seasonality is changing from a dis-
tinct wet and dry season to an all-year hot and wet tropical
pattern (Moreno and Souza Higa 2005).

Fig. 1 Carbiocial research regions with their rural production centres and vegetation types
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Three representative investigation sites have been selected
along the BR-163: (1) Campo Verde (15° 33′ S; 55° 10′W) as a
typical example of the intensively used agricultural area of the
Cerrados; (2) Sinop (11° 51′ S; 55° 30′ W) in northern Mato
Grosso as an intermediate stage with industrialised soy, corn
and cattle production; and (3) Novo Progresso (7° 02′ S; 55°
25′ W) in southern Pará, representing the agricultural pioneer
frontwith extensive cattle pastures and emergingpatches of crop
production in the rainforest (Fig. 1). At each of these sites, four
farmsof different sizes and similar landuse historieswere select-
ed (Table 1).Muchof the experimentalwork that forms the basis
for a large part of the research presented in the following articles
has been performed on these farms.

Inter- and transdisciplinary research
approach

Two research projects were established to foster Brazilian-
German collaboration and inter- and transdisciplinary research
in the southern Amazon region. In the scope of the German
BMBF-FONA program (Federal Ministry for Education and
Research–Research for Sustainable Development), the
Carbiocial consortium (www.carbiocial.de) investigated C
stock changes, greenhouse gas (GHG) emissions, erosion,
catchment hydrology, agricultural production, land cover,
socio-economic drivers, policy impact and actor networks
using experiments, monitoring, surveys, remote sensing and
dynamic simulation modelling. In Brazil, the corresponding
research project Carbioma focused more specifically on the
political programs which were established tomitigate environ-
mental problems arising from inappropriate land use, such as
Brazil’s Sector Plan for the Mitigation and Adaptation to
Climate Change for the Consolidation of Low Carbon
Emission Agricuture (ABC Plan; Plano Setorial de
Mitigação e de Adaptação às Mudanças Climáticas para a
Consolidação de uma Economia de Baixa Emissão de
Carbono na Agricultura; MAPA–MDA 2012), the
Nationally Appropriate Mitigation Actions (NAMAS) and
the intended Nationally Determined Contributions (iNDC;
Brazil 2015). For this, Carbioma performed field experiments
at the different experimental field stations of the Empresa
Brasileira de Pesquisa Agropecuária (Embrapa).

The main objective of both project consortia was to inves-
tigate viable, carbon-optimised land management strategies
for this hotspot of global change research. Together with its
Brazilian partners, collaborators and local stakeholders,
Carbiocial concentrated on obtaining parameters for simula-
tion models, which are then used to test and improve carbon-
optimised land use management strategies. The project collab-
orators studied soil, water, climate, agro-economics, social
context and policy relevance to identify possible entry points
for mitigating the pressure on pristine rainforest and to derive

recommendations and scenario simulations to integrate im-
proved carbon storage, social well-being and ecological re-
quirements by providing a sound trade-off analysis of differ-
ent ecosystem services.Carbioma focused on developing sus-
tainable management options for agriculture in the Cerrado
and the Cerrado-Amazon transition zone. It contributed to
the evaluation of integrated agricultural production systems
in the context of carbon sequestration and sustainable land
use (Oliveira et al. 2018).

The multidisciplinary project consortia were built around
four thematic priorities: (1) closing knowledge and data gaps
related to LUC impact on water supply and quality, green-
house gas reduction, soil C stocks and soil erosion; (2) testing
management strategy using experimental farming with C en-
richment; (3) scenario building and simulation of future land
use change using dynamic models; (4) simulation of agro-
economic developments and socio-economic assessments
and consequences. Both projects followed an inter- and trans-
disciplinary research strategy (Schönenberg et al. 2017). The
authors demonstrate how the different disciplines were inter-
woven within the projects and which conflicts, but also new
insights arose from the collaboration, especially between
natural science and social disciplines. Schönenberg et al.
(2017) illustrate furthermore how stakeholder involvement
from the very first beginning of the research activities deter-
mined content and direction of the research and how results
were continuously played back to the stakeholders, who
reflected upon the consequences for practical application.
The art of finding the crucial deciders and actors for such an
approach is a research on its own. Schönenberg et al. (2015)
investigated in depth the network of decision-makers, looking
back to more than 30 years’ experience of on-site research
(Coy and Klingler 2011) in the study region and evaluating
recent changes in the local society and the reasons given for
the observed fluctuations of people and their objects of work.
Much of the insecurity which drives the local people to change
continuously is the lack of land regularisation and juridical
certainty. Benatti and Fischer (2018) take up this issue and
shed light on the problems that especially the poorest land
users face when arriving at new lands in Mato Grosso and
Pará, and on the entry points for illegal actions that drive some
of the societal and proprietary changes. Policies of environ-
mental command-and-control, environmental regulation
(CAR) and land tenure regularisation (Terra Legal) were
discussed in relation to the efficiency of recent environmental
governance strategies and its potential for alternative land use
pathways on the local scale. Klingler et al. (2018) show the
low effectivity of TAC cattle agreements to control extensive
pasture use on newly deforested land because of contradic-
tions between land tenure security and environmental laws
(see also Benatti and Fischer 2018). Together with biographic
research (Schumann et al. 2015) and institutional research
(e.g. actor constellation) along the BR-163, qualitative data
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was gathered which was used for scenario development, along
with regional and local expert knowledge for the southern
Amazon region (Schönenberg et al. 2017). These narratives
were later translated into quantitative parameters to be used
for LUC and impact modelling (Göpel et al. 2018; Schaldach
et al. 2018) with the development of four regional adapted
LUC scenarios. LUC simulations (until 2030) were carried
out using LandSHIFT (Schaldach and Koch 2009) on data
obtained from The International Model for Policy Analysis
of Agricultural Commodities and Trade (IMPACT), IBGE
statistics and agricultural yield predictions obtained from the
MONICA agro-ecosystem model (Nendel et al. 2011).
MONICA simulates the growth and yield of the main agricul-
tural crops (soybean, maize and cotton) and their response to
weather variables and rising atmospheric CO2 concentrations
(Carauta et al. 2018). In the concept of Carbiocial, this is the
entry point for climate change (CC) considerations being pro-
duced from two different downscaling approaches for a reso-
lution of 30 km2, driven by the ECHAM5/MPI-OM global
circulation model. The statistical regional climate modelling
(STAR) showed a clear decreasing trend of precipitation for
the whole study area (15–25%; 1981–2010 to 2011–2040),
while dynamic WRF downscaling gave a much more hetero-
geneous spatial distribution with slightly increasing and de-
creasing areas. Agro-economic simulation using MPMAS
(Carauta et al. 2018) on detailed data on farm asset endow-
ments and production requirements, crop management prac-
tices, historical prices for agricultural products and inputs,
available sources of credit, relevant taxes and use of ABC
program, as well as storage and transportation costs, produced
the probably most complete dataset available for farm-level
simulation in Mato Grosso, Brazil, including a detailed anal-
ysis of integrated crop-livestock systems (iCL) as part of the
Brazilian ABC Program on their potential to improve land
management and soil carbon storage (Oliveira et al. 2018;
Carauta et al. 2018; Gil et al. 2015).

From these farm-level insights and from further extrapola-
tion of the current yield trends towards a certain levelling in
the near future as observed today in highly industrialised
counties, the LandSHIFT simulations were driven along the
future LUC scenarios (Göpel et al. 2018) and produced a land
use distribution which was subsequently used for further im-
pact analysis, such as simulations or calculations for soil or-
ganic C (SOC) stock change, GHG emissions, soil erosion
and water balance simulation (Schaldach et al. 2018).
Outputs from LandSHIFT were additionally used at the re-
gional scale to set up different panel regression models to test
processes of deforestation and land use displacement
(Gollnow et al. 2018).

Parameters for impact analysis were obtained from four
farms which were selected for each study region along the
false time series of land use change (Table 1), representing
combinations of main land use types and natural vegetation.

Field work was carried out in plot-based and micro-catchment
studies for each land use type, including SOC stock and GHG
emission measurements. On the basis of SOC stock
investigations, Boy et al. (2018) found that the impact from
land use change on SOC stocks was much smaller than ini-
tially expected. However, SOC stock change may be higher in
subsoils than in topsoils, which emphases the need to properly
account for subsoil C when evaluating the potential for C
gains and losses under LUC. The soil type itself also
strongly influences more the size and even the direction of
the modification of SOC stocks compared to LUC, but the
proportion of carbon lost from soils was negligible as
compared to the emissions from biomass reduction by
deforestation itself, a fact that questions the use of dynamic
modelling for SOC changes under LUC. Fearnside (2018)
also points out the high uncertainty of quantifying carbon
stocks in the Amazon for impact studies on global warming.
The same conclusion was also drawn for the emissions of N2O
which—maybe except for a short period directly after a clear
cut—seem to persist at a very low level and do also not re-
spond very lively to rewetting events after a dry period, some-
thing that earlier has been identified as a hot moment of N2O
emissions in other environments. These results find their entry
into a modelling of future greenhouse gas emissions by land
use change in the southern Amazon region (Göpel et al. 2018).

In addition to the plot-based investigations, five micro-
catchments were instrumented for catchment-scale hydrology
investigations (Nobrega et al. 2015), where continuous mea-
surements are being carried out since October 2012. Results
suggest a relevant increase of runoff for pure pasture catch-
ments compared to natural vegetation (Nobrega et al. 2015;
Guzha et al. 2014), but no increase of discharge in the crop-
land catchment due to adapted land management (no-till soy-
bean–maize double cropping). Macro-catchment modelling
using SWAT (Lamparter et al. 2018) with CC and dynamic
LUC showed only small changes in discharge components
due to the large groundwater buffer in the Cerrado region.
Discharge significantly increases with increasing pasture area
as a consequence of forest cut down in the Cerrado and
rainforest biome, but less after conversion to cropland
(Lamparter et al. 2018). No-tillage crop systems with flat con-
tour banks being established after Cerrado conversion showed
the lowest soil erosion risk and sediment and carbon loss to the
rivers. Large area remote-sensing classification of pasture,
cropland and natural vegetation distribution (Müller et al.
2015) allowed upscaling from local field measurements to
the watershed scale for erosion modelling, using EROSION-
3D (Schob et al. 2006). Also here, the increase of pastures in
combination with CC (rainfall pattern) and pasture degrada-
tion (Müller et al. 2016) results in a high risk of soil erosion,
being highest in the first year after clearance (eightfold after
Cerrado conversion, 20-fold after rainforest conversion). The
importance of gallery forests in the agricultural landscape was
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supported by EROSION-3Dmodelling.With decreasing buff-
er width, sediment inputs are increasing exponentially with at
least doubled input after buffer clearance. This demonstrates
the importance of gallery forest conservation as discharge
buffer and as sediment and nutrient filter for water quality as
well as for biodiversity and adds to the present discussion of
the New Forest Code which sees a further decrease of gallery
forest width. Siqueira et al. (2018) illustrate the ongoing pro-
cess of fragmentation of native vegetation and importance of
conserving and linking the patches of BLegal Reserves^ inside
private rural properties to avoid further environmental deteri-
oration of ESS. Also, Hissa et al. (2018) point out with a
detailed assessment of carbon loss from deforestation along
the BR-163 highway an increase of GHG emissions (1984–
2012) with fragmentation, not considered in the official
Brazilian deforestation assessments (PRODES).

Linking the interdisciplinary results of the Carbiocial and
Carbioma projects, the importance of a greater distribution of
integrated agro-silvo-pastoril systems within a better imple-
mentation of the ABC program (see Carauta et al. 2018) com-
bined with an intensified crop production along a sustainabil-
ity pathway (Göpel et al. 2018) is necessary for better land
management to reach the GHG reduction goals of the
Brazilian Climate Plan.
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