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Abstract

Modeling by multiple enchained imputation is an area of growing importance. However, its models and methods are fre-
quently developed for specific applications. In this study the model for multiple imputation was used to estimate daily
rainfall data. Daily precipitation records from several meteorological stations were used, obtained from system
AGRITEMPO for two homogenous climatic zones. The precipitation values obtained for two dates (Jan. 20th 2005 and
May 2nd 2005) using the multiple imputation model were compared with geo-statistics techniques ordinary Kriging and
Co-kriging with the altitude as an auxiliary variable. The multiple imputation model was 16% better for the first zone and
over 23% for the second one, compared to the rainfall estimation obtained by geo-statistical techniques. The model
proved to be a versatile technique, presenting coherent results with the conditions of different zones and times.

Keywords: model by multiple imputation, chains, precipitation, ordinary kriging, ordinary Co-kriging, homogeneous
zones.

Modelo de Imputação Múltipla para Estimar Dados de Precipitação Diária
e Preenchimento de Falhas

Resumo

A modelagem por imputação múltipla com cadeias encadeadas é uma área de importância crescente cujos modelos e
métodos têm sido muitas vezes desenvolvidos para lidar com aplicações específicas. No presente estudo, o modelo de
imputação múltipla foi utilizado para estimar os dados de precipitação diária. Foram utilizados registros de precipitação
de várias estações meteorológicas, obtidos a partir do sistema Agritempo para duas zonas climaticamente homogéneas.
Os valores de precipitação obtidos para duas datas fixas (02 de Maio de 2005 e 20 de Janeiro de 2005) usando o modelo
de imputação múltipla foram comparados com as técnicas geoestatisticas de krigagem ordinária e cokrigagem ordinária
com a altitude como variável auxiliar. O modelo de imputação múltipla foi mais de 16% melhor para a primeira Zona e
mais de 23% melhor para a segunda zona, comparadas com as estimativas de precipitação obtidas pelas técnicas
geoestatísticas. O modelo provou ser uma técnica versátil, com resultados coerentes com as condições de diferentes
zonas e épocas.

Palavras-chave: modelo por imputação múltipla com cadeias encadeadas, precipitação, krigagem ordinária,
cokrigagem ordinária, zonas homogêneas.

1. Introduction

The changes observed in climatologic records are
used to examine climate variability and to investigate the
notion of climate change. For modellers who work on nu-
merical weather forecast, complete historical series of me-
teorological data are important for the initialization of the
model and also for verification.

Problems with missing data in climatic series often
arise and are caused by many circumstances, mainly due to
the sources of acquisition, which are usually obtained from
reports, manual collection instruments or remote sensors.
However, for most users, meteorological data plays a criti-
cal role in decision making. It is imperative that they are
complete and reliable. The data must consist of series of ro-
bust and continuous data (Lima, 2003; Oliveira, 2010).
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Data with long time series are of fundamental impor-
tance for monitoring in maritime transport, civil and mili-
tary aviation, agriculture, health, energy, prevention of nat-
ural disasters among others. Failures in historical series
certainly lead to an increase in uncertainty for both weather
forecasts and the definition of future climate scenarios
(Nascimento, 2010).

In Brazil there are several meteorological databases,
of different institutions. There are still problems of continu-
ity, completeness, filling of faults, among others. In the
monthly time step, data problems are less than those with
daily resolution. Considering daily data reduces the density
of stations with reliable data and long time series, making
smaller the information to be used in the definition of future
climate scenarios.

The impact of missing data on statistical inference is
potentially important, especially in cases where weather
stations with missing data, differ consistently from those
with complete data. For a coherent and valid estimate, ade-
quate modeling of missing values is necessary. The simple
disposal of missing data can lead to partial and biased re-
sults (Harel, 2007).

To overcome this problem, statistical techniques have
emerged since the 1980s, involving the substitution of
missing data for estimates of plausible values to be “im-
puted” in series with missing data. In the statistical litera-
ture, this technique is known as “Imputation of missing
data” and its use has been generalized and extended to other
areas (Rubin, 1996; Schafer, 2002; Fraser, 2007; Nunes et

al., 2010). However, the uncertainty associated with the
imputation must be taken into account so that the results ob-
tained with the complete data are valid since the imputed
values are not the real ones.

In the literature there are a number of procedures to
address the lack of data. The expectation-maximization
(EM) algorithm (Dempster et al., 1977) is a general itera-
tive algorithm that can be used to find Maximum Likeli-
hood Estimates (MLEs) for missing data problems. The
multiple imputation (MI) algorithm (Rubin, 1987) con-
structs several complete datasets, by filling each missing
data with plausible values. There are also semi-parametric
approaches such as Weighted Estimation Equations (WEE)
that do not depend on the assumptions of missing values
distributions (Robins et al., 1994; Lipsitz et al., 1999).

In the Bayesian paradigm, the missing values are con-
sidered unknown parameters and are thus estimated. The
introduction of additional parameters increases the com-
plexity of the problem because the value of these missing
parameters is simply an additional layer of variables that
can be sampled sequentially through Markov chain-based
Monte Carlo (MCMC) simulation. The Bayesian approach
takes into account the uncertainty created by the multiple
predictions for each missing value and allows estimation of
the posterior marginal distribution of interest parameters
using the observed data.

Multiple imputation by chained equations (MICE)
implies that the user specifies a conditional distribution for
the lack of data in each incomplete variable based on the
other data. For example, in the form of a linear or logistic
regression from the incomplete variable given a set of pre-
dictors. Predictors may be incomplete. It is assumed that
there is a multivariate distribution from which these condi-
tional distributions can be derived, and that the interactive
Gibbs sampling from the conditionals can generate multi-
ple imputations.

The application of multiple imputation by chained
equations increased, noticeable in recent years, especially
in the medical area, as mentioned by Buuren and Groo-
thuis-Oudshoorn, (2011): for arthritis and rheumatology
(van den Hout et al., 2009), at the cardio-vascular system
(Byrne et al., 2009; Klein et al., 2009), cancer (Gerestein et

al., 2009), epidemiology (Ton et al., 2009) and for infec-
tious diseases (Michel et al., 2009), works in other sciences
have also used this technique, for example in politics (Ta-
nasoiu and Colonescu, 2008), psychology (Sundell et al.,
2008), sociology (Finke and Adamczyk, 2008) and clima-
tology (Wesonga, 2015; Turrado et al., 2014).

The objective of this study was to estimate the daily
missing values of precipitation using the chain-based mod-
el (MICE). The results obtained were compared with the
Kriging and Co-Kriging techniques, commonly used in es-
timating missing values, for climatological stations located
in two homogeneous areas of Brazil.

2. Material and Methods

Multiple imputation (Rubin, 1987; Rubin, 1996) is
the method usually chosen for incomplete complex data
problems. Recently, two general approaches to impute
multivariate data have emerged: joint modeling (JM) and
conditional complete specification (FCS), also known as
multiple imputation by chained equations (MICE) or multi-
ple sequential regression imputation (Buuren and Groo-
thuis-Oudshoorn, 2011). When creating several imputa-
tions, as opposed to individual imputations, the statistical
uncertainty in the imputations decreases. Furthermore, the
chained equation approach is very flexible and can handle
variables of different types (continuous or binary ones).
MICE algorithm is implemented as an S-PLUS function.
For each incomplete variable the user can choose a set of
predictors that will be used for the imputation. This is use-
ful for allocating large sets of data containing hundreds of
variables. Multiple imputation results in valid statistical in-
ference in the presence of missing data.

Turrado et al. (2014) studied solar radiation values
from nine meteorological stations in Galicia and obtained
very good results in the application of the chained equa-
tions method (MICE) in comparison to other methods like
inverse distance weighting and multiple linear regression
using for validation of the models performance root mean
square error (RMSE) statistic.
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Wesonga (2015) applied the multiple imputations by
chained equations method in a time series of wind speed
data at Entebbe international airport. The results obtained
by applying the MICE method, provided reliable wind
speed missing data imputations.

Schafer (1997) developed several imputation tech-
niques for joint modeling (JM) of models with normal
multivariate and log-linear distribution. For the use of JM it
is necessary to specify the multivariate distribution of the
missing values and to carry out the imputation for its condi-
tional distribution by the Markov chain and Monte Carlo
(MCMC) technique. This methodology presents a good be-
havior if the multivariate distribution describes the data
reasonably well, however the estimates are often skewed
(Granberg-Rademacker, 2007).

The chain can be divided into three general steps. In
step one, each variable, for each station, would be imputed
the mean observed value for that variable. At step two, the
estimated observed values of the variable in step one are re-
lated to the other variables of the data set through regres-
sion. That is, the variable of step one is the dependent
variable in the regression model, while the other variables
are independent with the same assumptions of a common
regression equation. In step three, the values missing in step
one are replaced by the estimate obtained with the regres-
sion equation. Then the procedures in steps one through
three are repeated for each variable that has missing value.
This procedure for each of the variables constitutes an itera-
tion or “cycle”. At the end of a cycle, all missing values
were replaced with the estimates obtained by the regression
equations reflecting the observed ratios in the data. Steps 2
through 3 are repeated for different cycles with the imputa-
tions being updated in each cycle.

According to Buuren and Grothuis-Oudshoorn, 2011,
let Y be a complete data set of a partially observed random

sample, a multivariate distribution with p-variables P(Y\�).
The multivariate distribution of Y is completely specified

by the unknown parameter vector �. The problem is to ob-

tain the multivariate distribution of �. The chained process

results in the posterior distribution of �, by interactively

sampling the conditional distribution of P(Y1\Y-1, �1), ... ,

P(Yp\Y-p, �p). The parameters �1, ..., �p are specific to the
conditional densities and do not necessarily produce the

factorization of the real joint distribution P(Y\�).

Assuming that the missing data is random, that is,
when the missing values pattern in a variable is predictable
from the other variables of the data set a simple sample of
the observed marginal distribution is taken out and the tth it-
eration of the chained equations is a sample of Gibbs which
successively withdraws
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tion t. One observes that for the imputation of Y j

t*( ) , only

Y j

t( )�1 is considered, due to the relationship with other vari-

ables. � p

* is the estimative of the parameter for the tth

iteration of the chained equations. This results in a very fast
convergence, unlike MCMC methods.

Many imputation techniques, assume a joint model
for all variables, such as a normal joint distribution. In large
data sets, with hundreds of variables from different types,
this rarely happens. MICE specifies the multiple imputa-
tion model based on each variable for a set of conditional
densities. Starting with an initial imputation, MICE per-
forms imputations interacting with the conditional densi-
ties.

For each incomplete variable, an imputation method
can be specified. This will be the method which the Gibbs
sampling uses for variable imputation. In this context, sev-
eral imputation methods can be employed. Regarding nu-
merical data, for example, imputation is performed through
Bayesian linear regression with normal errors, improper
linear regression with normal errors, predictive mean and
unconditional average imputation. Imputation by logistic
regression is used for binary data, and logistic regression
for categorical data with more than two categories. For this
study the predictive mean (PMM) was used. PMM imputes
missing values by means of the nearest-neighbor donor
with distance based on the expected values of the missing
variables conditional on the observed covariates (Little,
1988).

Precipitation data from several meteorological sta-
tions were used in two homogeneous areas in Brazil, identi-
fied according to Keller Filho et al. (2005), obtained from
the AGRITEMPO system (Embrapa Informática Agrope-
cuária, 2014). AGRITEMPO is an agro-meteorological
monitoring system that allows users to access information
on weather and agro-meteorological information from vari-
ous Brazilian municipalities and States via Internet. The
rainfall homogeneous zones are identified according to the
similarity of the probability distribution of precipitation
and delimited using the hierarchical cluster analysis obtain-
ing 25 homogeneous precipitation zones. Among the 25 ho-
mogeneous zones obtained by Brazil Keller Filho et al.

(2005), two were used where the first homogeneous zone
covers São Paulo and Mato Grosso do Sul States, within a
rectangular area of latitudes 22.0 to 20.0 and longitudes
52.0 to 49.0 with 190 rainfall stations. The second zone in-

Model for Multiple Imputation to Estimate Daily Rainfall Data and Filling of Faults 577



cluded 90 stations located in NE Brazil, within a rectangu-
lar area defined with by latitudes 10.5 to 8.0 and longitudes
42.5 to 38.0 (Fig. 1). The orography and spatial distribution
of rainfall are similar within Zones 1 and 2. Figure 1 shows
the location of the meteorological stations used in the work.
The first homogeneous zone is characterized by a tropical
climate with rainy summer and dry season in winter
(Köppen, Aw). The second one is characterized by a semi-
arid climate, low humidity and low annual precipitation
(Köppen, BSh).

For the validation of values obtained using the multi-
ple imputation method, two dates were chosen: Jan. 20th
2005 and May 2nd 2005. For these specific dates, the
geo-statistics techniques Kriging and Ordinary Co-Kriging
(Yamamoto and Landim, 2013) were used, considering al-
titude as a co-variable, to estimate the missing values by
cross-validation, assuming that one of the sample elements
was not observed.

The first date corresponds to the rainy season in the
first homogenous zone, while in the second zone corre-
sponds to the dry season. The second date represents the dry
season in the first homogeneous zone from the area under
study and the rainy season for the second homogeneous
zone.

It is quite common in verification studies, to use the
Skill Score (SS) statistics to summarize the quality of the
forecast system. This statistics quantifies the relative varia-
tion of the mean square error from the method of multiple
imputation (MSEmod) regarding Kriging and Co-Kriging
(MSEkrig and MSEcockri). The positive values of SS indi-
cate that the model improved the forecasts (Carvalho et al.,
2016; Carvalho et al., 2011; Libonati et al., 2008).
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�
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The multiple imputation (MI) provides an useful
strategy for handling a dataset with missing values. Instead
of estimating a single value for each missing value, the mul-
tiple imputation procedure replaces each missing value
with a set of plausible values representing the uncertainty
over the correct value to impute (Rubin, 1987). As ex-
plained by Greenland and Finkle, 1995, the multiple impu-
tation process creates multiple predictions for each missing
value, the multiple imputation data analysis considers the
imputation uncertainty and produces precise standard er-
rors. One of the great advantages of multiple imputations is
that in addition to using researcher’s knowledge to estimate
missing values, the technique allows researchers to express
the uncertainty of imputed values. The uncertainty is of two
types: sample variability assuming that the reasons for the
lack of data are known and the variability due to uncertainty
about the reasons for having the data missing. These data-
sets with estimated data are analyzed using standard proce-
dures for complete data, and the results are compared with
the ones obtained with our technique. No matter for what
the analysis of the complete data is used the process of com-
bining the results of different estimated datasets is essen-
tially the same.

The multiple imputation model for each dataset, date
and zone was adjusted using programs developed in R lan-
guage (R Development Core Team, 2011), with support of
MICE (Multivariate Imputation by Chained Equations) li-

578 Carvalho et al.

Figure 1 - Location of the meteorological stations for the first and second zones.



brary (Buuren, 2015). To improve the estimates of missing
data, the altitude of each meteorological station was used as
a co-variable.

3. Results and Discussion

The Gibbs sample is not a conventional algorithm in
the sense that a particular value of the criterion is opti-
mized. MICE runs m parallel chains, each with a different
number of iterations with a certain color, and imputes val-
ues from the final iteration. The imputations obtained by
MICE were plotted along with the precipitation. Conver-
gence occurs when the lines are interleaved (Figs. 2 and 3).

Convergence is verified when the variance among different
sequences is not larger than the variance in each sequence.

To detect the differences between observed and im-
puted data, for each chain, we plotted the density of ob-
served data with the ones of imputed data. We expect them
to be similar, though not identical (Figs. 4 and 5).

No difference stands out in all situations, allowing the
conclusion that the Gibbs sample algorithm converges
(Noghrehchi, 2015). For the first and second homogeneous
zones, random samples from four meteorological stations
were taken and the values estimated using the MICE model
and the geo-statistical interpolation. Mean Square Error for
the dates May 2nd 2005 and January 20th 2005, using the
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Figure 3 - Mean and standard deviation of variable precipitation for zone 2.

Table 1 - Mean Square Error to estimate gaps obtained from the MICE model (MSEmod), Kriging (MSEkrig) and Co-Kriging (MSEcokrig) on May 2nd
and January 20th, 2005 – SS1 and SS2 are the Skill-Score statistics when comparing the model with Kriging and Co-Kriging, respectively.

Zone MSEmod MSEkrig SS1 (%) MSEcokrig SS2 (%)

May 02

First 7.65 15.10 49.33 22.45 65.92

Second 13.41 21.04 36.26 35.29 62.00

January 20th

First 20.99 26.67 21.29 25.27 16.93

Second 1.76 3.25 45.85 2.31 23.81



MICE model, and the Kriging and Co-Kriging methods for
Zones 1 and 2 are shown in Table 1. The SS1 and SS2
Skill-Score statistics represented in Eqs. (1) and (2) respec-
tively, are used to quantify the improvement in daily pre-
cipitation data estimates for both dates, using the MICE
model in Estimates obtained by Kriging and Co-Kriging.

For both zones and dates, the estimates obtained by
the MICE model were always better than those obtained by

Kriging and Co-Kriging. In all cases the mean square error
obtained by the model MSEmod was considerably smaller
than the average square error obtained by Kriging
(MSEkrig) and Co-Kriging (MSEcokrig). For the first date
in Zone 1 (Table 1), the estimation obtained by the multiple
imputation model was 49.33% (SS1), better than the esti-
mates obtained by Kriging and 65.92% (SS2) better than
those obtained by Co-Kriging. In Zone 2 it was 36.26%
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Figure 4 - Precipitation density plots in January 20th, 2005 for Zones 1 (left) and 2 (right).

Figure 5 - Precipitation density plots in May 2nd, 2005 for Zones 1 (left) and 2 (right).



better and 62.00%, respectively. In the second date in Zone
1 it was 21.29% and 16.93% better and in Zone 2, the im-
provement was 45.85% and 23.81% respectively. This re-
sult indicates that the estimates obtained by the model are
always better, indicating that neither the month nor the sea-
son influence the results, for this experimental situation.
However, the quality of the forecasting system from the
multiple imputation model has always been better relative
to the geo-statistical techniques for the rainy season (higher
percentage) for both Zones, indicating that the amount of
precipitation values with zero millimeter can change the re-
sults.

This study showed the importance to consider impu-
tation methods for missing data, especially the multiple im-
putation. However care should be taken to generalize the
results obtained with this work, because they were obtained
in a particular situation, without worrying about sample
size, the type of variable and the relationships among the
variables involved, which must always be taken into ac-
count.

4. Conclusions

• The application of a multiple imputation (MICE) model
produced better estimates of daily precipitation values
than geostatistical Kriging and Co-Kriging models for
the period under study.

• The multiple imputation model proved to be a versatile
technique, adaptable to different seasons, and should be
considered as an alternative to fill gaps in time series of
precipitation.

• The mean squared errors obtained by the model were
considerably lower than the mean squared errors ob-
tained by Kriging and Co-Kriging.

• For the two time periods studied, predictions using the
multiple imputation model were more than 16% better
for the first zone and more than 23% for the second one,
when compared to the forecasts obtained by geo-
statistical techniques.
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