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RESUMO
O presente trabalho apresenta uma metodologia para a análise fenotı́pica de vinhas por re-
construção 3-D, a partir de imagens obtidas por uma webcam de alta definição e baixo custo.
Um novo software aplicativo integrou componentes de odometria visual e visão estéreo por
múltiplas imagens para criar nuvens de pontos tridimensionais densas e precisas para as vi-
deiras, em escala milimétrica. Caracterı́sticas geométricas e colorimétricas dos pontos foram
empregadas em um procedimento de classificação que atingiu 93% de acurácia na detecção de
pontos pertencentes às uvas. Os cachos individuais foram automaticamente delimitados e seus
volumes estimados. A soma dos volumes estimados por videira apresentou um coeficiente de
correlação de R = 0, 99 ao peso real das uvas observado em cada videira após a colheita.
PALAVRAS-CHAVE: Viticultura, Estimativa de podução, Métodos não-invasivos, Fenotipa-
gem 3-D, Visão estéro múltipla, SLAM.

ABSTRACT
This work presents a methodology for 3-D phenotyping of vineyards based on images captu-
red by a low cost high-definition webcamera. A novel software application integrated visual
odometry and multiple-view stereo components to create dense and accurate three-dimensional
points clouds for vines, properly transformed to millimeter scale. Geometrical and color fea-
tures of the points were employed by a classification procedure that reached 93% of accuracy
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on detecting points belonging to grapes. Individual bunches were automatically delimited and
their volumes estimated. The sum of the estimated volumes per vine presented a coefficient of
correlation of R = 0.99 to the real grape weight observed in each vine after harvesting.
KEYWORDS: Viticulture, Yield estimation, Non-invasive methods, 3-D phenotyping, Multi-
ple view stereo, SLAM.

INTRODUCTION

Viticulture is an agricultural activity composed by high value perenial crops. Precision viticul-
ture, yield prediction and vine breeding are examples of demanded applications that need some
sort of in field phenotyping, but find a bottleneck in laborious measurement by human operators
or destructive and sparse sampling. Non-invasive computer vision-based systems have been
proposed in research literature, raising as a promising alternative for vineyard phenotyping, and
exploiting the ubiquity of digital cameras and their capacity to acquire large amounts of data.

Two different approaches are found in the literature. The 2-D approaches perform grape
detection directly on single images, as seen in the works of Nuske et al. (2014). Such methods
benefit of their simplified image acquisition step, but occlusions caused by leaves, branches
and other bunches are a drawback. An alternative approach are the 3-D based techniques that
employ multiple-view stereo vision (HARTLEY; ZISSERMAN, 2004) to create three dimensional
models of grapevines in field. Such three-dimensional methods present two clear advantages:
they can handle occlusions better than 2-D alternatives, at the cost of a more complex image
acquisition step, and they can provide volumetric information, useful on estimating biological
attributes as mass, form and fruit quality.

Herrero-Huerta et al. (2015) used a photogrametric software developed by themselves for
multiple-view stereo vision, producing sets of 3-D color points, point clouds, for vines in fi-
eld. Convex hulls and solid models were then employed to estimate the bunches volumes and
weights. The authors reported a coefficient of determination around 0.77 between their estima-
ted values and the measured biological traits (weight, volume and number of berries). However,
their methodology apparently lack an automatic grape detection procedure. Rose et al. (2016)
employed a robot carrying a five camera system and a lighting unit to take images of vineyards
line at night. The authors used a commercial multiple-view stereo software to produce point
clouds. Grape detection was performed using a kernel-based classifier, geometrical features,
the Fast Point Feature Histograms (FPFH) proposed by Rusu, Blodow e Beetz (2009), and
color features in the HSV colorspace. Authors report around 80% of recall and precision for
bunches classification in Riesling vineyards cultivated under a vertical trellis system. Another
interesting approach is the method proposed by Klodt et al. (2015), an intermediary solution
between the 2-D and 3-D approaches: pairs of images are employed to create dense depth maps
used in grape classification.

The method proposed in this work is a 3-D based approach. Point clouds were produced

Anais do XI Congresso Brasileiro de Agroinformática (SBIAgro 2017), Campinas, São Paulo, 2 a 6 de outubro de 2017

90



using a novel software, developed by the authors, that combines visual odometry and multiple-
view stereo components, resulting in dense, accurate and metric 3-D models for vines in field,
from images captured by a simple consumer grade HD webcam. Similar to Rose et al. (2016),
FPFH and color features were combined and a support vector classifier was used to detect points
belonging to the grapes surfaces. Finally, the volume of grapes was computed for each vine and
a regression performed between the estimated volume and the real weight after harvesting.

MATERIALS AND METHODS

Plant material

Five vines of Chardonnay were selected in the vineyards of Guaspari Winery, located at Espı́rito
Santo do Pinhal, São Paulo, Brazil (Lat -22.181018, Lon -46.741618). The winery staff per-
formed dual pruning: one for shaping (after previous year harvest) and one for production,
resulting in canopies of lower density. The data gathering was performed few hours before the
harvest in May 16, 2017. Images were captured, then bunches were collected and weighted in
a scale.

Image data acquisition and 3-D reconstruction

The image data acquisition system was an affordable solution developed by the authors to meet
the the idea affordable and lean phenotyping for plant science (FIORANI; SCHURR, 2013). The
hardware part consisted in a quadri-core computer (an Intel R© CoreTM i7-based consumer grade
notebook) and a HD webcam (a Logitech R© c920), able to capture 1920 × 1080 pixels color
frames. The software part consisted in a GNU Linux-based system including:

• a modified version of the ORB-SLAM visual odometry system proposed by Mur-Artal,
Montiel e Tardós (2015);
• the patch-based multiple-view stereo system (PMVS) proposed by Furukawa e Ponce

(2010), and
• an application implementing the proposed methodology for 3-D reconstruction, 3-De-

meter Capture.

3-Demeter Capture implements an improved version of the methodology previously proposed
by Santos e Rodrigues (2016). The camera was set for fixed focus and calibrated using the
Zhang (2000) calibration method. This calibration provides the camera internal parameters

matrix K (HARTLEY; ZISSERMAN, 2004), immutable along the image acquisition process due
to the fixed focus setting. To perform multiple-view stereo, the camera external parameters,
ie, its rotation and translation parameters for each captured image are also needed. In the
robotics and computer vision literature, such estimation of camera external parameters and
the needed environment landmarks is called simultaneous localization and mapping (SLAM1)

1Actually, the procedure employed in this work is a special case named monocular visual SLAM because it
employs a single camera and no other sensors.
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(SCARAMUZZA; FRAUNDORFER, 2011).

In Santos e Rodrigues (2016), the external parameters were provided by the SVO system
proposed by Forster, Pizzoli e Scaramuzza (2014). SVO was able to perform the camera trac-
king needed for successful 3-D reconstructions, but presented some issues in those experiments:
(i) camera tracking showed low robustness to fast camera rotations; (ii) posters containing tex-
tures were needed to provide the landmarks employed in camera pose estimation2, and (iii)
SVO implementation did not provide a re-localization procedure, able to reset the SLAM sys-
tem to a sane state after camera tracking is lost, ie, after a pose estimation failure. Instead
SVO, 3-Demeter Capture employs a modified version of the ORB-SLAM system (MUR-ARTAL;

MONTIEL; TARDóS, 2015). ORB-SLAM has shown superior performance in the authors current
phenotyping experiments, being able to find landmarks for SLAM in the surrounding environ-
ment, presenting better robustness for rotations and translations and a reliable re-localization
module. In the present work, ORB-SLAM code was modified to recover the system keyframes.
According to Mur-Artal, Montiel e Tardós (2015), ORB-SLAM selects from the video stream
a set of frames (keyframes) that lead to robust SLAM, generate a compact and trackable map
for the environment and avoid redundancy. This feature is exploited by 3-Demeter Capture for
automatic selection of video frames, leading to accurate 3-D reconstructions in the following
stereo vision step.

At the end of image acquisition step, 3-Demeter Capture presents a set of data composed
by (i) the internal camera parameters matrix K, (ii) a set of N images corresponding to video
frames of 1920 × 1080 pixels and (iii) the camera pose for each image, in the form of rotation
matrices {Ri}i=1..N and translation vectors {ti}i=1..N (HARTLEY; ZISSERMAN, 2004; SCARA-

MUZZA; FRAUNDORFER, 2011). The application is able to export this data to PMVS and start
the multiple-view stereo (FURUKAWA; PONCE, 2010; SANTOS; RODRIGUES, 2016). The point
clouds produced by PMVS are actually a set of surfels. A surfel is a multidimensional data
entry composed by:

• a 3-D point coordinate (x, y, z);

• a vector (nx, ny, nz), corresponding to the normal of the object surface at the point, and

• a color triplet (r, g, b) in the RGB colorspace, corresponding to the observed reflectance
of the surface at the point.

However, the scale of the produced point cloud is arbitrary. To address this issue, 3-Demeter
Capture is able to perform an optional normalization step, composed by automatic scaling and
rotation to a reference orientation (the Z axis pointing upwards). The application is able to
look for a board containing easily recognizable markers presenting known geometry and size
(Figure 1). The board geometry is used to transform the point cloud to millimeter scale, a
procedure similar to the one employed by Herrero-Huerta et al. (2015). Also, the cloud is
transformed to a standard reference frame, where the X and Y axes define the board’s plane,

2The posters were needed in situations where the environment did not contained very textured objects in the
camera field of view.
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Figura 1: Screenshot of the 3-Demeter Capture application and the reference board. Applica-
tion: (a - top) a camera frame where the board was found (the identified markers are highlighted
in red); (a - bottom) the normalized 3-D point cloud (note the axis indicator). (b) The reference
board with markers.

(a) (b)

and the Z axis is normal to the board. If the board is laid on the ground, the Z axis properly
points upwards (see Figure 1).

Points classification

The automatic detection of grapes bunches was designed as a supervised classification problem
over the set of points in the point cloud. Similar to Rose et al. (2016), we combined geometrical
and color information to characterize each point of the cloud as a feature vector. The geometri-
cal features used were the FPFH proposed by Rusu, Blodow e Beetz (2009) and implemented
in the Point Cloud Library (PCL) (RUSU; COUSINS, 2011). FPFH represents the geometrical
properties of a point’s neighborhood by generalizing the mean curvature around the point as
a multi-dimensional histogram3. This descriptor has been used in several works on 3-D phe-
notyping for plant parts classification (PAULUS et al., 2013; WAHABZADA et al., 2015; ROSE et

al., 2016). A FPFH feature vector is composed by a set of 33 values that are a characterization
of the surface around a point: grape bunches, vine leaves, trunks and branches should present
different patterns for this descriptor, according to the properties of their surfaces.

Color is also an useful feature for bunches classification. Klodt et al. (2015) used the RGB
color space while Rose et al. (2016) employed the three components of the HSV colorspace. In
this work, the a∗ and b∗ components from the CIELAB colorspace were employed. The color
information is found in the a∗ and b∗ components while luminance is expressed on L∗. The L∗

channel was discarded in an attempt to make the descriptor more robust to light variations.

3See Rusu e Cousins (2011) for a detailed description
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Figura 2: Point cloud for a vine. Three of the frames collected by 3-Demeter Capture for
this vine, (a), (b) and (c). The point cloud produced by PMVS and normalized by 3-Demeter
Capture, seen in two different poses, (d) and (e).

(a) (b) (c)

(d)

(e)

A dataset composed by 121,758 points and their descriptors was employed for classifica-
tion, under a supervised machine learning framework. The points were manually classified in
three classes: (i) grape bunches, (ii) leaves and (iii) trunks and branches, composed by 58,421,
37,258 and 26,079 samples respectively. A support vector machine (SVM) classifier was em-
ployed for classification. The classifier penalty parameter C and the used kernel were selected
automatically from a set of options by K-Fold cross-validation (K = 3) (HASTIE; TIBSHIRANI;

FRIEDMAN, 2001). K-Fold cross-validation is employed again to measure the prediction per-
formance of the classifier (using K = 3 again), in a nested cross-validation approach. The
scikit-learn (PEDREGOSA et al., 2011) machine learning library was employed for SVM and
cross-validation algorithms.
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Bunches segmentation, filtering and volume estimation

Points classified as grape surface points were grouped in bunches by finding connected compo-
nents. Two points were considered connected if the distance between then was up to 3 mm. A
connected component is a set of points B such as for any two points ui, uj ∈ B, there is a path
ui → v0 → v1 → ...→ vP−1 → vP → uj linking ui and uj , where v0, v1, . . . , vP ∈ B and any
two adjacent points vk, vk+1 are connected, ie, are up to 3 mm appart4. Each connected com-
ponents was considered a bunch. To filter out noise caused by errors in classification, bunches
containing less then 200 points were discarded.

The convex hull for the set of points ui ∈ Bk is computed for each bunch Bk. The convex
hull volume is considered here an approximation for the volume of the real grapes bunch in the
vine. The convex hull implementation available in SciPy (JONES et al., 2001–) was employed
for hull and volume computation. Finally, the individual bunches volumes were summed up to
produce a estimation for the vine total volume of grapes.

RESULTS AND DISCUSSION

The data acquisition using 3-Demeter Capture took 1 to 2 min per vine, producing around 90
images per vine (Table 1). PMVS took around 20 minutes per vine to produce a dense point
cloud by multiple-view stereo. An example of 3-D reconstruction can be seen in Figure 2.
Exploiting the fact the point clouds are properly oriented in a reference frame and in millimeter
scale, points belonging to the ground or outside the region of interest were discarded (the grapes
are found around 50 cm above the ground).

Tabela 1: Summary of data per vine.

Plant Num. of images Num. of 3-D points† Estimated volume (cm3) Weight (g)
Vine 1 89 125,828 1,240.53 1,405.9
Vine 2 96 160,714 566.55 851.4
Vine 3 86 177,218 567.93 750.5
Vine 4 104 172,768 2,311.44 2,420.8
Vine 5 88 121,844 1,585.70 1,771.0

† After the selection of the region of interest.

Classification accuracy was estimated using 3-fold cross validation. The three estimations
for accuracy were 93.02%, 92.96% and 93.16% on the annotated dataset, when using the SVM
classifier and the 35-features descriptor (33 FPFH features plus the a∗ and b∗ values). It is
interesting to note that using the SVM classifier over just the color descriptors (a∗ and b∗)
resulted in accuracy around 90% while the 33 FPFH features alone reached less then 70% of
accuracy.

4This 3 mm threshold produced good results, considering the density of the points clouds.
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Figure 3 shows the bunches found for vines 2 and 4. Each bunch is displayed in a different
color while points corresponding to leaves and branches are shown in black. Figure 4 shows
the linear regression between the estimated total volume of bunches and the true biological
yield, the mass of grapes, measured using a digital scale after harvesting (see also Table 1). The
correlation coefficient is 0.9984. A larger set of vines should be employed in future experiments
to confirm such a good correlation, but this result is not unexpected: a volume estimation made
using a 3-D model presenting millimeter precision, combined to a compact grape variety as
Chardonnay, should be strongly correlated to weight.

Figura 3: Bunches automatically found in vine 2 (top) and vine 4 (bottom). Each bunch is
shown in a different color. Points classified as non belonging to grapes are marked in black.

CONCLUSIONS

This work presented an affordable system able to (i) produce three dimensional models of gra-
pevines in field; (ii) recognize bunches, leaves and branches structures in the plants, and (iii)
detect bunches of grapes and compute their volume. The computed volumes presented excel-
lent correlation to the vines yields. Applications on plant phenotyping, precision viticulture and
agricultural robotics could benefit from these results.

A major advantage of non-invasive methods is the ability to perform non-destructive es-
timations, enabling the acquisition of developmental data over time. A possible future work
would be the monitoring of the entire development cycle until the harvesting.
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Figura 4: Regression between the vines estimated volumes and total mass of grapes.
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