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Abstract: We proposed a population structure correction for genome-wide se-
lection based on covariance analysis via eigenvector (EVG) decomposition. The 
agreement between the predicted and true breeding values was evaluated by 
independent cross-validation data sets. Other correction methods such as correc-
tion via principal components, best linear unbiased prediction, and deregressed 
phenotype were also evaluated. Based on different simulation scenarios, the 
proposed EVG out performed the other methods in the prediction of accuracy.
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INTRODUCTION

In genome-wide selection (GWS), the correction for population structure 
allows eliminating the effects of genitors or families from the total estimated 
breeding values in order to obtain the effects of pure Mendelian segregation. 
Thus, association analyses between allele markers and quantitative trait loci 
(QTLs) capture the genetic effects consequences of linkage disequilibrium (LD) 
by excluding relationship-based genealogy.

The performance of short-term genomic prediction (at present or subsequent 
generations) depends on genealogical kinship more than on LD (Resende et al. 
2012). Therefore, predictions based on total genetic values, which consider both 
kinds of information, are recommended. On the other hand, long-term genomic 
prediction (prediction for future generations) only requires LD information 
between markers and QTLs, which is called Mendelian segregation effect. Thus, 
correction for population structure is required to obtain accurate predictions 
(Resende et al. 2012). Structure correction is also important for genome-wide 
association studies (GWAS) because they aim to detect causative variants and 
allow for association analysis between alleles and QTLs by considering only LD 
(free genealogy) and avoiding the occurrence of false positives (Daetwyler et 
al. 2012).

Therefore, statistical methods for population structure correction are required 
for efficient long-term GWS. Among them, correction via best linear unbiased 
prediction (BLUP) (Resende et al. 2012) and procedures based on deregressed 
phenotype (DP) (Garrick et al. 2009) are highlighted. Covariance analysis via 
eigenvectors (EVG), which is based on the genomic relationship matrix and was 
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presented by Patterson et al. (2006) and Yang et al. (2011) to correct for population structure in GWAS, has never been 
tested for genomic prediction. The inclusion of principal components (PC) (Daetwyler et al. 2012, Riedelsheimer et al. 
2012, Price et al. 2006) obtained from the markers used in the model has also been proposed for population structure 
correction in both GWAS and GWS. The abovementioned correction methods consist of including eigenvectors from 
the genomic relationship matrix G in the model as fixed covariates. The eigenvectors are associated with the highest 
eigenvalues and first PCs of G. Thus, since G is linked to individuals and not to markers, the objective is to capture genetic 
variations depending on population structure. However, from the viewpoint of genomic selection, no reports on the 
comparison among these four population structure correction methods have been published yet.

Based on previous evaluations of methodologies for GWS, GWAS, and QTL mapping conducted with simulation 
studies (Azevedo et al. 2015, Piccoli et al. 2014, Ribeiro et al. 2005), we assessed the performance of the EVG method 
or population structure correction in terms of efficiency in estimating the free genomic values of relationships using 
simulated data under different scenarios (i.e., 2 heritability levels × 2 genetic architectures). We compared the proposed 
EVG method with other methods (i.e., BLUP, DP, and PC) in terms of prediction accuracy obtained from each scenario.

MATERIAL AND METHODS

Simulated datasets
The datasets generated according to Azevedo et al. (2015) were simulated using the Real Breeding software (Viana 

2013). Two random mating populations in linkage equilibrium were crossed to generate a population of 5,000 elements 
from 100 families using LD, which was subjected to five generations of random mating without mutation, selection, or 
migration. The resultant population is an advanced generation composite, which presents Hardy-Weinberg equilibrium 

and LD. According to Viana (2004), the LD value (�) in a composite population is �ab = ( 1–2θab

4 ) (p1
a – p2

a)(p
1
b – p2

b), where 

a and b are two single nucleotide polymorphisms (SNPs), two QTLs, or one SNP and one QTL, θ is the frequency of 
recombinant gametes, and p1 and p2 are the allele frequencies in the parental populations 1 and 2, respectively. Moreover, 
the LD value depends on the allele frequencies in the parental populations. Thus, regardless of the distance between 
the SNPs and/or QTLs, if the allele frequencies are equal in the parental population, Δ = 0. The LD is maximized (|Δ| 
= 0.25) when θ = 0 and |p1− p2| = 1. In this case, the LD value is positive with coupling and negative with repulsion 
(Azevedo et al. 2015, Viana 2004).

From the advanced generation of the composite, 1,000 individuals with diploid genomes having a length of 200 
centimorgans (cM) (L=2 Morgans) were generated assuming 10equally sized chromosomes, each one with two haplotypes. 
Azevedo et al. (2015) simulated a marker density by assigning 2,000 equidistant SNP markers that were separated by 0.1 
cM across the 10chromosomes. Interestingly, 100 of the 2,000 markers were actually genes (QTL). The 1,000 individuals 
that came from the same generation and from 20 full-sib families (each one with 50 individuals) were genotyped and 
phenotyped. This simulation provided a typical, small effective population size (Ne= 39.22) and large LD in the breeding 
populations. Ne of approximately 40 and 50 individuals per family are typical values in elite breeding populations of 
allogamous plant species (Resende 2002). 

The QTLs were distributed among the regions covered by the SNPs. For each trait, we informed the degree of 
dominance (d/a, where a and d are the genotypic values for one homozygote and heterozygote, respectively) and the 
direction of dominance (positive and/or negative). The obtained genotypic values for homozygotes were within the 
limits of Gmax=100(m + a) and Gmin=100(m - a) where m is the mean of genotypic values, which are the maximum 
and minimum values, respectively. Goddard et al. (2011) presented the realized proportion (r2

mq) of genetic variation 

explained by the markers as r2
mq = 

n
n+nQTL

, where nQTL is the number of QTL and n is the number of markers. With n = 2,000 

markers and nQTL= 100, we obtained r2
mq = 0.95, which revealed that the genome was sufficiently saturated by markers.

Traits with two genetic architectures were simulated, one following the infinitesimal model and the other containing 
five major effect genes accounting for 50% of the genetic variability. For the former, one additive effect of small 
magnitude on the phenotype was assigned (under the normal distribution setting) to each of the 100 QTLs. For the 
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latter, small additive effects were assigned to the remaining 95 loci. The effects were normally distributed with zero 
mean and genetic variance (size of genetic effects) allowing the desired heritability level. The phenotypic value was 
obtained by adding to the genotypic value a random deviate from a normal distribution N (0, σ2

e), where the variance 
σ2

e was defined according to two levels of narrow-sense heritabilities of approximately 0.20 and 0.35. Heritability levels 
were chosen to represent one trait with low heritability and another with moderate heritability, which addressed the 
cases where genomic selection is expected to prevail over phenotypic selection (Azevedo et al. 2015). The magnitudes 
of the narrow-sense and broad-sense heritability are associated with an average degree of dominance level (d/a) of 
approximately 1 (complete dominance) in a population with intermediate allele frequencies. Simulations assumed 
independence of additive and dominance effects, with dominance effects having the same distribution as the additive 
effects (both were normally distributed with zero mean). In the simulation, it was also observed that marker alleles had 
minor allele frequency (MAF) greater than 5%.

Scenarios
Four different scenarios were used in the analyses: two broad-sense heritability levels (around 0.20 and 0.35) × 

two genetic architectures (polygenic and mixed inheritance). The scenarios were defined as follows: Scenario 1, trait 
controlled by genes with small effects and heritability of 0.22; Scenario 2, trait controlled by genes with small effects 
and heritability of 0.37; Scenario 3, trait controlled by small and major effects genes and heritability of 0.20; Scenario 
4, trait controlled by small and major effects of genes and heritability of 0.32. Each kind of population (or scenario) was 
simulated 10 times (Calus et al. 2008).

Eigenvectors correction
The EVG correction proposed in this study considers the eigenvectors of the genomic relationship matrix G as fixed 

covariates in the genomic mixed model. The eigenvectors are associated with the highest eigenvalues and first PCs of 
G. Thus, since G is linked to the individuals, and not to the markers, the purpose was to capture the genetic variance 
due to population structure. 

The traditional phenotypic BLUP has been habitually applied in plant breeding to predict the genetic value (Resende 
and Barbosa 2006, Carvalho et al. 2008, Oliveira et al. 2011, Silva et al. 2015). If the relationship matrix A is computed 
via markers information (G matrix) and used within the traditional phenotypic BLUP, the method is called genomic best 
linear unbiased predictor (GBLUP). Thus, the GBLUP method was used and the eigenvectors from the G matrix were 
included in the model as follows:

y = Xb + 
v

Σ
i=1

  Uiai + Zg + e

where y is the vector of phenotypes, v is the number of eigenvectors Ui (here, 1-50) associated to the PCs with the 
highest eigenvalues, b is a vector of the other fixed effects with an incidence matrix X; g is a vector of additive random 
genetic effects of individuals, g�N(0,Gσ 2

g) where G is the genomic additive relationship matrix G = MMʹ

tr(MMʹ
N ) 

  (N is the 

number of individuals, tr the trace operator matrix) and σ 2g is the additive genetic variance; and e is the residuals vector, 
e�N(0,Iσ 2e) where I is the identity matrix and σ 2

e the residual variance. The eigenvectors were fitted as fixed effects, in 
which ai are the regression coefficients associated with them. The marker effects can be obtained by m̂ = (Mʹ M)–1Mʹ ĝ , 
M being the marker incidence matrix with values of 0, 1, and 2.

Deregressed phenotype
The traditional method used for population structure correction in genomic selection was proposed by Garrick et al. 

(2009) and it is called DP or adjusted phenotype. It assumes that the genealogical information, variance components, 
and genetic values are known and it requires a mixed model analysis based on the relationship matrix via pedigree [i.e., 
individual model (IM)]. This correction is presented as follows:

 [ ZʹgmZgm + 4λ* –2λ*
–2λ* ZʹiZi + 2λ* ] [ ĝ gm

ĝ i
] = [ Ygm

Yi
],
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Where ĝ i is the genetic value of the genotyped individual (i=1,...,N), λ*= 
1–h2

h2 , ĝ gm = 
ĝ h+ĝ k

2   is the average genetic 

value of the h and k genitors, ZʹgmZgm is the information content associated with the genitors average, ZʹiZi is the information 
content associated with the individuals including their progeny, and ygm and yi are the phenotypic observations corrected 
for fixed and individual effects, respectively.

The information matrix associated with the genitor average is unknown, and can be obtained by means of the 
following expression:

ZʹgmZgm = λ*(0.5γ – 4) + 0.5λ* (γ2 + 
16
δ )½

where γ = 
1

0.5– r2
gm

 and δ = 
0.5– r2

gm

1– r2
i

 with r2
gm = 

r2
gh +r2

gk

2  being the reliability of the genetic value predicted for genitors h 

and k given by and r2
i  is the reliability associated with the predicted genetic value of the individual. Therefore, the information 

matrix associated with the individual ZʹiZi can be obtained through ZʹgmZgm. Thus, ZʹiZi is given by δZʹgmZgm + 2λ*(2δ – 1).

The phenotype vectors corrected for fixed and genitor effects are the output of the equations ŷ i = (–2λ*)ŷ gm + (ZʹiZi 
+ 2λ*)ĝ i. Thus, the phenotype will also be corrected for the average genetic value of its genitors. After this correction, 

the deregressed genetic value (ĝ i) is obtained by ĝ i = 
ŷ i

ZʹiZi
. Analogous to EVG, the marker effects can be obtained 

using the GBLUP method as shown earlier in the text (i.e., m̂ = (MʹM)–1Mʹĝ*).

Correction via BLUP
Population structure correction can be done by means of the additive genetic model proposed by Resende et al. 

(2012). The following model is considered:

y = Xh + Xg + e

where y is the vector of phenotypic records, b is the vector of the fixed effects with an incidence matrix X, g is the 
vector of additive random genetic effects of individuals, and e is the residuals vector. The correction via the computational 
model BLUP assumes that the individual genealogical information is known, thus, after the genetic values prediction for 
each individual and their respective genitors, the corrected genetic value for the genitors can be obtained by:

ĝ c = ĝ  – 0.5ĝ h – 0.5ĝ k

where ĝh and ĝ k are the predicted genetic ĝ c values of the h and k genitors, respectively. The genetic value deregressed 
and corrected for the genitor effects, i.e., the effect of the Mendelian segregation, is given by:

ĝ* = 
ĝ c

h2
sm

,

where h2
sm = 

0.5h2

0.5h2+(1–h2)  is the heritability of the Mendelian segregation and h2 the heritability of the trait. This step 

is necessary because the genetic values do not undergo two regressions, i.e., one based on the relationship matrix via 
pedigree (mixed model analysis) and another one on the marker matrix. In this context, ĝ* is equivalent to the residual 
(y – Xb̂  – Zh,kĝ h,k) deriving from the reduced individual model, in which ĝ h,k is the predicted genetic value of the genitors.

After the above mentioned population structure correction, the marker effects can be estimated by means of the 
GBLUP model:

yc = Zg** + e

where yc = ĝ*,g** is the vector of additive random genetic effects of individuals with incidence matrix Z, which is here 
pre-corrected for population structure, and g**�N(0,Gσ 2g) with G being the genomic additive relationship matrix and σ 2g 
the additive genetic variance. Analogous toother methods, the marker effects can be obtained using m̂ = (MʹM)–1Mʹĝ**.

Principal component correction
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The correction via PC method is traditionally used in genomic association (Daetwyler et al. 2012, Riedelsheimer et al. 
2012, Price et al. 2006). Similar to EVG, PC correction is based on the inclusion of fixed covariates in the GBLUP model; 
however, here the covariates are the PCs of the G matrix as follow:

y = Xb + 
q

Σ
i=1

  Qiϐi + Zg + e,

where q is the number (here 1–50) of the PCs given by Q = UG, Qi represents the columns of the matrix Q, b is the 
vector of fixed effects with an incidence matrix X, g is the vector of additive random genetic effects of individuals, and e 
is the residuals vector. These components were fitted as fixed effects because ϐi represents the regression coefficients 
related to the PCs. The marker effects can be obtained using m̂ = (MʹM)–1Mʹĝ .

Methods comparison 
Four scenarios were simulated ten times, with nine of these replications considered as training populations and the 

remaining replication as the validation population. The EVG, PC, and BLUP methods were compared to the DP method. 
BLUP and the PC correspond to the population structure correction methods most used in genomic prediction.

The validation population was used to evaluate the agreement between the predicted and parametric breeding values 
based on Mendelian segregation (i.e., phenotypes without family effects) through four measurements: i) accuracy, given 
by the correlation between the predicted and the parametric breeding values (simulated); ii) estimation bias, given by 
the regression coefficient obtained by regression between the predicted and the parametric breeding values with 1 

being the ideal value (i.e., absence of bias); iii) molecular heritability given by h2 = 
σ2

gM

σ2
gM + σ2

e

, where σ2
gM is the additive 

genomic variance and σ2
e is the residual variance; iv) agreement between the parametric ordering of the individuals and 

the ordering obtained for each evaluated method (the method with the highest agreement should be given preference 
when the objective is individual ranking). Accuracy, bias, heritability, and concordance of ranking of individuals were 
obtained for each simulation replication, and the reported results were average values.

Computational tools
The mixed model analysis based on the relationship matrix via pedigree was conducted using ASREML® (Gilmour et al. 

2009) and the computational routines of the correction methods were implemented in the R software (R Development 
Core Team 2015) using the pedigreemm (BLUP), rrBLUP (EVG and PC corrections), base (eigenvectors), and stats (principal 
components) packages and the pedigreemm, mixed.solve, eigen, and princomp functions, respectively.

RESULTS AND DISCUSSION

Accuracy
The average accuracy of the Mendelian segregation effect estimates is shown in Figure 1. The curves obtained with 

the EVG method (Figure 1A) show that the accuracy reaches a plateau when 20 eigenvectors are included in the model, 
whereas a smooth linear decrease is observed when accuracy is calculated using the PC method (Figure 1B). Although, 
the correction via PC presented higher accuracy than EVG did, the number of eigenvectors is in accordance with that 
obtained by Janss et al. (2012), who demonstrated that the number of eigenvectors typically used in these analyses is 
10 or 20 in differently simulated stratified populations. 

According to Daetwyler et al. (2012), the curve representing accuracy against the number of eigenvectors (Figure 
1A) reaches a plateau only when LD takes place. Therefore, the curve in Figure 1B, which was obtained using the PC 
correction method and shows a linear decrease, possibly captured genetic information beyond LD, such as co-segregation 
(Azevedo et al. 2015).

The average values of the molecular heritability estimates, accuracy, and bias obtained by performing correction via EVG 
(i.e., 20 eigenvectors), PC (with the inclusion of 1 principal component), BLUP, and DP are shown in Table 1. For accuracy, 
the correction via EVG (0.62, 0.71, 0.62, and 0.70, for Scenarios 1, 2, 3, and 4, respectively) and PC (0.61, 0.75, 0.60, 
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and 0.70 for Scenarios 1, 2, 3, and 4, respectively) yielded 
comparable values for all scenarios and outperformed the 
other methods. Parametric accuracy values were obtained 
considering effective population size, chromosome size 
(in Morgans), number of loci, and heritability of each trait 
according to Grattapaglia and Resende (2011). Interestingly, 
the accuracy of the interval estimates obtained by correction 
via EVG and PC included the parametric value. On the 
other hand, the accuracy interval estimates obtained by 
correction via DP did not include the parametric value, 
whereas the interval estimates obtained by correction via 
BLUP contained the parametric value for all scenarios, with 
the exception of Scenario 3. The ranges of the confidence 
intervals for predictive ability values obtained by correction 
via EVG and PC were also similar, except for Scenario 4, for 
which the correction interval via PC had considerably high 
amplitude compared to that obtained via EVG.

Bias
The bias values estimated by correction via EVG and 

PC were bigger than 1 (Table 1), whereas by correction 
via DP they were smaller than 1 (Table 1), indicating that 
the predicted genetic values were underestimated and 
overestimated, respectively (Resende et al. 2012). Despite 
the accuracy obtained by correction via BLUP was higher 
than obtained via DP, the bias obtained by correction via 
BLUP was bigger than10, which indicates considerable 
underestimation of the predicted values.

Molecular heritability
Estimates of heritability in all scenarios were compared 

with parametric heritability values (0.12 for Scenarios 1 and 

Table 1. Molecular heritability (h2), accuracy (rg.ĝ), and bias estimated for each scenario using various population structure correction 
methods

Scenarios Parametric BLUP1 EVG2 PC3 DP4

h2

Scenario1 0.12 0.14[0.02;0.26] 0.16[0.07;0.24] 0.14[0.09;0.20] 0.13[0.06;0.20]

Scenario2 0.22 0.23[0.16;0.29] 0.30[0.21;0.39] 0.29[0.21;0.37] 0.23[0.16;0.29]

Scenario3 0.12 0.11[0.08;0.15] 0.14[0.02;0.26] 0.13[0.07;0.19] 0.11[0.08;0.15]

Scenario4 0.22 0.19[0.12;0.26] 0.27[0.16;0.38] 0.23[0.09;0.36] 0.19[0.12;0.26]

rg.ĝ

Scenario1 0.61 0.38[0.06;0.69] 0.62[0.54;0.69] 0.61[0.55;0.68] 0.31[0.26;0.37]

Scenario2 0.66 0.58[0.15;1.00] 0.71[0.65;0.77] 0.75[0.69;0.81] 0.40[0.35;0.46]

Scenario3 0.59 0.29[0.22;0.36] 0.62[0.52;0.72] 0.60[0.52;0.68] 0.31[0.24;0.38]

Scenario4 0.64 0.60[0.22;0.97] 0.70[0.64;0.77] 0.70[0.57;0.83] 0.38[0.31;0.46]

Bias

Scenario1 - >10 2.79[1.86;3.74] 1.66[1.46;1.85] 0.92[0.43;1.41]

Scenario2 - >10 1.87[1.57;2.18] 1.41[1.30;1.51] 0.77[0.67;0.88]

Scenario3 - >10 3.38[0.61;6.14] 1.67[1.55;1.79] 0.94[0.61;1.27]

Scenario4 - >10 2.11[1.62;2.60] 1.47[1.31;1.64] 0.82[0.66;0.96]
1 Correction for population structure via reduced best linear unbiased prediction (BLUP) computational model; 2 Correction via inclusion of eigenvectors; 3 Correction via 
inclusion of principal components; 4 Correction via deregressed phenotype (Garrick et al. 2009). The scenarios were defined as follows: Scenario 1, trait controlled by genes 
with small effects and heritability 0.22; Scenario 2, trait controlled by genes with small effects and heritability 0.37; Scenario 3, trait controlled by small and major effect 
genes and heritability 0.20; Scenario 4, trait controlled by small and major effect genes and heritability 0.32.

Figure 1. Accuracy involving of predicted and parametric genetic 
values and the parametric values of the effects of Mendelian 
segregation for each scenario different scenarios obtained via the 
covariance analysis via eigenvector correction method (A) and via 
the principal component correction method (B). The scenarios 
are defined as follows: Scenario 1, trait controlled by genes with 
small effects and heritability 0.22; Scenario 2, trait controlled by 
genes with small effects and heritability 0.37; Scenario 3, trait 
controlled by small and major effect genes and heritability 0.20; 
Scenario 4, trait controlled by small and major effect genes and 
heritability 0.32.
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3 and 0.22 for Scenarios 2 and 4). In Scenarios 1 and 4, the BLUP, PC, and DP estimates were similar to the parametric 
heritability, whereas the EVG method yielded slightly overestimated results (Table 1). In Scenario 2, the BLUP and 
DP estimates were similar to the parametric heritability, whereas the EVG and PC estimates were overestimated. In 
Scenario3, all estimates were similar to the parametric heritability. However, the confidence intervals associated with 
the four methods all contained the value of the parametric heritability.

Since PCs are estimated based on the G matrix, Janss et al. (2012) and de los Campos and Sorensen (2014) reported 
that inclusion of PCs as fixed effects in genomic models would carry doubled information from G, which could lead to 
errors in the variance components and heritability estimation. Price et al. (2010) discussed and advocated the use of 
the principal components as covariates of fixed effects because the effect of population structure, seen as a function 
of genetic ancestry, is the same for all the samples. In addition, according to Price et al. (2010), if PCs are adjusted as 
random effects, spurious associations can be detected, especially those of unusually differentiated markers. In addition, 
according to Tucker et al. (2014), the restricted maximum likelihood (REML) approach, which consists in projecting the 
G matrix into a subspace orthogonal to the PCs, effectively removes any PC effect on the variance components and 
heritability estimation. This agrees with the results reported in this study, in which the heritability values estimated by 
PC correction are similar to the parametric values in almost all the considered simulation scenarios.

Agreement of ranking
The results obtained by parametric ranking of individuals 

and the ranking obtained by each of the methods analyzed 
are shown in Table 2. Although the predicted genetic values 
found by correction via EVG are more biased than those 
found via PC, the ranking of this method is considerably 
more efficient, especially in Scenario 4. In comparison with 
the other methods, correction via EVG is preferable for 
individual ranking, especially when the number of individuals 
is increased. The results obtained by correction via BLUP 
and DR differ when the number of selected individuals is 
reduced, but when this number increases, the results are 
similar.

The main advantage of population structure correction 
for prediction, independently of the method, is that the 
estimated marker effects are valid for prediction in various 
generations, including future generations. The re-estimation 
of new effects of markers for each generation would involve 
the development of a new model and heavy time investment, 
such as for collection of genotypic and phenotypic data and 
genealogy of the new generation. However, one advantage 
of correction via EVG and PC over other correction methods 
is the non-assumption of prior information such as pedigree; 
in fact, this information is not always available and is often 
associated with clerical errors. Moreover, correction using 
eigenvectors or components is associated with a relatively 
simple theory compared to the DP method, and is performed 
in one single step, which requires far less computational 
time than the other methods.

The population structure directly affects association 
studies and genomic prediction (Guo et al. 2014). Moreover, 
it is especially important for long-term genomic prediction 
considering future generations, which requires only 

Table 2. Average results for agreement of ranking in each scenario

Scenarios Top BLUP1 
(%)

EVG2 
(%) PC3 (%) DP4 (%)

Scenario1

5 7 16 9 2
10 09 28 27 7
50 22 30 30 21

100 24 38 34 25
200 39 53 48 36
250 43 56 52 40
500 63 72 69 61

Scenario 2

5 13 18 18 09
10 18 32 23 11
50 31 35 32 22

100 38 45 40 30
200 48 55 48 39
250 53 59 53 44
500 70 75 70 63

Scenario 3

5 00 16 13 09
10 04 19 16 08
50 11 31 26 14

100 19 39 30 19
200 31 50 44 30
250 36 53 49 36
500 60 71 68 61

Scenario 4

5 22 20 09 02
10 21 24 18 11
50 29 36 26 16

100 36 44 34 20
200 47 54 45 31
250 53 58 51 37
500 70 75 69 62

1 Correction for population structure via reduced best linear unbiased prediction 
(BLUP) computational model; 2 Correction via inclusion of eigenvectors; 3 Correction 
via inclusion of principal components; 4 Correction via deregressed phenotype (Gar-
rick et al. 2009). The scenarios were defined as follows: Scenario 1, trait controlled 
by genes with small effects and heritability 0.22; Scenario 2, trait controlled by 
genes with small effects and heritability 0.37; Scenario 3, trait controlled by small 
and major effect genes and heritability 0.20; Scenario 4, trait controlled by small 
and major effect genes and heritability 0.32.
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LD information between markers and QTLs (Resende et al. 2012). According to Lehermeier et al. (2015), population 
structure is an important effect that should be considered in analysis, especially in plant breeding programs, for which 
the substructure is occasioned between breeding groups or is a consequence of artificial selection and genetic drift.

In this context, population structure effects can be seen as extra-effects affecting “pure” LD information. Thus, 
corrections for population structure by removing potential population structure effects are required to obtain reliable 
predictions in future generations (Resende et al. 2012, Albrecht et al. 2014, Guo et al. 2014).

In conclusion, among the methods analyzed in this study, the correction via EVG and PC provided the most accurate 
genomic breeding estimates values. The correction via BLUP considerably overestimated the genomic breeding estimates 
values, correction via EVG and PC moderately overestimated, and correction via DP moderately underestimated. The 
correction via BLUP and DP presented heritability estimates similar to the parametric heritability values. The correction 
via PC and EVG slightly overestimated the estimates in Scenarios 1 and 3, respectively. The individuals ranking obtained 
by correction via EVG proved to be considerably more efficient than that of other methods.
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