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ABSTRACT. Genomic selection (GS) is a variant of marker-assisted 
selection, in which genetic markers covering the whole genome predict 
individual genetic merits for breeding. GS increases the accuracy 
of breeding values (BV) prediction. Although a variety of statistical 
models have been proposed to estimate BV in GS, few methodologies 
have examined statistical challenges based on non-normal phenotypic 
distributions, e.g., skewed distributions. Traditional GS models 
estimate changes in the phenotype distribution mean, i.e., the function 
is defined for the expected value of trait-conditional on markers, 
E(Y|X). We proposed an approach based on regularized quantile 
regression (RQR) for GS to improve the estimation of marker effects 
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and the consequent genomic estimated BV (GEBV). The RQR model 
is based on conditional quantiles, Qt(Y|X), enabling models that fit all 
portions of a trait probability distribution. This allows RQR to choose 
one quantile function that “best” represents the relationship between 
the dependent and independent variables. Data were simulated for 1000 
individuals. The genome included 1500 markers; most had a small 
effect and only a few markers with a sizable effect were simulated. 
We evaluated three scenarios according to symmetrical, positively, 
and negatively skewed distributions. Analyses were performed using 
Bayesian LASSO (BLASSO) and RQR considering three quantiles 
(0.25, 0.50, and 0.75). The use of RQR to estimate GEBV was efficient; 
the RQR method achieved better results than BLASSO, at least for one 
quantile model fit for all evaluated scenarios. The gains in relation to 
BLASSO were 86.28 and 55.70% for positively and negatively skewed 
distributions, respectively.

Key words: Genomic selection; Regularized regression; SNP effects; 
Statistics; Simulation

INTRODUCTION

Genomic selection (GS), proposed by Meuwissen et al. (2001), is a variant of marker-
assisted selection (MAS), in which genetic markers covering the whole genome are used to 
predict individual genetic merits for animal and plant breeding. According to Goddard and 
Hayes (2007), GS potentially increases genetic variance, and because the markers are assumed 
to be in linkage disequilibrium (LD) with the quantitative trait loci (QTL), the number of 
effects per QTL to be estimated is small.

GS has been successfully used in breeding. Among several studies on animal breeding, 
Christensen et al. (2012) evaluated the accuracy of genomic estimated breeding values (GEBV) 
using 60,000 single nucleotide polymorphisms (SNPs) for feed conversion in a population of 
Duroc pigs. They concluded that GEBVs were significantly more accurate than pedigree-only 
estimated breeding values. In plant breeding, Beyene et al. (2014) aimed to estimate genetic 
gains in grain yield from GS in eight bi-parental maize populations under managed drought 
stress environments. The authors demonstrated that GS is more effective than pedigree-based 
conventional phenotypic selection for increasing genetic gains in grain yield under drought 
stress in tropical maize.

However, owing to the growing number of markers and interest in longitudinal 
(Crispim et al., 2015) and non-normal (Filardi de Campos et al., 2015) traits, almost 15 years 
after this seminal publication, statistical issues such as multicollinearity, high dimensionality, 
and non-normal phenotypic distributions still need to be overcome in GS.

Although several proposed statistical methods have focused on tackling issues with 
regards to multicollinearity and dimensionality (Riedelsheimer et al., 2012) in GS (RR-BLUP, 
Bayesian alphabet, PLS, kernel-based regressions), few studies have examined statistical 
challenges based on non-normal phenotypic distributions, e.g., skewed distributions.

Skewed distributions exist for various traits in plant and animal breeding, such as 
flowering time (Maurer et al., 2015), order of parity (Varona et al., 2008), and hormone 
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concentrations (Mathur et al., 2012; Filardi de Campos et al., 2015). Muranty et al. (2015) 
verified that accuracy was strongly affected by phenotypic distribution. Specifically, traits that 
showed poor results often had skewed phenotypic distributions or low heritability.

The traditional GS approach focuses on estimating changes in the mean of the 
phenotype distribution, i.e., the function is defined for the expected value of trait-conditional on 
markers, E(Y|X) (Cade and Noon, 2003). However, the mean is not adequate for situations in 
which the distribution presents some degree of skewness. Mosteller and Tukey (1977) showed 
that it is possible to fit regression models to other parts of the distribution of the response 
variable, but this is rarely done, and therefore most regression analyses give an incomplete 
picture of the relationships between variables. An interesting solution that addresses these 
issues, which has not yet been explored in GS, is the use of quantile regression (QR) (Koenker 
and Bassett, 1978). Unlike traditional methods that are based on conditional expectations, 
QR is based on conditional quantiles, Qt(Y|X), i.e., it is possible to fit models for all portions 
of a probability distribution of the trait enabling a more informative study of the relationship 
between variables. QR facilitates the selection of a quantile function that “best” represents 
the relationship between the dependent (phenotype) and independent (marker) variables to 
resolve the skewness issue.

Therefore, when we combined the properties of traditional GS methods (e.g., 
shrinkage estimation theory) with desirable QR characteristics, we generated a novel and 
powerful prediction method that can resolve issues related to dimensionality, multicollinearity, 
and skewed phenotypic distribution. This method is called the regularized quantile regression 
(RQR) method because the shrinkage (or penalty) parameter regularizes the variance of marker 
effects to produce a direct variable selection scheme.

The aims of this study were: 1) to propose and evaluate the RQR method for genome 
selection studies to improve GEBV prediction; 2) to improve the accuracy of the GEBV by 
choosing the “best” quantile function to represent the relationship between the phenotype 
and markers; and 3) to compare the accuracies obtained for RQR and Bayesian LASSO 
(BLASSO) (de los Campos et al., 2009) for predicting genetic merit using a simulated data 
set with different degrees of skewness. Finally, we explored future applications of the RQR 
method in the field of genetics and breeding.

MATERIAL AND METHODS

Simulated data

To assess the proposed approach, data were simulated using an additive model of the form:

( ) ( )
1500

1
,    1, ,1000 ,    1,  ,1500    i ij j i

j
y x g e i jm

=
= + + = … = …∑ (Equation 1)

where yi is the phenotypic value of the ith individual; m is the general mean; xij is the genotype of 
the jth marker for the ith individual; gi is the additive genetic effect of the marker at jth locus; and 
ei is the independent and identically distributed residuals with different probability distributions 
that are assumed to have deferent degrees of skewness. Under the biallelic marker assumption 
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(xij = 0, 1, and 2 for aa, Aa, and AA, respectively), three distinct scenarios were considered in 
the phenotype (yi) simulations: symmetrical, positively, and negatively skewed distributions. We 
assumed that most markers (1497) had a small effect and that only a few (3) had a sizable effect. 
Specifically, marker effects were sampled from the following mixture model:
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N 2.5,k ,if  j 750;                                 
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  (Equation 2)

where k = 1000-1. For each trait, the degree of dominance is equal to 1.
Insertion of positive and negative skewness was accomplished by adding and 

subtracting, respectively, the residual term generated from an exponential distribution with 
parameters equal to 0.50, i.e., ei ~ exp(0.50). Thus, the phenotypic values were given by:

    exp(0.50)    y -exp(0.50)
ii i iPS NSy y and y= + = (Equation 3)

where yPSi and yNSi are the ith values of the phenotypes assuming positive (PS) and negative (NS) 
skewness distributions, respectively. Independent and identically distributed residuals were 
simulated as normal distributions [ei ~ N (0, s2

e)] to include situations where the phenotype 
distributions were symmetrical. In all simulations, it was assumed that the minimum value of 
minimum allele frequency for all markers was equal to 0.05. A heritability of 0.25 was used, 
independent of the scenario. The simulation process was replicated 30 times to assess the 
performance of the RQR.

Regularized quantile regression (RQR) for GWAS

Unlike traditional methods, which are based on conditional expectations, RQR is 
based on conditional quantiles (Li and Zhu, 2008). The use of RQR facilitates the assessment 
of functional relationships according to the quantile that “best” represents the phenotype 
distribution. For example, a distribution with negative skewness, when defined by higher 
quantiles (e.g., 0.75) may better describe the relationship between GEBV and the effect 
markers, thereby increasing prediction accuracy. However, if the phenotype distribution 
presents positive skewness, the functional relationship can be better described by lower 
quantiles (e.g., 0.25). In general, the fit of the regularized model with the quantile function t 
was obtained through estimates of regression coefficients of the model (1), which addressed 
the following optimization problem:

1 1
ˆ argmin - - | |
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= +∑ ∑ ∑ (Equation 4)
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where 
1
| |

p

j
j

g
=
∑  is the sum of the absolute values of the regression coefficients, l is the parameter 

that controls the strength of regularization, and rt (·) is a function that weighs the observations 
for estimation of the quantile function (Koenker and Bassett, 1978). It was defined by:

,      0;

1 ,   

i ij j i ij j
j j

i ij j
j

i ij j
j

y x g if y x g
y x g

y x g otherwise
t

t m m
r m

t m

  
  
                  

⋅ − − − + >

− + =

− ⋅ − −

∑ ∑
∑

∑
(Equation 5)

where t ϵ [0,1] indicates the quantile of interest. As with BLASSO, owing to the constraints 
imposed in the estimation process, the RQR method can be used in situations where the number 
of markers is superior to the total number of observations. Through coefficient shrinkage, 
this methodology combines variable selection and regularization via shortening of regression 
coefficients. The GEBV predictions from the RQR were obtained from the expression:

( ) ( ) ( )ˆ ˆ ˆi ij j
j

GEBV y x gt t t= =∑ (Equation 6)

where GEB̂V(t) is the genomic breeding value obtained for the quantile of interest (t).

Comparison of methodologies under a GWS approach

The simulation process was replicated 30 times to address the performance of the 
RQR. This facilitated the calculation of the mean squared error (MSE) on the jth marker effect, 
which was given by:

230

1

1 ˆ30j jr j
r

MSE g g 
 
 =

= −∑ (Equation 7)

where ĝjr is the estimated effect of the j marker at the rth repetition and gjr corresponds to the 
real effect of the jth marker in each simulation. The MSE values of RQRs in different quantiles 
(t = 0.25 - RQR0.25, t = 0.50 - RQR0.50, and t = 0.75 - RQR0.75) were compared with those 
calculated from BLASSO.

To assess the predictive performance of both methods, Pearson’s correlation 
coefficients (rŷ,ygi) were calculated between true breeding values and their respective predicted 
values using the two evaluated methods (ŷBLASSO and ŷRQR(t)). These values were obtained by 
30-fold cross-validation process. Thus, each of the first 29 repetitions was defined as a training 
population, and was used for SNP marker estimation. The last repetition, population 30, was 
considered the validation population, and was used to evaluate the correlation between the 
genetic values predicted by training population estimates and true simulated genetic values.

After obtaining the GEBVs through the fit models (RQR0.25, RQR0.50, RQR0.75, and 
BLASSO), aimed at assessing the agreement between the methodologies, the Spearman’s 
correlation and Cohen’s kappa (Cohen, 1960) coefficients were calculated.
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The Cohen’s kappa coefficient was used to calculate the percentage of individuals in 
common between the first 100 individuals ranked according to the values of GEBV and the 
true genetic values obtained from the simulation according to model 1 (genetic breeding value: 
GBV). The same procedure was performed for the last 100 individuals, with the intention of 
representing different selection strategies. The Cohen’s kappa coefficient was given by:

/1 ,Random RandomC NC C C= − − (Equation 8)

where NC is the agreement observed among raters, and CRandom is the hypothetical probability 
of random agreement. Because correlation was assessed between the first and last 100 
individuals, the value of CRandom was given by: CRandom = 100/1000 = 0.10.

Computational features

The simulation process was carried out using the simulateSNPglm function of the 
scrime package (Schwender and Fritsch, 2015), and was implemented in R software (R 
Development Core Team, 2016). The BLASSO and RQR model fittings were carried out using 
the BLR and rq functions in the BLR (de los Campos et al., 2009; Pérez et al., 2010) and 
quantreg (Koenker, 2015) packages, respectively.

The BLASSO method was implemented using 100,000 Markov chain Monte Carlo 
iterations, with burn-in and thin values at 10,000 and 10 iterations, respectively. To ensure the 
methods were directly comparable, the shrinkage strengths (the values of l) used in the RQR 
method were the same as those estimated using the BLASSO method.

The R codes for simulation and implementation are freely accessible at: XXXX.

RESULTS

The MSE values of the RQR (RQR0.25, RQR0.50, and RQR0.75) and BLASSO fit models 
ranged from 0.003 to 0.791 (Table 1). Overall, the RQR fit models showed better results 
than those obtained from BLASSO in all evaluated scenarios, because a reduction in MSE 
values was observed when the quantile models RQR0.75 and RQR0.25 were fitted for negatively 
and positively skewed phenotypic distributions, respectively (Table 1). For instance, the MSE 
values for RQR0.75 and RQR0.25 fit models were closer to zero (0.003 and 0.005) than those 
obtained from BLASSO (0.016 and 0.016) for negatively and positively skewed phenotypic 
distributions, respectively.

Estimates of accuracy for all scenarios range from 0.421 to 0.785 and are presented 
in Table 1. According to the accuracy values, the RQR fit models produced better results 
than those obtained from BLASSO. Specifically, when skewness was present in phenotypic 
distributions, the RQR0.75 and RQR0.25 fit models for positive and negative skewness resulted 
in higher (0.696 and 0.785) accuracy compared with the BLASSO method (0.447 and 0.421, 
respectively). The gains in relation to BLASSO were 86.28 and 55.70% for positive and 
negative skewness, respectively (Table 1). When the distribution of phenotypic values was 
symmetrical, both methods demonstrated comparable performance, with lower variations 
in accuracy compared with skewed distributions. This was expected because the mean and 
median have equal values on symmetrical distributions.
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Figures 1, 2, and 3 provided the MSE in terms of bias and prediction variance error (PEV). 
When the distribution of phenotypic values showed negative skewness, we found that the 
RQR0.75 fit model yielded estimates with the least bias and PEV, because the estimated values 
were closer to the true values than those obtained using the other fit models (RQR0.25, RQR0.50, 
and BLASSO) (Figure 1). In contrast, when considering phenotypic values from negatively 
skewed distribution, we found that the RQR0.25 fit model produced estimates with the least bias 
and PEV (Figure 2). In the symmetrical distribution scenario, the fit models produced similar 
results in term of bias and PEV (Figure 3).

Table 1. Mean square error (MSE) estimates for marker effects and accuracy (rŷ,yg) obtained using BLASSO and 
RQRt (RQR0.25, RQR0.50, and RQR0.75) fit models with different degrees of skewness.

Phenotype distribution Methods MSE rŷ,yg 
(gi, j = 1,…, 1500) 

1g  750g  1500g  
Negative skewness (-1.532*+) BLASSO 0.016 0.182 0.380 0.256 0.421 

RQR0.25 0.013 0.240 0.554 0.273 0.476 
RQR0.50 0.009 0.118 0.254 0.151 0.596 
RQR0.75 0.003 0.093 0.139 0.123 0.785 

Symmetrical 
(0.070*ns) 

BLASSO 0.016 0.244 0.301 0.215 0.483 
RQR0.25 0.011 0.303 0.302 0.218 0.535 
RQR0.50 0.009 0.184 0.254 0.153 0.518 
RQR0.75 0.007 0.398 0.479 0.326 0.588 

Positive skewness (1.587*+) BLASSO 0.016 0.231 0.251 0.285 0.447 
RQR0.25 0.005 0.103 0.103 0.151 0.696 
RQR0.50 0.009 0.141 0.097 0.148 0.590 
RQR0.75 0.013 0.749 0.791 0.781 0.448 

 Results are averages of 30 replicates; t indicates the quantile of interest (t = 0.25, 0.50, and 0.75); nsnon-significant; 
+significant, as assessed by the D’Agostino test for skewness at 5% probability.

Figure 1. True values and estimates of marker effects obtained using BLASSO and RQRt (RQR0.25, RQR0.50, and 
RQR0.75) fit models for negatively skewed phenotypic distribution.
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Figure 2. True values and estimates of marker effects obtained using BLASSO and RQRt (RQR0.25, RQR0.50, and 
RQR0.75) fit models for positively skewed phenotypic distribution.

Figure 3. True values and estimates of marker effects obtained using BLASSO and RQRt (RQR0.25, RQR0.50, and 
RQR0.75) fit models for symmetrical phenotypic distribution.
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For the estimates between GEBVs obtained from the fit models (RQR0.25, RQR0.50, RQR0.75, 
and BLASSO), Spearman’s correlations were positive and strong, with correlations ranging from 
0.606 to 0.892 (Table 2). As expected, the higher estimates of correlation, 0.883, 0.887, and 0.892, 
were observed between the GEBVs obtained for RQR0.50 and BLASSO fit models for, respectively, 
negatively skewed, symmetrical, and positively skewed phenotypic distributions.

Table 2. Estimates of Spearman’s correlation between genomic estimated breeding values (GEBV) obtained 
from Bayesian Lasso (BLASSO) and regularized quantile regression (RQR) fit models (RQR0.25, RQR0.50, and 
RQR0.75) under different degrees of skewness.

Models Scenarios 
Negatively skewed Symmetrical Positively skewed 

BLASSO RQR0.25 0.841 0.883 0.606 
RQR0.50 0.789 0.887 0.614 
RQR0.75 0.807 0.892 0.604 

 

In addition to these results, after ranking the individuals according to the GEBVs 
obtained from either BLASSO or RQR, the percentage of selected individuals in common was 
calculated by the Cohen’s kappa coefficient (0-1) (Cohen, 1960), based on GBVs for the first 
and last 100 scenarios (Figure 4A and B).

According to Landis and Koch (1977), a Cohen’s kappa coefficient of C ≥ 0.5 may 
be considered a good estimate. We found that when the distributions of simulated phenotypes 
were symmetrical, the values of Cohen’s kappa coefficient were between 0.50 and 0.54 in both 
methods. This indicates that genomic selection for traits that are symmetrically distributed 
can be accurately evaluated using both methods (Figure 4A). However, with respect to the 
100 individuals with higher GBVs, the RQR method showed a higher percentage of common 
selected individuals for both positively and negatively skewed distributions than the BLASSO 
method (82.8 and 24.1%, respectively) (Figure 4A).

Similar results were observed for the 100 individuals with lower genetic values (Figure 
4B). Specifically, the improvements using the RQR method were 10.0 and 41.6% with positive 
and negative skewness, respectively, compared with the BLASSO method (Figure 4B).

Figure 4. Cohen’s kappa coefficient for agreement between genetic and estimated values. A. Percent top 100 +; 
B. percent top 100 -.
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DISCUSSION

In this study, we proposed the RQR method as a novel computational tool for GS that 
can improve marker estimation and GEBV prediction. We compared the proposed method with 
the traditional BLASSO method under various simulated scenarios (symmetrical, positively, 
and negatively skewed distributions). Each scenario considered by the additive model in 
simulation involved 1,000 individuals with complete information on 1,500 SNP markers. 
The fit models were RQR0.25, RQR0.50, RQR0.75, and BLASSO. We investigated predictive 
performance and the relationship with GEBV for those approaches.

We found that the RQR method efficiently estimated GEBV; for at least one 
quantile model fit, assessments using MSE and accuracy confirmed that the RQR method 
showed better results than BLASSO when negative and positive skewness were present in 
phenotype distributions. These results are reasonable because, unlike traditional methods 
based only on conditional expectations [E(Y|X)], RQR is an extension of a linear model for 
estimating functional relationships between variables in all portions of the distribution of a 
response variable. Moreover, according to Briollais and Durrieu (2014), when the conditional 
distributions of Y are non-normal (for instance, skewed), the mean might not be the best 
summary. The RQR method facilitates discovery of the “best” model for representation of the 
relationship between the dependent (phenotype) and independent (marker effect) variables, 
increasing the predictive performance of the model. Furthermore, RQR presented a higher 
match percentage with the 100 individuals evaluated at higher and lower GBV.

The potential of quantile regression (QR) has been confirmed by many studies. 
Pourhoseingholi et al. (2009) used linear and quantile regression models to analyze the 
predictors of duration of stay in hospital for patients with gastrointestinal cancers. The authors 
observed that if the duration data showed higher skewness, quantile regression led to better 
interpretation and richer inference. Briollais and Durrieu (2014) pointed out some aspects 
of the use of QR in genome-wide association studies (GWAS). Because the genetic variants 
identified through GWAS have small effect sizes and explain a small proportion of trait 
heritability, Wang et al. (2011), with the aim of enriching the genetic signal, estimated effect 
sizes related to particular quantiles of the trait distribution, in particular the extreme tails. QR 
allows direct estimation at the extremes, and specific sampling is not needed.

Altogether, because traits with negative (e.g., time until the occurrence of specific 
events) and positive (e.g., substance concentration) skewness in phenotypic distributions can 
be found in plant and animal breeding, the QR model presents an interesting and promising 
approach. For instance, in these cases a functional relationship defined to higher quantiles 
(e.g., 0.75) or lower quantiles (e.g., 0.25) can improve GS studies.

However, more studies using different genetic architectures and data set sizes 
(individuals and markers) are needed to confirm the efficiency of RQR. Furthermore, owing 
to an infinite number of quantiles that can exist in RQR, finding the “best” one to explain 
the functional relationship is still a challenge. Another issue is the estimation of the penalty 
parameter (shrinkage), which in the RQR fit is defined a priori. In this study, to compare RQR 
with BLASSO methodologies, the shrinkage parameters used in the RQR fit were the same as 
those used in BLASSO. Indeed, specific penalty values can be accessed exclusively for RQR 
by cross-validation (Fonseca Silva et al., 2011) or via Bayesian inference (Alhamzawi et al., 
2012). These approaches may further improve the performance of RQR prediction because 
they present different powers of penalization over other methodologies.
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