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ABSTRACT: The pattern of variation in soil and landform properties in relation to 
environmental covariates are closely related to soil type distribution. The aim of this 
study was to apply digital soil mapping techniques to analysis of the pattern of soil 
property variation in relation to environmental covariates under periglacial conditions 
at Keller Peninsula, Maritime Antarctica. We considered the hypothesis that covariates 
normally used for environmental correlation elsewhere can be adequately employed in 
periglacial areas in Maritime Antarctica. For that purpose, 138 soil samples from 47 soil 
sites were collected for analysis of soil chemical and physical properties. We tested the 
correlation between soil properties (clay, potassium, sand, organic carbon, and pH) and 
environmental covariates. The environmental covariates selected were correlated with 
soil properties according to the terrain attributes of the digital elevation model (DEM). 
The models evaluated were linear regression, ordinary kriging, and regression kriging. 
The best performance was obtained using normalized height as a covariate, with an R2 of 
0.59 for sand. In contrast, the lowest R2 of 0.15 was obtained for organic carbon, also using 
the regression kriging method. Overall, results indicate that, despite the predominant 
periglacial conditions, the environmental covariates normally used for digital terrain 
mapping of soil properties worldwide can be successfully employed for understanding 
the main variations in soil properties and soil-forming factors in this region.
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INTRODUCTION
Antarctica, which is the coldest continent, has unique climatic and weathering conditions 
that lead to unique soil formation in ice-free areas at very slow rates (Simas et al., 2008). 
Pedogenesis in Antarctica is generally less advanced, due to the combination of freezing 
conditions, low liquid water availability, weak biological activity, and chemical and physical 
processes occurring only during the summer. In comparison with continental Antarctica, 
the Maritime region has higher temperature and precipitation rates, contributing to 
greater colonization of plant species and soil microorganisms, which favors a higher 
degree of weathering (Pereira and Putzke, 2013). In addition, these factors are frequently 
associated with terrestrial input of nutrients by marine birds (guano), which are highly 
important for soil-forming processes in Antarctica, enhancing pedogenesis through the 
phosphatization process and forming widespread ornithogenic soils (Simas et al., 2008). 

Ornithogenic soils are characterized by low pH, deep soil development, and very high 
phosphorus contents (Mehlich-1), and total organic carbon contents (Simas et al., 2008). 
In addition, soil types and properties vary significantly across the landscape, mainly 
related to landscape characteristics, especially drainage (Pereira and Putzke, 2013). 
Antarctic soils have been the subject of several studies (Beyer et al., 2000; Simas et al., 
2008; Francelino et al., 2011; Moura et al., 2012) that have promoted an increasing 
understanding of soil-forming processes and soil distribution and classification. 

The foundations of the Digital Soil Mapping (DSM) technique were laid by McBratney et al. 
(2003). Lagacherie and McBratney (2006) defined DSM as “the creation of spatial 
information systems of soils by numerical models in order to infer the spatial and 
temporal variations of soil properties and classes, from observations, knowledge and 
covariate-related environmental data”. Recently, DSM has improved soil studies and 
has been tested and used in soil surveys around the world (Carvalho Junior et al., 2014; 
Hartemink and Minasny, 2014; Vaysse and Lagacherie, 2015; Chagas et al., 2016; 
Pahlavan-Rad et al., 2016; Malone et al., 2017). However, little is known about the use 
of digital soil and environmental mapping techniques in the Antarctic environment.

The DSM has emerged as an alternative to resolve uncertainties and subjectivities that the 
traditional approach presents. In this context, new methods for quantitative modeling of 
soil distribution have been proposed to describe, classify, and study the patterns of spatial 
variation of soils across the landscape. From this, it has been possible to increase knowledge 
of spatial variability of soils across the landscape, generating accurate information about 
this natural resource. This has been accomplished through a set of quantitative techniques 
called Pedometrics (Hartemink and Minasny, 2014). This technique becomes important 
and useful in regions where detailed soil sampling and description is highly complex and 
difficult due to the local characteristics, such as Antarctica. 

The aim of this study was to apply digital soil mapping techniques to analyze the pattern of 
variation of soil properties in relation to environmental covariates under periglacial conditions 
at Keller Peninsula, Maritime Antarctica. We tested the hypothesis that covariates normally used 
for environmental correlation worldwide (Hartemink and Minasny, 2014) can be adequately 
employed in periglacial areas of Maritime Antarctica to understand spatial distribution of soil 
processes/properties. These are possibly some of the most complex and anisotropic areas 
for soil mapping purposes, due to their natural heterogeneity on short-range scales.

MATERIALS AND METHODS

Study area

This study was carried out in Keller Peninsula, covering an area of 428 ha, located in 
Admiralty Bay, King George Island, Maritime Antarctica (between 61° 54’ E - 62° 16’ S and 
57° 35’ N – 59° 02’ W), where the Comandante Ferraz Brazilian Antarctic Station is located 
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(Figure 1). The monthly mean air temperature ranges from -6.4 °C in July to +2.3 °C in 
February, and the mean annual precipitation is 367 mm (INPE, 2009). The altitude ranges 
from 0 to 340 m a.s.l. (Francelino et al., 2011). The geology is predominantly basalt-
andesites and pyritized andesite rocks. Overall, soils are usually shallow and skeletal, 
mainly composed of Leptosols and Cryosols (Francelino et al., 2011). 

Soil sampling

Soil samples were collected in a grid arrangement in February 2012, covering most of 
the ice-free area of the peninsula, from a total of 47 points at the depths of 0.00-0.05, 
0.05-0.10, and 0.10-0.30 m. We used a semi-regular grid with a minimum separation 
distance of 180 m and maximum separation distance of 500 m between neighboring 
points. All collection points were marked with a geodetic GPS device (high accuracy 
± 10 mm error), CS Leica 1200 + model (Figure 1).

Soil analyses

The soil samples were air dried, ground, and passed through a 2-mm sieve to remove larger pieces 
of root material, pebbles, and gravels. Particle size analysis was performed by the pipette method 
(Claessen, 1997). The pH was determined in a 1:5 soil:deionized water ratio. Exchangeable 
potassium was extracted with Melich-1 and determined by flame emission (Claessen, 1997). 
Total soil organic carbon was quantified by wet oxidation with 0.167 mol L-1 K2Cr2O7 in the 
presence of sulfuric acid with external heating (Yeomans and Bremner, 1988).

Geostatistical model

Environmental covariates were derived from a digital elevation model (DEM) with a 
spatial resolution of 5 m (adapted from Mendes Junior, 2012). These covariates were 
calculated using the System for Automated Geoscientific Analyses (SAGA GIS) and ArcGIS 
10.0 software. The terrain characteristics used were aspect, curvature, plan curvature, 
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Figure 1. Localization of the study area (a, b) and the collection points in the soil grid in Keller 
Peninsula (c).
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profile curvature, slope, LS-Factor, terrain roughness index (TRI), topographic wetness 
index, multiresolution index of valley bottom flatness (MrVBF), multiresolution ridge top 
flatness (MrRTF), normalized height, catchment area, slope height, standardized height, 
and potential incoming solar radiation (total, direct, and diffuse). The covariate values 
were extracted from thematic maps (raster), which were converted to a vectorial theme 
so that the entire surface of the peninsula was covered.

Three candidates of geostatistical model functions were evaluated for all depths: linear 
regression (R), ordinary kriging (OK), and regression kriging (RK). The correlations 
between environmental covariates and soil properties were assessed using Pearson’s 
product-moment correlation coefficient, in order to verify which covariate is correlated 
with the soil property (Carvalho Junior et al., 2014). Correlation analyses were performed 
with the R software package, using the cor.test command, testing the association between 
paired samples (R Development Core Team, 2007). In this case, through p-values, we 
determined if the correlation is acceptable or not. The p-values ranging from 0.005 to 
0.05 were considered most restrictive and least restrictive, respectively. 

We also applied the Mantel test to check the spatial dependence structure of the variables. 
This test indicates the possibility of using geostatistics for spatialization of a given soil property. 
The p-value resulting from the Mantel Test was also considered as a decision parameter, 
in which values greater than 0.10 indicate spatial dependence (Carvalho Junior et al., 2014). 
Thus, analyzing the results together with the initial assessment, cor.test, and Mantel test, the 
best way to model the distribution of variables was decided depending on the covariates, 
as verified by Ciampalini et al. (2012). After defining the appropriate prediction method, the 
experimental variograms were developed using spherical, exponential, and Gaussian models. 
Modeling was performed using the GSTAT R package (R Development Core Team, 2007).

After that, for spatialization of the properties modeled, all points containing the values 
obtained were converted to raster format from the DEM as a spatial reference. In this 
process, we disregarded areas of glaciers, lakes, and rock outcrops were defined as ice-free 
areas [features were extracted from the map generated by Francelino et al. (2011)]. 
Performance of the models was tested based on k-fold cross-validation (k = 10) and the 
coefficient of determination of the models from the linear regression (Kvålseth, 1985).

RESULTS AND DISCUSSION
Preliminary analysis indicated soil variables and their respective depths were best 
correlated with the environmental covariates considered, as well as the most appropriate 
method to achieve soil properties spatialization (Table 1). Only the R2 values were 
considered, whereas values derived from cross-validation were discarded, only being used 
to select the best model. The regression method was the most recommended, indicating 
high correlation between the variables and the covariates. This can also be explained 
by the large distance of separation between observations, reducing identification of the 
spatial autocorrelation structure. When a given variable exhibited spatial dependence, 
regression-kriging or ordinary kriging was used as a prediction method.

Table 1. Decision rules for selecting the appropriate DSM function [adapted from Ciampalini et al. (2012)]
Variate Depth Covariates Method

m
Clay 0.00-0.05 Plan curvature + TWI R
Sand 0.10-0.30 Normalized height RK
Potassium 0.05-0.10 Slope + LS-factor + catchment area + MrRTF+ TRI R
pH 0.05-0.10 Plan curvature + Direct insolation + Total insolation R
Organic carbon 0.00-0.05 None OK

TWI: topographic wetness index; TRI: terrain ruggedness index; R: regression; OK: ordinary kriging; RK: 
regression kriging; MrRTF: multiresolution ridge top flatness; LS-factor: slope length and slope angle factor.
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Clay contents were best modeled by a regression method, achieving an R² of 0.24 (Table 1). 
Generally, clay contents in soils from Keller Peninsula are very low, with a maximum 
value around 100 g kg-1, and an average of 45 g kg-1 (standard deviation = 2.17 g kg-1). 
The model that showed the best result took the “plan curvature” and “topographic wetness 
index” (TWI) of the covariates into account (Figure 2a). The low clay contents and the high 
heterogeneity of this soil property certainly affected the low R² parameter. In addition, 
the lack of spatial structure is strongly related to the large separation among observation 
points, and spatial dependence cannot be properly identified. 

Spatialization of the clay property by the proposed model (Figure 3) showed lower values 
in the areas of ridges, cliffs, and rocky outcrops, which is expected for their low degree of 
weathering (Simas et al., 2008; Francelino et al., 2011). Conversely, the highest values 
are found in flat areas free of rock outcrops at the top of the landscape, such as the Tyrrel 
plateau and areas to the south of the peninsula, all influenced by sulfide-rich andesite 
(Francelino et al., 2011). This is consistent with an advanced degree of weathering in 
these sulfate-rich soils, as observed by Simas et al. (2008) and Souza et al. (2012) in the 
same peninsula. Both studies revealed the presence of minerals such as natrojarosite and 
jarosite and low-crystalline iron-oxide abundance in the clay fraction, following sulfide 
oxidation and sulfate soil formation.

Figure 2. Relation between the estimated and observed values of clay (a), sand (b), pH (c), 
potassium (d), and soil organic carbon (e).
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The model chosen by regression considered the environmental covariates of plan curvature 
and solar radiation, with an R2 value of 0.24 (Figure 2d). Sulaeman et al. (2012) studied the 
distribution of soil pH, reporting that the covariate that showed the best correlation with pH 
was the multiresolution ridge top flatness (MrRTF), along with elevation, with an R2 of 0.38. 
Several factors may be influencing the ionic concentration and pH of the soil solution in Keller 
Peninsula. According to Souza et al. (2012) and Simas et al. (2008), the presence of sulfates 
derived from sulfide oxidation is always associated with greater soil acidity. Although the 
geology was not considered as a covariate in this analysis, the result of the model suggests 
the influence of parent material on the spatialization of this property, since sulfate-affected 
soils coincide with areas of low pH (Figure 4) (Francelino et al., 2011). Overall, a trend of 
higher pH at the western side of the peninsula compared to the eastern side was observed, 
according to the thematic maps. This pattern was also observed by Souza et al. (2012).

The distribution of exchangeable K considered five covariates and a linear regression model, 
with an R2 of 0.33 (Figure 2e). The distribution of exchangeable K levels showed an altitudinal 
gradient, with higher levels in the lower parts of the landscape, especially in depositional 
features and scree slopes, and not only along the coastal areas. Hence, it did not follow the 
same trend as Na (Figure 4). This result can be attributed to the combination of saline sprays, 
with a lateral redistribution by K-rich leachates from upland sources (Simas et al., 2008).

The soil organic carbon (SOC) in Keller Peninsula showed a spatial dependence structure, 
which was spatialized by the ordinary kriging method, exhibiting the lowest R2 (0.15) 
(Table 2, Figures 2f and 3c). Soil organic carbon showed a greater range value than the 
other soil properties (946.90 m). Goodman et al. (2012) studied the spatial distribution 
of soil organic carbon in a former glacial area in central Indiana (USA) and found a 
correlation between TWI and soil carbon, with an R2 of 0.33. This indicates the intrinsic 
difficulty of predicting SOC amounts based on a few environmental covariates. 

The primary input of SOC in Keller Peninsula is guano produced by birds and decomposition 
of the few plants that grow on soils (Thomazini et al., 2016). The plant communities formed 

Figure 3. Semivariograms fitted to sand (a) and soil organic carbon contents (b).
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by Deschampsia Antarctica and Colobanthus quitensis and mixed lichen and mosses 
are very common in areas close to bird nests (Victoria et al., 2013). They are always 
associated with increasing SOC (Figure 4). In addition, higher plateaus under a dense 
Usnea sp. coverage (lichen) also increased the amount of SOC; the greatest content in 
the northern peninsula were at points with dense fields of Usnea sp.

Table 2. Model type and parameters of the semivariograms developed for the soil properties studied in Keller Peninsula

Property Model R2 R2 CV(1) Adjust Psill Range Nugget

Sand Regression Kriging 0.21 0.19 Gaussian 39.160 155.417 16.212

Organic carbon Ordinary Kriging 0.15 0.04 Spherical 0.491 946.903 1.106
(1) Cross validation.

Figure 4. Thematic maps of clay (a), sand (b), pH (c), potassium (d), and soil organic carbon (e) estimated in Keller Peninsula.
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CONCLUSIONS
The environmental covariates traditionally used for digital terrain mapping in other regions 
can be successfully applied to estimate the variation in soil properties in Maritime Antarctica. 
Soil organic carbon proved to be spatially well-structured, with a high range of values. 
However, the opposite was observed for sand. The values of pH are linked with the 
occurrence of sulfate zones, which reduced pH values. Furthermore, sodium contents 
were closely related to salt sprays in coastal areas, with no strong spatial relationship with 
potassium distribution in the peninsula. The large separation between observation points 
reduces identification of the spatial autocorrelation structure, indicating that the sampling 
arrangement was not suitable for properly identifying spatial dependence. Hence, to best 
capture spatial dependence, a more detailed grid with lower separation between neighboring 
points is needed. Environmental covariates are useful for a better understanding of soil 
distribution, allowing inferences to be made regarding properties with environmental 
significance for monitoring landscape changes. It is necessary to use different statistical 
methods, regarding the spatial characteristics of each property in relation to environmental 
covariates, in which models are tailored to each specific environment.
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