Table 1. Segregation in M2 and F2 of gamma ray-induced male sterile mutants of Bala variety, Manipur, India.

Generation	Plants (no.) at maturity	Segregating plants						
		Fertile (>75%)	Partly fertile (50-75%)	Semisterile (10-49%)	Sterile (<10%)	Genetic ratio ^a	χ² value	P value
M ₂	24	5	8	5	6	1:2:1	0.10	0.90-0.95
F_2	178	41	52	46	49	1:2:1	1.86	0.30-0.50
F_2	164	40	47	38	39	1:2:1	0.23	0.80-0.90
	M ₂ F ₂	Generation (no.) at maturity M2 24 F2 178	Generation (no.) at maturity Fertile (>75%) M2 24 5 F2 178 41	Generation Plants (no.) at maturity Fertile (>75%) Partly fertile (50-75%) M2 24 5 8 F2 178 41 52 F2 164 40 47				

^aPartly fertile and semisterile pooled.

studies in the F_2 . The segregating line in the M₃ also was studied.

In the 30 kR gamma-irradiated * population, genetic male sterile line Bala G 3-6 had completely aborted anthers (devoid of any pollen grain). No other male sterile mutation was identified in any treatment. The monogenic recessive gene for male sterility was confirmed in the F₂ segregating pattern of Bala G 3-6-4/Bala and Bala G 3-6-7/Bala (Table 1) and in the M₃ segregating lines of Bala G 3-6 (Table 2). □

Table 2. Segregation in the M3 of gamma ray-induced male sterile mutants of Bala variety, Manipur,

Line	Generation	M3 lines observed (no.)	Nonsegregating lines (no.)	Segregating lines (no.)	Genetic ratio	χ² value	P value
Bala G 3-6	М3	18	6	12	1:2	0.06	0.70-0.80

For information on ordering IRRI publications, write Communication and Publications Dept., Div. R, IRRI, P.O. Box 933, Manila, Philippines.

CNA-IRAT 5 upland rice population

J. Taillebois and E. P. Guimaraes, Coordenador arroz, EMBRAPA/Centro Nacional de Pesquisa-Arroz, Feijao (CNPAF), C.P. 179, 74000 Goiânia, Brazil

To develop a segregating population for a recurrent selection program for drought and field blast resistance. CNPAF and Institut de Recherches Agronomiques et des Cultures Vivrières (IRAT) used 27 upland rice varieties and a monogenic recessive male sterile gene obtained by mutation on IR36 by R. J. Singh and H. Ikehashi.

We crossed and backcrossed 26 varieties to male-sterile F₂ plants of Palawan/IR36 (MS +). The crosses were made to obtain a polycytoplasmic population. F₂ seeds of each backcross were bulked in different proportions to ensure a different rate of each component (see table). The bulked seeds were considered the initial population CNA-IRAT 5/0/0.

CNA-IRAT 5 initial population.

Variety	Parentage	Outcrossing rate (%)	
IR36 (ms +)	Mutant of IR36	12.50	
Palawan ^a	Asian germplasm	12.50	
Cuiabana ^a	IAC47/SR2041-50-1	8.10	
IRAT237 ^a	IAC25/RS25	6.73	
Beira Campo	Brazilian germplasm	5.39	
CNA4097	63-83/IAC25	5.39	
CNA4145	IAC47/Kinandang Patong	5.39	
Cabaçu (IRAT177)	Mutant of 63-83	5.39	
IREM41-1-1-4	Mutant of Makouta	5.39	
Palha Murcha	Brazilian germplasm	5.39	
TOx 1011-4-2	IRAT13/DP689//TOx 490-1	5.39	
CNA5171	IAC47/IRAT13	2.69	
IAC165 ^a	Dourado Precoce/IAC1246	2.69	
IREM247 ^a	Mutant of IAC25	2.50	
IAPAR9 ^a	Batatais/IACF,3-7	1.57	
IRAT112 ^a	Dourado Precoce/IRAT13	1.47	
CNA4135 ^a	IAC47/63-83	1.36	
IREM238 ^a	PJ110/IAC25	1.35	
Arroz de Campo ^a	Brazilian germplasm	1.25	
CA 435 ^a	African germplasm	0.84	
Casca Branca	Brazilian germplasm	0.84	
CNA5179	IAC47/IRAT13	0.84	
CNA770187	Brazilian germplasm	0.84	
Comum Crioulo	Brazilian germplasm	0.84	
Jaguari	Brazilian germplasm	0.84	
L-13	DELPHONE	0.84	
L-81-24	IAC2091/Jaguari//IRAT10	0.84	
Santa America	Brazilian germplasm	0.84	

[&]quot;Cytoplasms used to form the population.

Outcrossed seeds collected on male sterile plants of the initial population were bulked to form the next population, CNA-IRAT 5/0/1. The procedure was repeated three times to obtain the CNA-IRAT 5/0/3 population.

Samples of bulk seeds harvested on self-pollinated plants of the CNA-IRAT 5/0/2 population are available to rice breeders.

Some Indonesian restorers and maintainers of WA cytosterile lines

B. Sutaryo, Plant Breeding Division, Sukamandi Research Institute for Food Crops, Subang, Indonesia

We crossed Chinese CMS line V20 A as the female parent with 10 standard rice cultivars during 1987-88 wet season. Hybrids and the male parents grown in the test cross nursery in 1988 dry season were examined (12 plants each) for pollen and spikelet fertility. Male parents of the F₁ that showed 71-90% pollen fertility and higher than 80% spikelet fertility were designated restorers. Male parents showing 5-9%

Spikelet and pollen fertility percentages in F1 hybrids and their male parents.

Cross and male parent	Pollen fertility (%)	Spikelet fertility (%)
V20 A/Bahbolon	79	83.2
Bahbolon	82	88.6
V20 A/Cimanuk	78	81.3
Cimanuk	83	82.5
V20 A/Batang Pane	79	83.0
Batang Pane	81	90.5
V20 A/Citanduy	77	80.0
Citanduy	80	82.9
V20 A/Ciliwung	83	84.2
Ciliwung	90	91.0
V20 A/Bogowonto	82	86.5
Bogowonto	90	92.5
V20 A/Bahbutong	6	10.5
Bahbutong	77	88.2
V20 A/Adil	5	11.5
Adil	76	86.1
V20 A/Cisokan	9	10.0
Cisokan	79	85.5
V20 A/S397b-40-2	7	12.8
S397b-40-2	75	83.0

pollen fertility were designated prospective maintainers.

Bahbolon, Cimanuk, Batang Pane, Citanduy, Ciliwung, and Bogowonto were identified as restorers; Bahbutong,

Adil, Cisokan, and S397b-40-2 as prospective maintainers (see table). The prospective maintainers need to be tested by recurrent backcrossing. □

Yield of F₁ hybrids at Tamil Nadu Rice Research Institute (TRRI), Aduthurai, India

V. Sivasubramanian, S. Ganapathy, A. P. M. K. Soundararaj, and N. Nadarajan, TRRI, Aduthurai 612101, India

We evaluated 22 F₁ hybrids developed at IRRI and 2 hybrids developed at

TRRI 1986-88. Single seedlings were transplanted at 15- \times 15-cm spacing in $3-\times 2$ -m plots with 3 replications. Plots were fertilized with 100-50-50 kg NPK/ha.

Many hybrids yielded less than local check ADT36. Eleven hybrids had 12 to 78% standard heterosis. The most promising were IR54752 A/IR25912-81-2-1 R and V20 A/T1154 (see table). \square

Duration, grain yield, and standard heterosis of F₁ hybrids at Aduthurai, India, 1986-88.

Hybrid or check	Duration (d)	Yield (t/ha)	Standard heterosis (%)
			(70)
	1986		
ADT36 (check)	110	8.4	
IR46828 A/IR13524-21-2-3-3-2-2	120	9.4	12
ZS97 A/Milyang 54	135	7.3	-12
IR46830 A/IR13292-5-3	113	6.5	-22
IR54752 A/IR54 R	129	4.5	-46
IR54752 A/IR19392-211-1	130	4.2	-50
IR54752 A/IR4422-480-2-3-3	130	4.2	-50
IR54752 A/IR20933-68-21	131	3.4	60
IR54752 A/IR14753-120-3	131	3.1	-63
LSD $(P = 0.05)$	_	0.9	
	1987		
ADT36 (check)	108	6.3	
IR54752 A/IR25912-81-2-1 R	117	11.3	78
IR54752 A/IR19392-211-1 R	119	8.9	41
IR54752 A/IR28178-70-2-3 R	121	8.8	38
IR54752 A/IR19058-107-1 R	107	7.5	19
IR54752 A/IR28912-63-2-2 R	118	7.4	17
IR54752 A/IR46 R	118	7.3	14
IR54752 A/IR64 R	124	7.2	14
IR54752 A/IR29723-143-3-2-1 R	113	7.2	14
IR54752 A/IR13419-113-1 R	131	5.3	-17
IR46830 A/IR9761-19-1 R	103	4.4	-30
IR54752 A/IR21916-128-2-2-3 R	125	4.2	-34
LSD (P = 0.05)	name.	0.7	
	1988		
ADT36 (check)	107	4.8	
Co 43 (check)	127	6.5	
V20 A/T1154 (ADH2)	108	7.4	57
IR54752 A/IR46 R	123	6.7	3
V20 A/IR18349-22-1-2-1-1 (ADH1)	110	3.9	-18
IR54752 A/ARC11353 R	122	2.5	-61
IR54752 A/IR54 R	128	1.6	-75
LSD $(P = 0.05)$	-	1.4	13

The International Rice Research Newsletter is mailed free to individuals and institutions engaged in rice research and training. For further information, write IRRI, Communication and Publications Dept., Division R, P.O. Box 933, Manila, Philippines.