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ABSTRACT. In genomic recurrent selection programs of self-pollinated 

crops, additive genetic effects (breeding values) are effectively relevant 

for selection of superior progenies as new parents. However, considering 

additive and nonadditive genetic effects can improve the prediction of 

genome-enhanced breeding values (GEBV) of progenies, for 

quantitative traits. In this study, we assessed the magnitude of additive 

and nonadditive genetic variances for eight key traits in a rice population 

under recurrent selection, using marker-based relationship matrices. We 

then assessed the goodness-to-fit, bias, stability and accuracy of 

prediction for breeding values and total (additive plus nonadditive) 

genetic values, in five genomic best linear unbiased prediction (GBLUP) 

models, ignoring or not nonadditive genetic effects. The models were 

compared using 6174 single nucleotide polymorphisms (SNP) markers 

from 174 S1:3 progenies evaluated in field yield trial. We found 

dominance effects accounting for a substantial proportion of the total 

genetic variance for the key traits in rice, especially for days to 

flowering. In average of the traits, the component of variance additive, 

dominance, and epistatic contributed to about 34%, 14% and 9% for 

phenotypic variance. Additive genomic models, ignoring nonadditive 
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genetic effects, showed better fit to the data and lower bias, in addition 

to greater stability and accuracy for predict GEBV of progenies. These 

results improve our understanding of the genetic architecture of the key 

traits in rice, evaluated in early-generation testing. Clearly, this study 

highlighted the advantages of additive models using genome-wide 

information, for genomic prediction applied to recurrent selection in a 

self-pollinated crop.  

Key words: GBLUP models; Variance components; Predictive 

accuracy; Genetic architecture; Quantitative traits 

INTRODUCTION 

 
In recurrent selection programs of self-pollinated species, a major challenge is the accurate phenotype prediction 

of progenies in a synthetic population, for sorting new parents for the next selection cycle. For the achievement 

of genetic gains, through accumulation of favorable alleles and consequent displacement of the population mean 

to a desired direction, the prediction must act on the additive effects, i.e., on allelic substitution effects 

(Bernardo 2010). The additive values or breeding values (BV) becomes relevant in this context, because the 

gametes and not the genotypes pass from one generation to the next (Hallauer et al. 2010). Therefore, an 

accurate prediction of genomic-enhanced breeding values (GEBV) of progenies for quantitative traits, is 

essential to increase the efficient of genomic recurrent selection programs. 

 

Prediction of progeny performance in recurrent selection schemes (i.e., based on phenotypes of progeny testing 

only) is usually based on genotypic value (i.e., best unbiased linear prediction (BLUP) values or even adjusted 

means without shrinkage towards the mean, which includes additive and nonadditive genetic effects), estimated 

without any genetic relationship information (Hallauer et al. 2010). Non-additive genetic effects result from 

allelic interactions, being the intralocus interaction known as dominance, and interlocus interactions known as 

epistasis (Lynch and Walsh 1998). Therefore, when nonadditive genetic effects are an important source of 

variation in trait expression, genotypic selection may induce to recombine progenies that do not have the highest 

BV. However, when pedigree data is available, expected genetic relationships can be used to obtain BLUP 

values (Henderson 1975) of BV, by standard pedigree-based models (PBLUP). However, pedigree information 

is little used in recurrent selection in this purpose, due to the low robustness (small number of selection cycles 

and progenies involved, besides annotation errors), in addition to not allowing to capitalize the Mendelian 

segregation – deviations from the expected parents’ contribution (Lynch and Walsh 1998; Hill 2010). 

 

A large number of single nucleotide polymorphisms (SNP markers), widely distributed in the genome, whether 

in animal or plant species, has been used for genomic prediction (Meuwissen et al. 2001; Bernardo 2010). In 

addition, marker-based relationship matrices, for additive and nonadditive effects, are feasible to use in genomic 

prediction (VanRaden 2008; Su et al. 2012). By fitting GBLUP model it is possible to capitalize additive and 

nonadditive variances between progenies and predict GEBV or total genomic predicted genetic values (GEGV, 

additive plus nonadditive effects), more accurately than PBLUP model (Su et al. 2012; Muñoz et al. 2014). This 

is because of the higher accuracy achieved using marker-based relationships than the pedigree-based one, either 

by the accounting the Mendelian segregation, or even a better decomposition of genetic variance into additive 

and nonadditive components (Hill 2010). Therefore, in genomic recurrent selection, although the interest is on 

GEBV of progenies, the consideration of nonadditive effects in GBLUP models may contribute to more 

accurate and stable genomic predictions (Su et al. 2012; Muñoz et al. 2014; Kumar et al. 2015). 

 

GBLUP models fitted with markers-based relationships matrices are very useful to predict GEBV, in addition to 

decompose the genetic variance into additive and nonadditive components more precisely. This procedure is 

useful to better understanding the genetic architecture of complex traits (Muñoz et al. 2014). For an effective 

decomposition, the terms of these components must be approximately orthogonal, i.e., should assume a clear 

determination (separation) of components by the implementation of independent terms in the model (Cockerham 

1954; Gianola and de los Campos 2008; Hill 2010). In complex pedigree structures, commonly available, this 

condition is hardly satisfied (Lynch and Walsh 1998; Hill 2010). Moreover, marker-based relationship matrices 

show less confounding of these variance components, thus allowing a better partitioning of the genetic variance 

(Muñoz et al. 2014; Bouvet et al. 2015). GEBV are assumed mostly to reflect the allele substitution effects, i.e., 

additive effects, being that the residual genetic effect therefore can capture nonadditive effects. In inbred lines, 

the nonadditive effect will represent epistatic interaction effects. However, in noninbred lines (S1, S2 or S3 

progenies), other nonadditive effects will include dominance, covariance between additive and dominance 

effects, epistatic effects and inbreeding depression (Hallauer et al. 2010). 
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A better understanding of genetic architecture, especially regarding the magnitude of genetic control manifested 

in the expression of quantitative traits, is also very important for planning actions, especially for the 

implementation of new selection schemes, aiming to maximize genetic gains (Bernardo 2010). Accounting for 

dominance and epistatic effects, in addition to additive effects, may not only improve our understanding of the 

genetic architecture of quantitative traits, but also improve the prediction of phenotypes (Su et al. 2012; Muñoz 

et al. 2014). This importance arises from the influence of the genetic control of the traits on the efficiency of the 

schemes used, either in phenotypic or genomic selection approach. Therefore, as the studies of this nature are 

recent for annual self-pollinated species as rice, more studies are necessary to better understanding the relevance 

of additive and nonadditive genetic effects of different traits, in genomic prediction models. 

 

In this context, the objectives of this study were i) to assess the magnitude of additive and nonadditive 

(dominance and epistasis) genetic variances via decomposition of genetic variance  using marker-based 

relationship matrices, for eight quantitative traits in a synthetic population of rice under recurrent selection 

breeding; and ii) to assess the relevance of additive and nonadditive genetic effects on the goodness-to-fit, bias, 

stability and predictive accuracy in five GBLUP models, with additive effects and ignoring or not nonadditive 

effects. 

 

MATERIALS AND METHODS 

 

Phenotypic data 
 

We used a synthetic population (CNA12S) of irrigated rice, developed at Embrapa, Brazil, in 2002, for recurrent 

selection breeding. This genetically broad-base population (synthesized with 16 divergent parents) is 

characterized by its stable resistance to the blast rice (Magnaporthe oryzae B. Couch.). In 2001, crosses were 

made using 10 elite inbred lines (female parents) and six sources of blast resistance (male parents). Each 

resistance source participated in three crosses with other elite inbred lines in a factorial mating design, resulting 

in 18 crosses. F1 plants were backcrossed with the elite parent to result in 18 BC1F1 crosses, constituting 

subpopulations. After, BC1F1 plants from each subpopulation were crossed with plants from two other 

subpopulations, resulting in the CNA12S population. Information on the genealogy, development schedule and 

constituent crosses (subpopulations) are detailed by Morais Júnior et al. (2017a). 

 

The phenotypic evaluation of the population was carried out in a progeny yield trial, performed in the third 

recurrent selection cycle, conducted in 2015, in Goianira, Goiás (16º 26' 12'' S; 49º 23' 39'' W; 729 m asl). The 

experimental design was augmented square lattice design, with common check cultivars between blocks 14×17 

and two replications, with accommodation of S1:3 progenies and four check cultivars (IRGA 417, BRS 7 Taim, 

IRGA 424 and BRS Pampa). The first two checks were allocated randomly in all blocks and the other two, 

alternated, to compose three check cultivars per block. The experimental plots consisted of four 5-m-long rows, 

spaced 0.17m, with a density of sixty seeds per meter, mechanically sown. 

 

The yield trial was conducted in a lowland area with continuous flooding until grain maturity. Fertilizer was 

applied in the planting furrow. Weeds and pests were controlled via mechanized spraying. No fungicides were 

applied, for disease resistance expression. Eight traits were evaluated: incidence of panicle blast – Magnaporthe 

oryzae (IPB, score), based on a diagrammatic scale (0: no incidence, 1: 1-5%, 3: 6-12%; 5: 13-25%, 7: 26-50%, 

and 9: more than 50% of infected panicles), according to IRRI (1996); severity of brown spot – Bipolaris oryzae 

(SBS, score), based on a diagrammatic scale (0.5; 6; 12; 18; 24; 32; and 36% of the leaf area with symptoms), 

according to Schwanck and Del Ponte (2014); plant height (PH, cm), an average of six measures from ground 

level to panicle tip, in pre-maturity stage; days to flowering (DTF, days), from sowing to 50% of plants at 

anthesis; grain yield (GY, kg ha
-1

) from a 1.36 m
2
 area at 13% moisture; whole-grain yield (WGY, g), grain 

mass after mill, according to Crusciol et al. (1999); length-width ratio (LWR); and white and chalky grains 

(WCG, %). The last two traits were measured using a grain statistical analyzer, model S21
®
.  

 

Genomic data 
 

From the total of 196 S1:3 progenies, 174 progenies were genotyped. A pooled leaf tissue of eight plants in each 

progeny was used to obtain purified genomic DNA. DNA extraction was performed according to a commercial 

kit (Axygen
®
 Inc., USA). Genotyping was performed on Diversity Arrays Technology Pty Ltd (DArT P/L), 

Canberra, Australia, using DArTseq technology in an Illumina HiSeq 2500
®
 sequencer. A total of 7735 high-

quality SNP markers was generated. After quality control (filtering polymorphic markers with call rate higher 

than 75% and minor allele frequency higher than 5%), 6174 SNP were retained for further genetic analyses. 
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Missing values (about 4.5% of the data) were replaced by the marker expected values based on the allele 

frequencies (Pérez-Rodríguez and de los Campos 2014). 

 

Relationship matrices 
 

We calculated additive (Ga) and dominance (Gd) relationship matrices using the SNP marker data. In the 

calculation of the matrix Ga, we considered the method of VanRaden (2008): 

 

 

 


m

1=i

ii

a

)p1(p2

P)'P)(M(M
=G ,  

where M is a matrix n x m (n: number of progenies, and m: number of SNP), which specify the genotype of the 

SNP in each locus; and P is the matrix of observed frequency of the allele i (pi) expressed as 2(pi – 0,5). SNP 

marker data was converted to the dosage format (-1 for reference-allele homozygotes, 0 for heterozygotes and 

+1 for alternative-allele homozygotes).  

 

In the calculation of the dominance relationship matrix (Gd), we used the method of Su et al. (2012):  

 
m

1=i

iiii

d

)qp21(qp2

SS'
=G ,  

 

where S is a matrix n x m (n: number of progenies, and m: number of SNP), which specify the SNP-genotype in 

each locus (ski = 0 - 2piqi if the progeny k is homozygote to the locus i; and ski = 1 - 2piqi if the progeny k is 

heterozygote to the locus i). 

 

Finally, we generate relationship matrices that captured epistasis of first order, taking the Hadamard product 

(element-by-element multiplication; denoted #) of matrices (Cockerham 1954; Gianola and de los Campos 

2008). Through this procedure, we calculated the following epistatic relationship matrices: (i) additive by 

additive epistatic interactions (Ga#a ≈ Ga#Ga); (i) dominance by dominance epistatic interactions (Gd#d ≈ Gd#Gd); 

and (iii) additive by dominance epistatic interactions (Ga#d ≈ Ga#Gd). 

 

Phenotypic data analysis 

 
Single-trait Bayesian analyses were performed to fit the phenotypic data, according to following the linear 

mixed model: e + p Z+ b Z+ Xβ =y 21 , where y is the vector of observed phenotypic values; β  is the vector 

of fixed effects (i.e., intercept, replication, genotype group – one group of check cultivars and another group of 

progenies, and effect of check cultivars); b is the vector of random effects of block within replication; p is the 

vector of random effects of progenies; e is the vector of residues. The terms X, Z1, and Z2 are respective design 

matrices. 

 

To generate random samples from a joint posterior distribution over the data (y), we used the Gibbs sampling 

algorithm, allowing obtaining approximate posterior marginal distributions for each parameter. Aiming to 

consider vague information on the parameters, we considered non-informative improper priors, uniform in the 

interval [0 → ∞], that lead to proper posterior probabilities, because of the adequate information from the data 

(y). We assumed normal distributions for the location parameters of fixed and random effects. For variance 

components, we assumed inverse-Wishart (IW) distributions. The density function of Wishart describes the 

distribution of the sums of squares and cross products of random effects with normal distribution (Sorensen and 

Gianola 2007). Therefore, in case of single-trait model, the inverse-Wishart distribution is reduced to a scaled 

inverse chi-square distribution. 

 

Based on these assumptions on the distributions, we defined the fixed effect priors as normally distributed with 

expected value (mean) zero and 10
8 

as the degree of belief (variance), for fixing it in the prior at some (large) 

value. For the variance components associated to random effects, the hyperparameters degree of belief (v) and 

scale (S) generate a noninformative inverse Wishart distribution by setting v = – 2 and S = 0 (Sorensen and 

Gianola 2007). Therefore, defining such noninformative priors, the posterior marginal distributions to each 
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parameter given the data (y) are equivalent to those of the REML (restricted maximum likelihood) procedure, in 

obtaining components of variance, and the BLUP method in the prediction of the random effects. 

 

In the Gibbs sampling setting, using the package ‘MCMCglmm’ in the R platform (R Core Team 2016), a total 

chain length of 210,000 was used. A burn-in period of 10,000, and thinning of every 20
th

 iteration was used, 

with a total sample size of 10,000 stored iterations per chain. Conversion was assessed by checking in the chain, 

and its convergence was assessed by Geweke’s convergence diagnostic. In each chain, we analyzed the posterior 

mean and the 95% highest posterior density (HPD) interval, for each parameter given the data (y). 

 

Definition of GBLUP models 
 

In this study, we used a sequence of five GBLUP models, according to Muñoz et al. (2014), regarding different 

marker-based relationship matrices, with additive effects, and ignoring or not nonadditive effects. For each trait, 

we fitted the following models: additive model (A), which includes only matrix Ga; additive-dominant model 

(AD), which includes the matrices Ga and Gd; and additive-dominant-epistatic models, model A#A, which 

includes the matrices Ga, Gd and Ga#a, model D#D, which includes the matrices Ga, Gd and Gd#d, model A#D, 

which includes the matrices Ga, Gd and Ga#d. Detailed information about this approach is found in the literature 

(Su et al. 2012; Muñoz et al. 2014). 

 

We fitted the models using functions of the ‘BGLR’ package of the R platform (R Core Team, 2016). For each 

model, noninformative prior were defined as a 0.1 = df  and 0.1
nc

0.5
 σS 2

p=  for the degrees of freedom (df) 

and scale (S) hiperparameters of the scaled-inverse Chi-square (X
2
) distribution (density df) S.,|(.X-2

 is 

given by 2),–  S./(df  where σp
2

 is the phenotypic variance component; and nc is the number of covariance 

structures (relationship matrices) defined in each model, equal to 1, 2 or 3, for additive-dominant, additive-

dominant and epistatic-additive models, respectively. In all cases, inferences and predictions were based on a 

total chain length of 55,000 iterations, after previous analyses of some MCMC chains. A burn-in period of 

5,000, and thinning every 5
th

 iteration was used, resulting in a total sample size of 10,000 stored iterations per 

chain. Details about priori definitions in functions of the 'BGLR' package are presented by Pérez-Rodriguez and 

de los Campos (2014). 

 

We obtained the following components of genetic variance for each model and trait: narrow-sense (h
2
) and 

broad-sense (H
2
) heritability, as the ratio of additive (

2

aσ ) to phenotypic variance (
2

pσ , sum of all variance 

components in the model), and the ratio of total genetic variance 
2

a

2

g σσ =  + 
2

dσ  + 
2

aaσ  + 
2

ddσ  + 
2

adσ  to 

phenotypic variance, respectively, the dominance to total variance ratio as 
2

p

2

d

2 /σσ = d , the epistatic to total 

variance ratio as 
2

p

2

i

2 /σσ = i . These variance components varied according to the model. For each component 

of genetic variance, we obtained the posterior mean and respective standard error (SE) of the mean, using a 

cross-validation procedure. 

 

Comparison of models and cross-validation procedure 
 

GBLUP models were compared using the Akaike’s Information Criterion (AIC; Akaike 1974), defined by the 

expression AIC = 2
*
k – 2

*
ln( L̂ ), where k = number of parameters estimated, and L̂  is the maximized value of 

the likelihood function for the model. Therefore, AIC combines a measure of model fit (maximum of the 

likelihood) with a measure of model complexity (number of estimated parameters) over all iterations after burn-

in. The model with lowest AIC is chosen as the best fitting model. To quantify the relative likelihood of the 

models, i.e., the probability that the i
th

 model minimizes the (estimated) information loss, we employed the 

expression exp((AICmin − AICi)/2), where exp is the exponential function, and AICmin is the AIC with lowest 

value. 

 

For each trait, ability and stability of the models in the prediction of breeding values (BV) or total genetic values 

(GV) were also evaluated. We calculated the Pearson's correlation between BVf or GVf and the estimated 

genotypic value (BLUP, Yf) of progenies from the full dataset (without cross-validation), as a measure of 

model’s predictive ability. The model’s predictive stability was calculated via Pearson's correlation between BVf 



Morais Junior OP et al.                                                                                     6 
 

Genetics and Molecular Research 16 (4): gmr16039849 

 
 

or GVf of progenies from the full dataset (without cross-validation) and BVv or GVv of progenies from the 

validation dataset (with cross-validation), respectively. For each model and trait, we also calculated the mean 

square error (MSE) between BVf and BVv, and between GVf and GVv. In addition, for each model and trait, Yv 

values were linearly regressed on BVv or GVv of progenies from the validation set, where the slope coefficient is 

defined as a measurement of the degree of bias of a model. In this context, unbiased models are expected to 

have a slope coefficient of one. 

 

Averaged predictive accuracy of each model and trait was computed by Pearson's correlation between breeding 

values (BVv) or total genetic values (GVv) and estimated genotypic value (Yv) of the validation dataset. For this 

procedure, we used the cross-validation scheme TRN-TST partitions (Pérez-Rodríguez and de los Campos 

2014), with 50 TRN-TST random partitions of the total dataset (N), considering 90% for training (TRN) and 

10% for validation or testing (TST). Specifically, this scheme corresponds to a 10-folk cross-validation with 50 

random partitions (replications of the original k-folk procedure) of the total dataset, aiming to raise the precision 

of the estimate of accuracy. We also estimated the standard error (SE) of the mean of each parameter obtained 

through cross-validation (predictive stability, slope coefficient and predictive accuracy). 

 

RESULTS 
 

Population characterization 
 

Regarding the population structure based on the additive relationship matrix, on observing the dispersion of the 

progenies in the space of the first two principal components (Figure 1), no prominent structure was found 

associated to the progenies or subpopulations. The eighteen subpopulations (S01 to S18) constituents of the 

CNA12S population presented great overlapping, i.e., there was a high sharing of alleles between them. 

Therefore, this result does not justify the need to perform stratified sampling in this population, or even any 

analysis that considers dependence of the allele effects between possible clusters, for genomic prediction. 

 

 
Figure 1. Dispersion of S1:3 progenies of the CNA12S population (identification of 18 constituent subpopulations – S01 to S18), in 

relation to the first (PC1) and second (PC2) principal components, estimated in relation to the additive relationship (Ga). 

 

Estimates of parameters related to experimental precision and genetic variability, associated with the traits 

evaluated in the S1:3 progenies from the third recurrent selection cycle of this population, were presented by 

Morais Júnior et al. (2017a). For all the traits, were observed considerable genetic variability and high 

experimental precision associated with the phenotypic data, therefore, with high potential for fitting accurate 

genome-enabled prediction models. In addition, overall empirical distribution of the phenotypic data of 

genotypes (progenies and check cultivars) for each trait were approximately normal (data not shown), which 

justifies the use of Gaussian models, either to obtain genotypic values (Y, BLUP related to the genotypic 

effects) or even for application of genomic prediction. 
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Proportion of additive and non-additive variance components 
 

Proportions of components of genetic variance derived from the decomposition of the phenotypic variance for 

each GBLUP model and trait are presented in Figure 2. As expected, the narrow-sense (h
2
) was lower than the 

broad-sense heritability (H
2
), for all prediction models and traits. Narrow-sense heritability (h

2
) estimated via 

additive model (A) decreased after including nonadditive (dominance and epistatic) effects in additive-

dominance (AD) or additive-dominance-epistatic (A#A, D#D, A#D) models, for all traits. Across all traits, the 

decrease in h
2
 was 18% when dominance effects were accounted for (i.e., using AD instead of A), and 26% 

when dominance and epistatic effects were accounted for (i.e., using A#A, D#D and A#D instead of A). The 

highest decrease in h
2
 was observed for DTF (59% in average, using AD, A#A, D#D and A#D instead of A), 

and the smallest for WCG (8% in average, using AD, A#A, D#D and A#D instead of A). Specifically, when the 

dominance effects were assumed to be absent, using the additive model (A), h
2
 ranged from 0.22 (for DTF) to 

0.66 (for WCG). This result is explained by some dependence between additive and nonadditive matrices, which 

is not able to effectively explain independently the corresponding genetic effects. Considering the dominance 

effect, in the model AD, h
2
 reduced about 18% in average; with a variation of 0.08 (for DTF) to 0.38 (for 

WCG). Therefore, these results reflect a substantial amount of dominance variance (d
2
) for most of the traits. 

 

 
 

Figure 2. Posterior mean to the proportion of genetic variance components from the partitioning of broad-sense heritability (H
2
): 

additive variance (h
2
), dominance variance (d

2
) and epistasis variance (i

2
), for each model. The traits are: grain yield (GY, kg ha

-1
), 

plant height (PH, cm), days to flowering (DTF, days), incidence of panicle blast (IPB, score), severity of brown spot (SBS, score), 

whole-grain yield (WGY, g), length-width ratio (LWR), and white and chalky grains (WCG, %). All proportion values were 

significant based on the SE estimates. 

 

The additive-dominant model (AD) was extended to include additive-by-additive (A#A), dominant-by-dominant 

(D#D) and additive-by-dominant (A#D) first-order epistatic interaction effects (Figure 2). When comparing the 

three additive-dominance-epistatic models, small-to-moderate alterations in the proportion of the genetic 
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components were observed to each trait, although occurring strong changes between traits. When epistasis 

effects were considered, the components h
2
 and d

2
 reduced about 9% and 13% compared to the model AD, in 

the average of all traits. The proportion of epistasis variance (i
2
) was 0.07 (for A#A), 0.10 (for D#D) and 0.10 

(for A#D). In the average of these models, i
2
 ranged from 0.05 (for SBS) to 0.18 (for WGY), reflecting the 

smaller contribution of this component than to d
2
, for the most traits. In the average of all traits, the components 

h
2
, d

2
 and i

2
 contributed with about 34%, 14% and 9% for phenotypic variance. 

 

 

Model goodness-of-fit, ability, stability and predictive accuracy 
 

The goodness-of-fit of the models was estimated using the full dataset, i.e., without cross-validation (Table 1). 

As the predictive ability, correlations between breeding values (BV) and genotypic values (Y) were lower that 

the correlations between total genetic value (GV) and Y, for all traits. The correlations between BVf and Yf 

ranged from 0.85 (for DTF) to 0.97 (for WCG), smaller than the correlations between GVf and Yf, that ranged 

from 0.90 (for DTF) to 0.98 (for WCG), with marked differences between models, for most traits. The largest 

differences between the BV and GV predictive ability were detected for DTF, and the smallest for WCG, 

reflecting the best and worse fit to the genotypic values, respectively, by considering the nonadditive 

(dominance and epistatic) effects in models. A slight decrease in the differences of BV predictive ability and 

slight increase in the differences of GV predictive ability, between the models, were observed when nonadditive 

effects were considered. 

 

The relative model quality was assessed through an Akaike’s information criterion (AIC) (Table 1). From this 

criterion, the relative likelihood [L(θ )] of each fitted model was also considered as probability’s measure that 

the model minimizes the (estimated) information loss, in relation to the model with lowest AIC value. Based on 

the lowest estimated AIC, the additive model (A) presented a better fit to the data, and consequently the higher 

relative likelihood [L(θ )  = 1], for all traits. Therefore, the evidence that the best model for all traits include 

only additive effects is very strong. 

 

 

Trait Model 
Predictive ability 

LogL
b
 AIC

b
 L(θ )

b
 r(BVf,  Yf)

a
 r(GVf,  Yf)

a
 

 A 0.89 - -1164.3 2441.0 1.00 

 AD 0.89 0.91 -1160.0 2443.0 0.38 

GY A#A 0.88 0.93 -1153.6 2443.4 0.31 

 D#D 0.88 0.93 -1154.8 2443.0 0.37 

 A#D 0.88 0.93 -1152.6 2442.1 0.58 

 A 0.92 - -391.7 915.6 1.00 

 AD 0.92 0.94 -385.1 915.7 0.94 

PH A#A 0.91 0.95 -381.4 917.1 0.47 

 D#D 0.91 0.95 -381.5 916.1 0.78 

 A#D 0.91 0.95 -381.5 916.3 0.69 

 A 0.78 - -371.5 810.5 1.00 

 AD 0.76 0.90 -351.8 812.3 0.40 

DTF A#A 0.76 0.93 -346.5 814.1 0.17 

 D#D 0.76 0.93 -346.7 813.1 0.28 

 A#D 0.76 0.93 -346.6 813.6 0.21 

 A 0.87 - -267.6 642.5 1.00 

 AD 0.87 0.90 -261.5 644.6 0.36 

IPB A#A 0.86 0.92 -254.5 645.2 0.26 

 D#D 0.86 0.92 -256.3 645.3 0.25 

 A#D 0.86 0.92 -255.6 645.5 0.23 

 A 0.95 - -421.1 999.5 1.00 

 AD 0.95 0.96 -417.9 1000.1 0.76 

SBS A#A 0.95 0.96 -415.3 1001.0 0.49 

 D#D 0.94 0.96 -414.9 1000.1 0.76 

 A#D 0.94 0.96 -414.6 1000.1 0.77 

 A 0.87 - -419.5 930.1 1.00 

 AD 0.86 0.91 -411.5 931.3 0.55 

WGY A#A 0.85 0.96 -395.0 931.3 0.53 

 D#D 0.85 0.94 -400.0 932.4 0.32 

 A#D 0.85 0.97 -390.2 932.1 0.37 

 A 0.94 - 139.9 -151.0 1.00 

 AD 0.93 0.95 144.9 -150.0 0.60 

LWR A#A 0.91 0.97 155.6 -150.7 0.84 

 D#D 0.93 0.96 155.6 -150.7 0.84 

 A#D 0.92 0.96 150.2 -150.6 0.79 

 A 0.97 - -415.4 1004.1 1.00 

Table 1. Posterior mean of predictive ability and parameters related to the goodness-of-fit of the models, for grain yield (GY, 

kg ha
-1

), plant height (PH, cm), days to flowering (DTF, days), incidence of panicle blast (IPB, score), severity of brown spot 

(SBS, score), whole-grain yield (WGY, g), length-width ratio (LWR) and white and chalky grains (WCG, %) 
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a
 Posterior mean estimates of Pearson's linear correlation; BVf, GVf and Yf : breeding value, total genetic value, and genotypic value, 

estimated from the full dataset. 
b
 LogL: log-likelihood function; AIC: Akaike’s Information Criterion; and L( θ ): relative likelihood 

of the model. 

 

Measures related to predictive stability, mean square error (MSE) and slope regression (b) of each model, to 

predict breeding or total genetic values of progenies for each trait, are showed in Table 2. The predictive 

stability measures the dependency of BV or GV values on the phenotype, defined as correlation between BVf  or 

GVf of progenies from the full dataset and BVv or BVv of progenies from the validation dataset. As expected for 

all traits evaluated, predictive stability was higher to BV prediction, with correlations ranging from 0.65 (for 

LWR) to 0.85 (for IPB), than to GV prediction, with correlations ranging from 0.46 (for LWR) to 0.82 (for 

WCG). To each trait, non-significant differences were observed in BV or GV predictive stability between the 

models. 

 

Across models and traits, the mean square error (MSE) for BV prediction presented lower values than obtained 

for GV prediction (Table 2). For each trait, no marked differences between MSE were observed for GV 

prediction. As expected, for all traits, additive model (A) based prediction showed the higher MSE, because this 

model is not able to explain all the genetic variation, thus resulting in remaining variation included into the 

residual term. A pronounced decrease in the differences of MSE for BV prediction and a prominent increase in 

the differences of MSE for GV prediction, between the prediction models, was observed when nonadditive 

effects were included in the models. 

 

As a measure of bias of prediction for each model, we calculated the slope regression of Yv on BVv or GVv 

(Table 2). Whereas slope coefficients greater than 1 indicated a biased underestimation in prediction, and values 

smaller than 1 indicated a biased overestimation, unbiased models are expected to have a slope coefficient of 1. 

For all traits, except for DTF, slopes of the additive model (A) were not significantly different than 1, indicating 

no significant bias in BV prediction. When nonadditive effects were included in the models AD, A#A, D#D and 

A#D, there were significant underestimations in BV prediction, for all traits. For DTF, these underestimations 

were even more accentuated, with slopes coefficients greater than 2. By the other hand, in GV prediction there 

were no significant bias, for most of the models and traits. In addition, the additive-dominance-epistatic models 

showed the larger slopes, with more significant bias, either in BV or GV prediction. The suitability of additive, 

additive–dominance and additive–dominance-epistatic prediction models was assessed by BV and GV 

predictive accuracy (Figure 3).  

 

Across the models, BV accuracy ranged from 0.31 (for DTF) to 0.68 (for WCG), while GV accuracy ranged 

from 0.33 (for DTF) to 0.68 (for WCG). As expected, the predictive accuracy is much lower than measures of 

correlations related to goodness-of-fit (predictive ability and stability), due to considering independent data 

between training and testing sets, via cross-validation.  

 

Based on the intervals of standard error (SE) of the mean, no clear differences were detected in accuracy 

between the models, not even between BV and GV accuracy, for each trait. This result can be attributed to the 

marked variation in the accuracy of all the models, among the 50 random subsets of the cross-validation 

procedure, thus resulting in overlapping intervals (data not shown). Considering all traits, BV predictive 

accuracy of the additive model (A) was high correlated (r = 0.94) with the h
2
 component of the traits (Figure 4). 

This result expresses the strong influence of the trait heritability on the predictive accuracy. 

 

Finally, we also estimated significant correlations of moderate to high magnitude (Table 3), which ranged from 

0.32 (additive relationship vs dominance relationship) to 0.86 (dominance relationship vs dominance by 

dominance epistatic interaction), suggesting that the matrices entries are positively associated. 

 

 

 AD 0.97 0.97 -412.8 1004.7 0.74 

WCG A#A 0.95 0.98 -406.0 1005.0 0.64 

 D#D 0.96 0.97 -411.2 1005.4 0.53 

 A#D 0.96 0.98 -410.0 1004.9 0.69 
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Figure 3. Posterior mean of predictive accuracy of each model, based on prediction of breeding values or total genetic values, for 

grain yield (GY, kg ha
-1

), plant height (PH, cm), days to flowering (DTF, days), incidence of panicle blast (IPB, score), severity of 

brown spot (SBS, score), whole-grain yield (WGY, g), length-width ratio (LWR), and white and chalky grains (WCG, %). The error 

bars represent standard error of the mean. 

 

 

 

Trait Model 
Predictive stability  MSE  Slope coefficient (b) 

r(BVf, Yv)
a
 r(GVf, Yv)

a
 (BVf, BVv) (GVf, GVv)  (Yv ~ BVv) (Yv ~ GVv) 

 A 0.76 ± 0.01 -  35845 -  1.03 ± 0.04 - 

 AD 0.76 ± 0.01 0.72 ± 0.01  31972 44295  1.12 ± 0.03 1.03 ± 0.04 

GY A#A 0.77 ± 0.01 0.68 ± 0.02  27120 54492  1.23 ± 0.02 1.05 ± 0.04 

 D#D 0.77 ± 0.01 0.69 ± 0.02  30614 52309  1.13 ± 0.03 1.03 ± 0.04 

 A#D 0.77 ± 0.01 0.68 ± 0.02  27314 55392  1.24 ± 0.02 1.05 ± 0.03 

 A 0.80 ± 0.01 -  2.78 -  0.97 ± 0.06 - 

 AD 0.81 ± 0.01 0.77 ± 0.01  2.20 3.44  1.14 ± 0.05 0.97 ± 0.06 

PH A#A 0.82 ± 0.01 0.76 ± 0.01  1.80 3.81  1.28 ± 0.04 1.00 ± 0.06 

 D#D 0.82 ± 0.01 0.76 ± 0.01  2.06 3.80  1.17 ± 0.04 0.98 ± 0.06 

 A#D 0.82 ± 0.01 0.75 ± 0.01  1.91 3.84  1.24 ± 0.04 0.99 ± 0.06 

 A 0.82 ± 0.01 -  0.42 -  1.12 ± 0.03 - 

 AD 0.81 ± 0.01 0.68 ± 0.02  0.11 1.10  2.51 ± 0.22 0.94 ± 0.01 

DTF A#A 0.82 ± 0.01 0.65 ± 0.02  0.07 1.34  3.13 ± 0.31 0.96 ± 0.01 

 D#D 0.82 ± 0.01 0.64 ± 0.02  0.09 1.35  2.76 ± 0.25 1.01 ± 0.01 

 A#D 0.82 ± 0.01 0.64 ± 0.02  0.08 1.35  2.96 ± 0.28 0.99 ± 0.01 

 A 0.84 ± 0.01 -  0.32 -  0.96 ± 0.05 - 

 AD 0.85 ± 0.01 0.81 ± 0.01  0.27 0.43  1.09 ± 0.04 0.95 ± 0.05 

IPB A#A 0.85 ± 0.01 0.77 ± 0.01  0.22 0.54  1.22 ± 0.03 0.96 ± 0.05 

 D#D 0.85 ± 0.01 0.78 ± 0.01  0.24 0.51  1.14 ± 0.04 0.97 ± 0.05 

 A#D 0.85 ± 0.01 0.77 ± 0.01  0.22 0.52  1.22 ± 0.03 0.97 ± 0.05 

 A 0.78 ± 0.01 -  6.95 -  1.01 ± 0.07 - 

 AD 0.78 ± 0.01 0.76 ± 0.01  6.25 7.73  1.06 ± 0.07 1.02 ± 0.07 

SBS A#A 0.79 ± 0.01 0.75 ± 0.01  5.77 8.39  1.11 ± 0.07 1.04 ± 0.07 

 D#D 0.79 ± 0.01 0.75 ± 0.01  5.94 8.29  1.08 ± 0.07 1.03 ± 0.07 

 A#D 0.79 ± 0.01 0.75 ± 0.01  5.73 8.39  1.12 ± 0.07 1.04 ± 0.07 

 A 0.76 ± 0.01 -  1.74 -  1.05 ± 0.01 - 

 AD 0.76 ± 0.01 0.70 ± 0.01  1.34 2.52  1.30 ± 0.02 1.06 ± 0.01 

WGY A#A 0.78 ± 0.01 0.60 ± 0.02  0.54 4.09  2.15 ± 0.11 1.14 ± 0.02 

Table 2. Posterior mean of predictive stability, mean square error (MSE) and slope coefficient (b) of the models, for grain 

yield (GY, kg ha
-1

), plant height (PH, cm), days to flowering (DTF, days), incidence of panicle blast (IPB, score), severity of 

brown spot (SBS, score), whole-grain yield (WGY, g), length-width ratio (LWR) and white and chalky grains (WCG,%) 
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a
 Posterior mean estimates of Pearson's linear correlation; MSE: mean square error; BVf and GVf : breeding value and total genetic 

value estimated from the full dataset; BVv, GVv and Yv: breeding value, total genetic value and genotypic value estimated from the 

validation dataset. 

 

 

 
 

 
Figure 4. Relationship (linear regression) between the predictive accuracy of breeding values and the trait narrow-sense heritability 

(h
2
) for the additive model (A). Pearson's correlation coefficient (r) equal to 0.94 (p-value < 0.001). 

 

 

 

 

 

 

 

 
 

 

a 
Significance computed by Mantel’s test with 10,000 permutations, where 

**
 p-value < 0.001. Ga: additive relationship; Gd: 

dominance relationship; Ga#a: additive by additive interaction; Gd#d: dominance by dominance interaction; Ga#d: additive by 

dominance interaction. 

 

DISCUSSION 

In the context of a recurrent selection program, the availability of a dense genomic markers panel enables the 

genotyping of progenies for many SNP markers, thus, obtaining genomic relationship matrices (G-matrix). The 

application of G-matrices in generating measures of genetic variance parameters from synthetic populations of 

self-pollinated species has not yet been explored. Therefore, the present study was motivated by the fact that no 

 D#D 0.77 ± 0.01 0.64 ± 0.01  1.21 3.55  1.40 ± 0.03 1.07 ± 0.01 

 A#D 0.78 ± 0.01 0.59 ± 0.02  0.60 4.49  2.05 ± 0.10 1.16 ± 0.02 

 A 0.72 ± 0.01 -  5e10
-4

 -  0.94 ± 0.04 - 

 AD 0.70 ± 0.02 0.46 ± 0.02  4e10
-4

 5e10
-4

  1.08 ± 0.02 0.93 ± 0.04 

LWR A#A 0.65 ± 0.02 0.47 ± 0.02  3e10
-4

 6e10
-4

  1.60 ± 0.03 1.04 ± 0.03 

 D#D 0.68 ± 0.02 0.46 ± 0.02  4e10
-4

 6e10
-4

  1.13 ± 0.01 0.95 ± 0.03 

 A#D 0.67 ± 0.02 0.46 ± 0.02  4e10
-4

 6e10
-4

  1.33 ± 0.01 0.99 ± 0.03 

 A 0.82 ± 0.01 -  10.26 -  1.04 ± 0.07 - 

 AD 0.83 ± 0.01 0.82 ± 0.01  9.32 11.13  1.08 ± 0.06 1.04 ± 0.07 

WCG A#A 0.85 ± 0.01 0.80 ± 0.01  6.87 12.46  1.20 ± 0.06 1.10 ± 0.06 

 D#D 0.83 ± 0.01 0.81 ± 0.01  8.91 11.55  1.09 ± 0.06 1.05 ± 0.07 

 A#D 0.84 ± 0.01 0.81 ± 0.01  8.26 11.78  1.13 ± 0.06 1.07 ± 0.07 

Matrix
a
 Gd Ga#a Ga#d Gd#d 

Ga 0.323 
**

 0.663 
**

 0.851 
**

 0.417 
**

 

Gd -  0.317 
**

 0.275 
**

 0.860 
**

 

Ga#a -  -  0.851 
**

 0.511 
**

 

Ga#d -  -  -  0.499 
**

 

Table 3. Estimates of Pearson’s linear correlation between genetic relationship matrices 
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other study has compared GBLUP models, including simultaneously additive and nonadditive effects, either to 

investigate the traits genetic architecture, or to genomic prediction in rice. The studies already carried out in rice 

have exploited and considered only additive effects in the genomic prediction, evaluating different model 

approaches, based either on parametric or nonparametric methods (Grenier et al. 2015; Onogi et al. 2015; 

Spindel et al. 2015).  

 

Additive and nonadditive genetic variances 

 
In this study, we fitted GBLUP models to estimate additive and nonadditive genetic variation, in addition to 

breeding and total genetic values, via G-matrices-based analysis, using genome-wide SNP markers. Therefore, 

based in marker-based genetic models, this is the first formal attempt to estimate additive, dominance, and 

epistatic variances of rice phenotypes, especially in a synthetic population (CNA12S) developed for recurrent 

selection breeding. We decided not to use the pedigree data of this population, since other studies (Muñoz et al. 

2014; Kumar et al. 2015; Gamal El-Dien et al. 2016) already have evidenced the lower efficiency of pedigree-

based models to capture and explain genetic relatedness. According to these authors, the use of average 

numerator relationship matrices recognizably producing less realistic estimates of genetic variance, because of 

limited and biased disentanglement of additive variance from all nonadditive factors through genetic variance 

decomposition, than using marker-based models (having the capacity to exploit the Mendelian sampling term 

between progenies). 

 

Our results showed that when additive and nonadditive effects were used together, the variance explained by the 

additive component decreased. By the other hand, the broad-sense heritability of all traits (sum of the 

heritabilities due to all genetic effects considered) increased when dominance and epistatic effects were 

accounted for. One reason to this tendency is that the additive component alone absorbs some nonadditive 

variance. Thus, this indicates that the relationship matrices are in a “tug-of-war” state over the same variance, as 

verified in other studies (Su et al. 2012; Muñoz et al. 2014; Bouvet et al. 2015; Lopes et al. 2015; Gamal El-

Dien et al. 2016). This can be explained by some nonorthogonality existing in the distribution of additive and 

nonadditive effects, thus, suggesting dependency between variance components. 

 

The confounding nature of additive and nonadditive effects depends of the distribution of allele frequencies, 

linkage disequilibrium (LD) patterns, and trait genetic architecture, being that certain proportion of the variance 

due to interaction of alleles can upwardly biased the estimate of additive variance (Lu et al. 1999; Hill et al. 

2008; Zuk et al. 2012). In this sense, for all traits, the additive variance was overestimated when using the 

additive model (A), being 62% of the overestimated additive variance explained by the dominance variance, and 

38% by the epistatic variance, across all traits. Therefore, these results evidence a large fraction of dominance 

on the total genetic variance, in all rice phenotypes evaluated. This is even more pronounced for DTF, a trait 

recognizably controlled by expressive effect of dominance in rice (Kawakata and Yajima 1995; Morais Júnior et 

al. 2017b). 

 

It is worth to highlight that, the genotyping was performed for a pooled DNA of eight plants of each S1:3 

progeny, therefore, the estimated genetic variance corresponds to that expected between S1 progenies. It is also 

necessary to highlight that this population comes from multiple crosses, with unequal contribution of the parents 

(inbred S1:3 progenies), therefore, with allele frequency ≠ 0.5. In this case, the genetic variance (
2

gσ ) of the 

population in generation S1 (equivalent to F3, with inbreeding coefficient = 0.5), omitting epistatic effects, is 

about:  

 

H
4

1
 + D

2

1
 + D

2

4
 + σ

4

3
 + σ

2

3
 = σ 21

2

d

2

a

2

g   

 

(Cockerham 1963), where 
2

aσ  and 
2

dσ  are the additive and dominance variances; D1 is the covariance between 

additive effects and homozygous dominance effects; D2 is the variance of homozygous dominance deviations; 

and H is the sum of homozygous dominance deviations, squared. Therefore, there are ‘hidden’ nonadditive 

components even if an additive model is fitted. Thus, defining genetic relationship matrices might arises certain 

overestimation of the components of genetic variance relative to the expected in S1, since other important 

genetic effects (D1, D2 and H) also explain the phenotypes.  
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It is known that the application of genomic data to estimate additive, dominance, and epistatic variances allows 

us to better understand the genetic architecture of traits. Compared to pedigree data, the use of genome-wide 

markers has been described as a more precise alternative to partition the genetic variance (Vinkhuyzen et al. 

2013; Muñoz et al. 2014; Gamal El-Dien et al. 2016). However, it is worth to highlight that genomic estimates 

may presents its own pitfalls. In this case, the proportion of the variance explained by the markers can be 

underestimated, because of the non-captured variance, a phenomenon described as “the case of the missing 

heritability” (Maher 2008). This might happen if the causal variants (genes/QTLs) are not in linkage 

disequilibrium (LD) with the markers used in the estimation of the variance components. This phenomenon can 

explain the differences detected in other studies (Vinkhuyzen et al. 2013; Muñoz et al. 2014; Bouvet et al. 

2015), between genomic and pedigree based variance components, being that pedigree-based analysis often 

overestimate additive variance compared to markers-based analysis. However, according to Lopes et al. (2015), 

despite the considerable differences between variance components, it is still uncertain if such differences are 

more likely due to an underestimation with genomics or due to an overestimation with pedigree data. 

 

Other pitfall in the genomic data is regarding the estimation of epistatic variance, using relationship coefficients 

of epistatic variance–covariance matrices defined by Hadamard product, which assumes a population in linkage 

equilibrium and not linked markers (Schnell 1963). Therefore, synthetic populations always have some LD 

degree, desirable to genomic prediction, and due to the large amount of SNP markers, some of these can be 

tightly linked. In this case, the use of Hadamard matrix multiplication should lead to some bias in epistatic 

variance estimates. According to Schnell (1963), the recombination rate should be taken into account for in the 

definition of epistatic coefficient matrices. However, the pattern of recombination rate is highly variable across 

the genome, besides of negative correlation with genome size, in several species, as rice (Tiley and Burleigh 

2015), which makes its account a very difficult task. Therefore, using marker-based relationship matrices 

without this correction, the models cannot be able to clearly estimate the epistatic variance. 

 

Influence of additive and nonadditive effects on models fitting and accuracy 
 

For all traits, the values of AIC and relative likelihood indicate better-fitting of additive model (A). Therefore, 

as the additive effects are able to capture part of the effects due to dominance and epistasis, as already described, 

such effects are not expressive when accounted in the prediction model. Our results also revealed that for BV 

prediction, the ability varied considerably between models, but remained certain higher values for the additive 

model (A). Therefore, as our interest in rice breeding is on BV prediction, to obtain better-fitted models, the 

nonadditive effects can be neglected, there being no reason to consider them into genomic-enabled prediction 

models. Comparisons with other studies should be carried out with caution because the results regarding the 

prediction are highly dependent of the population generation and the applied method. The results assessed in our 

study were like those in a Eucalyptus hybrid population (Bouvet et al. 2015), but opposite to those in a Pinus 

taeda multifamily population (Muñoz et al. 2014), in three purebred pig populations (Lopes et al. 2015), and in 

a breeding population of cassava (Manihot esculenta) (Wolfe et al. 2016). In these last studies, better fit to 

models or predictive ability were detected by the inclusion of nonadditive effects, possibly due to larger 

magnitude of such effects given the structure of families in the population, or even by the used training dataset 

size. 

 

Aiming to measure the influence of the genotypes to predicted BV, we tested how the inclusion of additive or 

nonadditive genetic effects affected the prediction stability, comparing the results from the full dataset, with the 

results from validation set. For all traits, we observed non-significant differences between the models, regarding 

the stability of the BV prediction. Therefore, the application of nonadditive relationship matrices not contribute 

to generate models with more stable BV prediction than additive model, although the mean square errors (MSE) 

of the additive-dominance or additive-dominance-epistatic models decreased noticeably when compared with 

the additive model, for all traits. Not surprisingly, the significant upwards bias of the BV prediction, with the 

inclusion of nonadditive effects in the models, also can be an evidence that additive model is enough for 

genomic prediction in this rice population. This pattern of bias in the prediction may have happened because 

models with nonadditive effects inflated the predicted BV, promoting a biased underestimation of such effects. 

These results indicate that, for the evaluated rice phenotypes, a consistent (high stability and low bias) BV 

prediction can be achieved simply by additive prediction models. 

 

Accuracies of predicting unobserved genotypic values varied markedly between traits, but were almost identical 

and non-significant between the fitted models with or without nonadditive effects, for each trait. In this case, 

according to other studies (Xu et al. 2014; Kumar et al. 2015), the lack of improvement in accuracy by the 

inclusion of nonadditive effects, even for traits with great dominance effects as DTF, could be attributed to the 

correlation between variance components. In the average of all traits, the correlation between vectors of additive 
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effects and nonadditive effects was above 0.70, which also might explain the “tug-of-war” state of these effects 

over the same variance. Correlation between genetic relationship matrices is a factor that can contribute to high 

correlation between variance components. According to Li et al. (2016), another explanation about the lack of 

improvement in accuracy in the inclusion of nonadditive effects are due to different directional effects of SNP 

additive and nonadditive variations. 

 

It is noteworthy to refer the fact that this study is based on data from one location, which can contribute to 

generate biased estimates of genetic parameters, due to the genotype–environment confounding affects specific 

to this location and year. However, the experimental data used showed great precision, which allowed the 

expression of the available genetic variance in the population, besides the estimates of traits heritability at the 

progeny-main basis were most consistent with those reported to other testing locations. Therefore, these factors 

can ensure that the results obtained here, although they cannot be fully generalized to other populations and 

related species, may represent a standard of these information for rice. However, the assessment of additive-

dominance-epistatic models in others rice populations with different progenies structures or generations are still 

worth exploring to discern the genetic variance components, as well as the genomic prediction of breeding 

values.  

CONCLUSION 

Finally, this study improved our current understanding of the genetic architecture of the main traits evaluated in 

rice breeding programs, such information should be considered when developing effective breeding schemes of 

genomic recurrent selection. This study also shows that the nonadditive genetic effects, although being an 

important source of genetic variation for rice phenotypes, are not relevant for prediction of breeding values of 

progenies, as new parents for recombination crosses in population of recurrent selection. These results are very 

important, since only the breeding values are relevant to promote genetic gains between cycles in 

intrapopulation recurrent selection, being effectively transferred to further generations. 
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