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Abstract

Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and

small changes in their magnitude can have a large effect on the CO2 concentration in the

atmosphere. Thus, a better understanding of this attribute would enable the identification

of promoters and the development of strategies to mitigate the risks of climate change.

Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission

induced by crop management in sugarcane areas in Brazil. To do so, we used different vari-

able selection methods (correlation, chi-square, wrapper) and classification (Decision tree,

Bayesian models, neural networks, support vector machine, bagging with logistic regres-

sion), and finally we tested the efficiency of different approaches through the Receiver

Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18

independent variables and one dependent (or response) variable). The association between

cover crop and minimum tillage are effective strategies to promote the mitigation of soil

CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables

soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently

selected for soil CO2 emission classification using different methods for attribute selection.

According to the results of the ROC curve, the best approaches for soil CO2 emission classi-

fication were the following: (I)–the Multilayer Perceptron classifier with attribute selection

through the wrapper method, that presented rate of false positive of 13,50%, true positive

of 94,20% area under the curve (AUC) of 89,90% (II)–the Bagging classifier with logistic

regression with attribute selection through the Chi-square method, that presented rate of

false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach

stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and

lower computational cost.
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Introduction

Carbon dioxide (CO2) is continuously exchanged between soils and the atmosphere, mainly

through the processes of photosynthesis and incorporation of organic matter derived from

plants (efflux of CO2) and the decomposition of this organic matter by soil organisms (CO2

flux). Therefore, the amount of carbon (C) stored in the soils depends mainly on the equilib-

rium between the C inputs and outputs of the system [1].

In this context, increased C storage in soils worldwide could help compensate for the

increase in anthropogenic CO2 emissions, while increased soil emissions could significantly

worsen atmospheric rises [2].

Thus, the potential of agriculture to mitigate greenhouse gas emissions has been the subject

of intense scientific research over recent years [1]. However, after many decades of research on

soil organic matter decomposition, very few robust mathematical models and experiments to

predict the effect of both biotic and abiotic factors on the soil C balance have been developed

[3].

Considering this issue, the alternative that we propose is the use of data mining techniques

to predict CO2 emission from the soil. Among the techniques of data mining, classification is a

task that stands out in the studies of the scientific community of Knowledge Discovery in

Database (KDD). The principle of this task is to predict a categorical variable, i.e., to discover a

function that maps a set of records into a set of predefined variables, called classes. Such a

function can be applied to new records in order to predict the class in which such records fit

[4, 5].

Several algorithms can be used to perform such a task; however, some of them, such as J48,

Naive Bayes, Multilayer Perceptron, SVM, Bagging, are widely used due to their usual good

performance regarding classification processes. However, the models obtained through the use

of different classifiers require assessment under the same conditions.

An alternative to compare predictive models is the Receiver Operating Characteristic

(ROC) curve, which is a graphical method for evaluation, organization, and selection of diag-

nostic and/or prediction systems. This tool has been widely used in data mining processes to

assess classification models and is particularly useful in areas presenting a great disparity

between classes or when different costs/benefits must be taken into account for the different

errors/correctness in classification [6].

Hence, our study aimed at using data mining techniques to predict the soil CO2 emission

induced by crop management in sugarcane areas in Brazil. To accomplish that, we used differ-

ent variable selection methods (correlation, chi-square, wrapper) and classification (Decision

tree, Bayesian models, neural networks, support vector machine, bagging with logistic regres-

sion), and finally we compared the efficiency of different approaches through the ROC curve

(Receiver Operating Characteristic).

Materials and methods

Site locations and experiment descriptions

The composition of the original database for this work was carried out by collecting soil vari-

able (physical, chemical, microbiological) and climatic data at an experimental sugarcane area

located in the city of Iracemápolis, São Paulo, Brazil (22˚34’50” S, 47˚31’07” W; 608 m above

sea level), during the sugarcane crop reform period.

The soil under investigation is classified as Rhodic Hapludox, according to the Soil Taxon-

omy System [7], and is described as a Latosssolo Vermelho Eutroférrico, according to the Bra-

zilian Soil Classification [8], with very clayey texture. In the site characterization, the soil
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presented a pH around 4.6, an average organic C content of 10.5 g C dm–3, base saturation of

50%, cation exchange capacity 10.25 cmolc dm–3, bulk density of 1.34 kg dm -3, from 0–40 cm

depth. The distribution of particle sizes of sand, silt, and clay were 140, 194 and 666 g kg–1,

respectively.

The data were obtained from a field experiment with a randomized complete block design

in the split-plot design with four replicates. The plots involved treatments with and without

cover crop with Crotalaria Juncea and subplots with two soil tillage conditions (minimum and

conventional tillage). Each experimental unit (sub-plot) consisted of 15 lines of sugarcane,

with a spacing of 1.5 m and 34 m in length.

Analysis of CO2 emissions, soil temperature, and soil moisture

Soil CO2 emissions were recorded between April 27 and August 3, 2013. Emissions were mea-

sured in the morning (i.e. between 8 and 10 am) [9], using five PVC collars (diameter = 10 cm

and height = 7 cm), inserted 0.02 m into the soil at each of the 16 plots (80 collars in total). The

PVC collars were distributed in sugarcane field as follow: two of them located in the in-row,

one in an intermediate position considered as seedbed region (at 0.38 m distance from in-

row), and two in the center of the inter-row (at 0.75 m distance from in-row).

Soil CO2 emissions were measured using an infrared gas analyzer (IRGA) produced by

LI-COR (model LI8100A, Nebraska, USA). This chamber was a closed system with an internal

volume of 991 cm3 and a contact area with the soil of 71.6 cm2. When recording emissions, the

chamber was placed over the PVC collars to prevent any mechanical disturbance to the soil

profile, which may result in overestimation of emissions.

The quantification of CO2 emissions began 24 hours after soil tillage operations. In each

plot, the CO2 emission measurement lasted 90 seconds. The measurements were taken for 97

days days after soil tillage, until CO2 emissions had stabilized. The CO2 emissions recorded

from the five collars within each plot (two in intra-rows and three in inter-rows) were aggre-

gated into a single measure using a weighted average (assuming an area of 27% for the rows

and 73% for the inter-rows). Soil CO2 emission over the entire study period was estimated by

the integral of the area formed below the emission curves over time.

The measurements of soil temperature and soil moisture were taken at exactly the same

time as soil CO2 measurements. Soil temperature (St) was assessed at all points studied with

the sensor which is part ofthe same LI-COR instrument (model LI8100A). This sensor consists

of a 20 cm rod inserted into the soil perpendicular to the surface near the PVC collars used to

measure the soil respiration. Soil moisture (Sm) was measured simultaneously with the mea-

surement of CO2 concentration using Time Domain Reflectrometry (TDR). Probe Thetaprobe

ML2 (Delta-T Devices, Cambridge, UK) is an English manufacturing tool that directly mea-

sures the water content in the soil, corresponding to the volumetric moisture content, using

the principle of wave generation which releases an electromagnetic pulse to a set of rods with

reflection measured in TDR. Moreover, during experimental period, rainfall events were mon-

itored through an automatic surface weather station installed at the experiment site.

In the end of the CO2 sampling period, disturbed and undisturbed soil samples were col-

lected at the depths of 0.00–0.10 m, 0.10–0.20 m, 0.20–0.30 m, and 0.30–0.40 m.to evaluate the

effects of the treatments on soil attributes.

Soil physical, chemical and biological variables

Total soil porosity (Sp), macroporosity (Macro), microporosity (Micro), and bulk density (Bd)

were analyzed according to the Brazilian Agricultural Research Corporation methodologies

[10]. The soil resistance to penetration (RP) was obtained using the Stolf´s formulation [11].
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The mean diameter of the aggregates (MDA) was determined according to the method

described by Kemper and Chepil [12] and the calculation of the aggregate tensile strength (Ts)

was performed as described by Dexter and Kroesbergen [13].

All samples were taken to the laboratory, air dried and subsequently passed through a 2.0 mm

mesh. We measured soil pH (CaCl2 0,01 mol L-1), exchangeable cations (Ca2+, Mg2+ and K+),

phosphorus available in resin (P), organic C concentration (wet oxidation), acidity potential, CEC

potential, and base saturation in accordance with the methodology proposed by Raij [14].

For the analysis of microbial biomass C, the samples were collected and placed in a cooler

and refrigerated during the transportation to the laboratory for preservation in cold storage at

4˚C until analysis. The microbial biomass C (MBC) was determined through the fumigation-

extraction method proposed by Vance [15].

Data mining

The original dataset was constituted of 19 variables (one dependent or response variable and

18 independent or explanatory variables) (Table 1) which were added to the dataset number-

ing 1,552 observations. The variable-target refers to the soil CO2 emission and is the classifica-

tion target.

The 18 independent variables were constituted of nine soil physical attributes (Sm, Ts,

MDA, Macro, Micro, TP, Bd, PR, Ts), seven soil chemical attributes (H+Al, Al3+, Ca2+, Mg2+,

K+, P, C), one soil microbial attribute (MBC), and a climatic variable (daily rainfall obtained at

a weather station located in the sugarcane mill) (Table 1).

The data were initially evaluated by through descriptive statistics through Box-plot graphs.

The box shows the data between the first and third quartiles (hinge), with median represented

by a line inside the box. Vertical lines (whiskers), starting in the middle of the base (and top) of

the box and ending in values (referred to as adjacent lower and upper) approximately indicate

the variability of the data [16].

Table 1. Description of the 19 variables (independent and dependent) used in the database composition.

Variable Type Abbreviation Description Unit

Physical Independent Sm Soil moisture %

Independent St Soil temperature ˚C

Independent MDA Mean diameter of the aggregate mm

Independent Macro Soil macroporosity %

Independent Micro Soil microporosity %

Independent TP Total porosity %

Independent Bd Bulk density kg dm -3

Independent PR Penetration resistance MPa

Independent Ts Tensile strength of the aggregate kPa

Chemical Independent H+Al Acidity potential cmolc dm -3

Independent Al3+ Exchangeable aluminum cmolc dm -3

Independent Ca2+ Exchangeable calcium cmolc dm -3

Independent Mg2+ Exchangeable magnesium cmolc dm -3

Independent K+ Exchangeable potassium cmolc dm -3

Independent P Exchangeable phosphorus mg dm -3

Independent Organic C Soil Organic Carbon mg dm -3

Microbiological Independent MBC Microbial biomass carbon Ug C g-1

Climatic Independent P Rainfall mm day -1

Variable-target Dependent CO2 emission soil CO2 emission kg ha-1 dia-1

https://doi.org/10.1371/journal.pone.0193537.t001
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In order to identify different levels of CO2 emissions from the soil, a goal attribute discreti-

zation was required. For this purpose, the CO2 emission values (kg ha-1 dia-1) were organized

in ascending order and divided equally into three emission classes: low, medium and high

(Table 2).

In order to compare the performance of different classifiers through the ROC curve, a

new discretization was performed considering the high class belonging to the positive

class and the remaining classes (low and medium) were grouped to form the negative

class (Fig 1).

To do so, an imbalance between the classes occurred since the negative class obtained 2/3 of

the data and the positive class kept only 1/3, hampering the classifiers to learn the positive

class. For the purpose of improving the accuracy of the model and mitigating the problem of

unbalanced classes, the "under sample" method was applied to balance the number of observa-

tions per class. This method is used in the training process to slightly reduce the observations

of the major (negative) class and allow the (positive) minor class to be learned by the classifier,

considering that the interest class is most often the positive class. For this purpose, the Strati-

fied Remove Folds Filter was used to select two subsets, one for training, containing 90% of the

original dataset, and one for testing, with 10% of the original dataset. Subsequently, we applied

the Neighborhood Cleaning Rule (NCL) filter) available in Weka software 3.4.13. The distribu-

tion of classes in the database after this operation is shown in Fig 2.

From this subset, the selection of variables was performed using different methods:

1. Absence of attribute selection upon the occurrence of use of all data.

2. Correlation-based feature selection (CFS) searching for the set of correlated variables to

prevent the reuse of the same information [17].

3. The chi-square method (χ2) is based on the concept of statistical independence.

4. Wrapper method, which functions as a "black box". In order to find the subset of variables

that most satisfactorily fits the classification algorithm [18].

From the variables selected through each selection method, different classification algo-

rithms were tested:

1. J48—Decision tree [19].

2. Naïve Bayes—Bayesian Classifier [20].

3. Multilayer Perceptron—Neural networks.

4. SMO (Sequential Minimal Optimization)—Vector Machine Support [21].

5. Bagging with Logistic Regression—Meta classifier [22].

The different approaches were validated using the supplied test set method (90% of the

database for training and 10% for testing) and two metrics: (i) accuracy rate; (ii) Kappa

coefficient.

Table 2. Distribution of CO2 emission (kg ha-1 dia-1) according to the low, medium and high classes and their

limits.

Class Limit

Low [3.8; 29.95]

Medium [29.96; 53.63]

High [53.64; 770.5]

https://doi.org/10.1371/journal.pone.0193537.t002
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The induction of the decision tree model resulted in the calculation of the known matrix of

errors, or matrix of confusion (Table 3), widely used in statistical analysis of agreement [23].

Column ‘Total’ in Table 3 presents P as the total value of positive cases and N as the total of

existing negative cases in the training set. In the Total, P’ is the total number of cases that the

model rated as positive cases and N’ the total number of cases classified as negative. From the

matrix of confusion, it is possible to extract the performance evaluation metrics. The rate of

accuracy is the percentage of examples that were correctly classified by the classifier and can be

expressed according to Eq 1.

Accuracy ¼ ðVPþ VNÞ=ðPþNÞ ð1Þ

To describe the measure of agreement between the predicted and observed classes, which

deducts the expected number of correct answers (using a classification at random) of the actual

number of the accuracy of the classifier, we used the Kappa measure (Eq 2). Kappa values vary

from 0 to 1, representing bad and good classification results, respectively. The Kappa

Fig 1. Discretization of CO2 emission from the soil in the positive class (CO2 emissions from high soil) and the negative classes (medium and low CO2 emissions).

https://doi.org/10.1371/journal.pone.0193537.g001
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coefficient can be defined by the following equation [23]:

K ¼ PrðaÞ � PrðeÞ=1 � PrðeÞ ð2Þ

where Pr (a) is the relative agreement observed for a given class in the matrix of confusion; Pr

(e) is the probability of expected agreement for this same class.

The Kappa coefficient is calculated taking into account all classes. A possible interpretation

of the performance of the models from this measure was introduced by Landis and Koch [24].

In order to compare the performance of the different classifiers associated with the attribute

selection methods, the ROC curve was used, a graphical tool used to assess the algorithm using

software Roc on 2.0.

The analysis of the curves generated by each classification model in the ROC space is repre-

sented by the ratio between the true positive rate (TPR) axis and the false positive rate (FPR).

The classifiers positioned at the bottom of the "convex hull" have a precision rate lower than

those contained in it. In addition, the larger the area under the curve, the greater the accuracy

of the model. The point (0, 0) represents the strategy of never classifying an example as posi-

tive. Models that correspond to this point do not present any false positive, but are unable to

classify any true positive either. The inverse strategy, of always classifying a new example as

positive, is represented by the point (100%, 100%). The dot (0, 100%) represents the perfect

Fig 2. Demonstration of the classes distribution before and after the application of the NCL filter.

https://doi.org/10.1371/journal.pone.0193537.g002

Table 3. A 2x2 matrix of confusion. TP = true positive; FP = false positive; FN = false negative; TN = true negative.

PREDICT

Class A Class B Total

TRUE Class A TP = (A, A) FN = (A, B) P

Class B FP = (B, A) TN = (B, B) N

Total P’ N’ P+N

https://doi.org/10.1371/journal.pone.0193537.t003
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model, i.e., all positive and negative examples are correctly classified. In contrast, the point

(100%, 0) represents the model that always makes erroneous predictions [6].

Results

The behavior of soil CO2 emission for each treatment along the experimental period is pre-

sented in Fig 3. It was possible to observe great variability of the CO2 emission, mainly in

the first days after the soil tillage practices and after rainfalls events, reaching emission val-

ues of up to 771 kg ha-1day-1 (Fig 3A). Around the 40th day after tillage, there was a tendency

of stabilization of soil CO2 emissions, independent of rainfall events in the experimental

area.

Analyzing the average soil CO2 emissions, it was observed that the treatment where conser-

vationist practices were used (cover crop and minimal tillage—MTCC) lower median values of

CO2 emission was observed compared to other treatments (Fig 3B), which presented average

CO2 emission of 63 kg ha-1 day-1 versus 74 kg ha-1 day-1 of the treatment CTCC, 71 kg ha-1

day-1 of the standard treatment CTWC, and finally 78 kg ha-1 day-1 of the MTWC.

Fig 3. (A) Temporal variability of soil CO2 emission and rainfall, and (B) average soil CO2 emission with their respective standard deviations, in the different

management systems used in the experimental area. CTCC = Conventional tillage with cover crop, MTCC = Minimal tillage with cover crop, CTWC = Conventional

tillage without cover crop, MTWC = Minimal tillage without cover crop.

https://doi.org/10.1371/journal.pone.0193537.g003
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Soil moisture was another attribute that presented high variability along the evaluated

period. Soil moisture was influenced by rainfall events, where its values ranged from 4% to

36%. The soil temperature presented small variability among the treatments. In general, a ten-

dency of small average temperature was observed in cover crop treatments (Fig 4).

In addition, it can be observed that the areas under cover crop cultivation presented higher

porosity (macro, micro e TP), Al+3, K, P, Organic C e and lower Bd, PR, RT, Mg+2. Specifically

for the MTCC treatment, it was observed that in this treatment occurred greater Sm, Micro,

TP, Al+ 3, K+, MBC associated with lower MDA, Bd, H + Al+ 3, Ca+ 2, Mg+ 2 (Figs 4 and 5).

According to the results presented in Table 4, the number of variables selected differed

among the assessment methods, which has occurred since the selection of only one attribute,

as in the case of the CFS method, having selected soil temperature exclusively, until the selec-

tion of ten variables, as in the case of method χ2 (Table 4).

When analyzing the variables selected in the different approaches, we observed the recur-

rence of some of them, such as: soil temperature, rainfall, soil moisture, pH, and soil organic C

(Table 4). Soil temperature appears in all attribute selection methods, followed by rainfall,

present in six out of the seven approaches assessed, and the three variables, soil moisture, pH,

and soil organic C, which appear in four of the seven methods tested.

Among the algorithms assessed for soil CO2 emission classification, J48, Naïve Bayes and

Bagging with logistic regression presented better performance when using the χ2 method for

attribute selection, with the accuracy rate of the different approaches ranging from 87.18 to

84.61 and Kappa coefficient from 0.73 to 0.66. In contrast, the SMO and Multilayer Perceptron

algorithms presented a subset of variable selected through the Wrapper method with an accu-

racy rate varying from 89.10 to 85.90 and Kappa coefficient from 0.77 to 0.69 (Table 5).

The IV approach provided higher AUC and TP, being 89.90 and 94.2, respectively, followed

by the V approach, which presented an AUC of 89.85 and a TP of 94.2. In contrast, the III

approach provided the lowest AUC, 85.10 and TP, 82.7, against the remaining approaches

(Table 6).

Regarding the analysis of the different approaches through the ROC curve, in general, all of

them had a good performance regarding the classification, since none of them remained below

the random performance line (Fig 6). In addition, we observed that the best approaches were

IV and V for being the only ones to be encompassed by the convex hull. However, the IV

approach has advantages over the V for being closer to the point (0.0 and 100).

Discussion

Effect of the cover plant and soil tillage to mitigate CO2 emissions

In spite of the high variability of CO2 emission, the extreme values were not considered as out-

liers, since they were associated by tillage operations and rainfall events in the experimental

area.

The magnitude of CO2 loss from soil influenced by tillage practices is highly related to the

intensity of soil disturbance caused by tillage which alters soil organic matter decomposition

environment due soil aeration, break the aggregates, incorporation of residue into the plow

layer [25, 26].

Studies conducted under Brazilian conditions confirm this tends, i.e., Iamaguti [27], evalu-

ated the CO2 emissions influenced by three systems of soil tillage in sugarcane replanting area,

observed that for the conventional tillage the exposed and disaggregated soil favors higher

losses of CO2. In a study on quantification the impact of sugarcane, harvest systems, straw and

soil management on soil CO2 emissions, Figueiredo [28], showed that intensive soil tillage and

the incorporation of sugarcane straw into the soil increased short-term CO2 emissions.
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Fig 4. Box plot for the physical variables of the soil in the different management systems used in the experimental

area. CTCC = Conventional tillage with cover crop, MTCC = Minimal tillage with cover crop, CTWC = Conventional

tillage without cover crop, MTWC = Minimal tillage without cover crop. Sm = Soil moisture, St = Soil temperature,

MDA = Mean diameter of the aggregate, Macro = Soil macroporosity, Micro = Soil microporosity, TP = Total

porosity, Bd = Bulk density, PR = Penetration resistance, Ts = Tensile strength of the aggregate.

https://doi.org/10.1371/journal.pone.0193537.g004

Fig 5. Box plot for soil chemical and biological variables in the different management systems used in the

experimental area. CTCC = Conventional tillage with cover crop, MTCC = Minimal tillage with cover crop,

CTWC = Conventional tillage without cover crop, MTWC = Minimal tillage without cover crop, H+Al = Acidity

potential, Al+3 = Exchangeable aluminum, Ca+2 = Exchangeable calcium, Mg+2 = Exchangeable magnesium, K+ =

Exchangeable potassium, P = Exchangeable phosphorus, Organic C = Organic Carbon, MBC = Microbial biomass

carbon.

https://doi.org/10.1371/journal.pone.0193537.g005
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Rainfall events, in turn, promoted the increase of soil moisture and stimulated CO2 emis-

sions, producing CO2 emissions belonging to the high class. This fact is supported by several

studies in sugarcane fields that demonstrate the influence of rainfalls events on soil CO2 emis-

sions due to changes in soil water content [28] [29] [30].

The soil moisture is an attribute essential for soil microbial metabolism, and can present

both direct and indirect influence under CO2 emissions. Adequate soil moisture tends to stim-

ulate microbial activity in the soil rather than inhibit. According to Vicent [31] optimum soil

moisture values range from 25% to 40%, above this range the CO2 emission is limited by excess

water and lack of oxygen in the soil, and below limits soil respiration by drought. In our study,

the average value of soil moisture remained around 20%, whose maximum soil moisture value

was 36%, not exceeded, therefore, values that could compromise the availability of O2 in the

pore space of the soil.

However, after the 40th day after soil tillage we observed a tendency to stabilize CO2 emis-

sions. The same occurred in other studies performed by Panosso [32] and La Scala [33]. This is

probably associated to decrease of the labile C caused by tillage [34, 35].

Our results also showed that the association between the cover crop and minimum tillage

were efficient methods to promote the mitigation of soil CO2 emissions in sugarcane fields.

These results are in agreement with Figueiredo [28], Tanveer [36] and Moitinho [37], that

observed a lower CO2 emission due to the reduction of the frequency of tillage and mainte-

nance of crop residues on soil surface.

The identification of the factors influencing the emission of CO2 from the soil in agricul-

tural areas opens up opportunities for adopting practices that reduce the net emissions of this

gas [27]. In a study on the effect of different soil tillage systems on CO2 emissions, Lu [38],

observed that the average loss of C in the form of CO2 was significantly lower in the treatment

with less soil disturbance (no-tillage) compared to conventional tillage. The authors pointed

out that the lower soil temperature presented by no-tillage treatment reduces microbial activity

and, consequently the emission of CO2 in the soil. Another explanation for the lower CO2

emissions in no-tillage treatment could be greater physical protection of the C inside the soil

aggregates.

Table 4. Variables selected through the different selection methods.

Methods Selected variables Total

χ2 Sm, St, rainfall, Macro, Tp, Bd, PR, pH, Al, P 10

CFS St 1

Wrapper J48 Sm, St, rainfall, Macro, Bd, Al, Ca, Organic C 8

Wrapper Naïve Bayes St, rainfall, Macro, pH 4

Wrapper SMO St, rainfall, MDA, Tp, Organic C 5

Wrapper Mult. Perceptron St, Sm, pH, H+Al, P, Organic C 6

Wrapper Bagging Logistic Sm, St, rainfall, MBC, Ts, pH, Mg, Organic C 8

https://doi.org/10.1371/journal.pone.0193537.t004

Table 5. The performance of different classifiers associated with the attribute selection methods assessed.

Approaches J48 Naive Bayes SMO Multilayer Perceptron Bagging Logistic

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa

Without attribute selection 87,18 0,72 84,62 0,66 83,97 0,65 86,54 0,72 84,62 0,67

χ2 87,18 0,73 84,61 0,66 84,63 0,66 87,18 0,73 84,62 0,68

CFS 84,62 0,68 82,69 0,64 83,97 0,67 83,97 0,67 82,69 0,65

Wrapper 85,90 0,70 82,05 0,60 85,90 0,69 89,10 0,77 83,97 0,67

https://doi.org/10.1371/journal.pone.0193537.t005
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Moreover, the maintenance of crop residues on the soil surface in areas where soil distur-

bances are minimal, limits soil-residue contact, resulting in a reduced rate of decomposition,

and consequently lower CO2 emissions in these systems [25, 39].

The adoption of cover crop and minimum tillage (CTCC) provided desirable modifications

in soil attributes, such as: greater Sm, Micro, TP, K+, MBC, and lower, Bd. In agreement, Tor-

res [40], evaluated changes in the soil physical attributes with the use of different cover crops

under no-tillage system, and observed positive changes in physical attributes in the soil surface

Table 6. Rate of false positive (FP), true positive (TP) area under the curve (AUC) for the best associations

between classification and attribute selection method.

Approaches FP Rate TP Rate AUC

I J48 x χ2 15,4 92,3 89,44

II Naive Bayes x χ2 12,5 78,8 89,16

III SMO x Wrapper 12,5 82,7 85,10

IV Multilayer Perceptron x Wrapper 13,5 94,2 89,90

V Bagging Logistic x χ2 20,2 94,2 89,85

FP Rate = %; TP Rate = %; AUC = %.

https://doi.org/10.1371/journal.pone.0193537.t006

Fig 6. Performance in the ROC (Receiver Operating Characteristic) space of the different approaches used to classify soil CO2 emission, considering the high

CO2 emission class as the "most important" class. I = J48 with χ2, II = Naïve Bayes with χ2, III = Bagging with logistic regression with χ2, IV = SMO using wrapper

method, V = Multilayer Perceptron with wrapper method.

https://doi.org/10.1371/journal.pone.0193537.g006
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layer. Similar results were also found by Lu [38], who observed significant changes in soil

properties through the conversion of the conventional tillage system to no-tillage. However, it

is important to highlight that our results represent a case study with one soil type and with spe-

cific climatic conditions, and more studies should be performed in order to analyze the results

in different edaphoclimatic conditions.

Classification of CO2 emissions

The variables of soil moisture, soil temperature, rainfall, pH, and soil organic C showed high

predictive power regarding the classification of soil CO2 emission and were frequently selected

through the different methods of attribute selection assessed in this study. Several studies con-

firm the direct and/or indirect influence of these variables on the soil CO2 emission.

For example, La Scala Junior [33], Corradi [41], Teixeira [42] found direct correlations

between soil moisture and CO2 emissions under different conditions. Iamaguti [27], Karhu

[43] and Tavares [44] observed a significant correlation between soil temperature and soil CO2

emission. Moitinho [29] and Silva-Olaya [30] observed higher CO2 emissions along days with

rainfall events. Fuentes [45] and Marcelo [46] reported that increasing soil pH affects the activ-

ity and microbial population in the soil and consequently their CO2 emission. Reuss and John-

son [47] and Tossell [48], point out that carbonic acid, produced by the dissolution of CO2 in

water, is an important acidifying agent in natural systems. La Scala Junior [49] observed a lin-

ear correlation between CO2 emission and Organic C.

According to Park [50], the closer the AUC is to the value 1, the better the overall perfor-

mance of the test, which makes a test with AUC = 1 be regarded as perfectly accurate; there-

fore, the higher the AUC, the better the overall performance of the approach used. In this

sense, the IV approach presented higher AUC, being superior to all of the remaining

approaches assessed; however, the difference between IV and V, I and II approaches was very

low, within the order of 0.05, 0.46 and 0.74, respectively.

In contrast, the analysis of the different approaches in the ROC space proved both the IV

and the V as the most satisfactory for having been the only approaches to be encompassed by

the convex hull. However, approach IV tends to have advantages over V since it is closer to the

point (0.0 and 100%). Prati [6] point out that an optimal model should be as close as possible

to the point (0 and 100%). In addition, Fawcett [51] refers to the ROC chart as a description of

the relative compensation between the benefits (true positive) and costs (false positives) of a

classification. Thus, a point located in the upper left corner demonstrates that a higher amount

of positive and negative examples are classified correctly, consequently generating a lower clas-

sification cost, corroborating with the statement that the IV approach is the best one.

Through their research, several authors have found good performance both in the attribute

selection Wrapper method and in the Multilayer Perceptron classifier. Liu and Yu [52] point out

to a variety of available attribute selection algorithms; however, the attribute selection Wrapper

method has generally performed better than other methods for selecting a subset of variables that

are more suitable to the predetermined mining algorithm, but also tending to demand high

computational effort and cost, especially in datasets with great dimensionality, which makes it

possibly not suitable to some mining algorithms. In agreement with the results, Hall and Geoffrey

[53], by comparing several methods of variables selection for the supervised classification, also

concluded that the Wrapper method was the most satisfactory for the selection.

Finally, Freitas [54] investigated the use of the classifier Multilayer Perceptron for the pre-

dicting of the spatial variability of soil CO2 emissions in sugarcane areas, also concluding that

this approach satisfactorily met the expectations having proved good application potential for

this type of issue.
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Conclusions

The CO2 emissions present high variability, mainly in the first days after the soil tillage, in

which soil disturbance caused by tillage and rainfall events stimulate CO2 production, while

the association between cover crop and minimum tillage are effective strategies to promote the

mitigation of soil CO2 emissions.

Data mining techniques to predict soil CO2 emission proved promising results for having

allowed the development of several classifications approaches with high accuracy rate (above

80%), with variables such as soil moisture, soil temperature, rainfall, pH, and organic C show-

ing high predictive power. Finally, among the approaches assessed in this study, the Multilayer

Perceptron approach (a particular case of artificial neural networks) with the Wrapper attri-

bute selection method tends to be more advantageous for its higher accuracy of the positive

class with a consequent lower cost of classification.

Finally, we highlighted that the data presented herein represent a short-term case study

conducted in specific edaphoclimatic conditions. Comprehensive studies evaluating the

efficiency of the data mining techniques to predict the soil CO2 emissions should be

encouraged to test the reproducibility of these techniques under different soil and climate

conditions.
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