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ABSTRACT: Users of soil survey products are mostly interested in understanding how soil 
properties vary in space and time. The aim of digital soil mapping (DSM) is to represent 
the spatial variability of soil properties quantitatively to support decision-making. The 
goal of this study is to evaluate DSM techniques (Regression Trees - RT and Multiple Linear 
Regressions - MLR) and the ability of these tools to predict mineral fraction content under 
a wide variability of landscapes. The study site was the entire Guapi-Macacu watershed 
(1,250.78 km²) in the state of Rio de Janeiro in the Southeast region of Brazil. Terrain 
attributes and remote sensing data (with 30 m of spatial resolution) were used to represent 
landscape co-variables selected as an input in predictive models in order to develop the 
explanatory variables. The selection of sampling sites was based on the Latin Hypercube 
algorithm. A representative set of one hundred points with feasible field access was chosen. 
Different input databases were tested for prediction of mineral fraction content (harmonized 
and original data). The Spline algorithm was used to harmonize data according to the 
GlobalSoil.Net consortium standards. The results showed better performance from the 
RT models, using input from an average of six covariates; the simplest MLR model used 
twice as many input variables, creating more complex models without gaining precision. 
Furthermore, better R² values were obtained using RT models, irrespective of harmonization 
of soil data. The harmonized dataset from the 0.00-0.05 and 0.05-0.15 m layers, in general, 
presented better results for the clay and silt, with R2 values of 0.52 (0.00-0.05 m) and 
0.69 (0.05-0.15 m), respectively. Prediction of sand content showed better results when 
the original depth data was used as an input, although all regression tree models had R2 
values greater than 0.52. The RT models provided a better statistical index than MLR for 
all predicted properties; however, the variance between models suggests similarity of 
performance. Regarding harmonization of soil data, both input databases (harmonized or 
not) can be used to predict soil properties, since the variance of model performance was 
low and generalization of the soil maps showed similar trends. The products obtained from 
the digital soil mapping approach make it possible to integrate the factor of uncertainties, 
providing easier interpretation for soil management and land use decisions.
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INTRODUCTION
Soil maps are widely used as primary information in land management and protection 
of natural resources. Soil scientists face great challenges in meeting societal demand 
for soil information on appropriate scales to support decisions regarding land use and 
management of natural resources. Digital soil mapping techniques are able to provide 
useful soil information on an appropriate scale and in digital format.

Soil texture or mineral particle size is a highly variable soil physical property, and studies 
on a regional and local scale have shown spatial dependence at short distances interfering 
in crops yield (Marques Júnior and Lepsch, 2000), which indicates the essential role of this 
property in growing crops, engineering projects, and land protection and conservation 
(White, 2006). The effects of soil texture on land capability, water and nutrient storage, 
and vegetation distribution and composition are well known globally (Klingebiel, 1963; 
Jenny, 1980; Silver et al., 2000; Fernandez-Illescas et al., 2001). Particle size distribution 
in soils is directly related to topographic indexes and slope (Leão et al., 2010, 2011).

Accurate prediction of soil texture is very important for agronomical purposes, particularly 
in precision farming, since soil texture is directly related to yield (He et al., 2013; Gozdowski 
et al., 2014). In this context, pedometric tools can be useful in predicting soil properties 
variability (spatial and vertical), such as soil particle size (Moore et al., 1993; Arrouays 
et al., 1995; McBratney et al., 2000). Usually, soil sampling at various depth intervals 
and description of horizons/layers are performed according to morphological properties 
related to pedogenesis. The measured values of soil properties correspond to the depth 
of the horizon, which varies according to the type of soil profile. However, surveys with 
specific objectives usually sample the soil according to predefined depths. 

The global soil survey consortium (GlobalSoilMap project) has proposed standard depths 
(vertical soil profile) to expand the database of soil properties. The six pre-defined 
depths correspond to the following layers: 0.00-0.05, 0.05-0.15, 0.15-0.30, 0.30-0.60, 
0.60-1.00, and 1.00-2.00 m. The specifications of the GlobalSoilMap project suggest that 
data at these six depth intervals can be harmonized through soil depth function, usually 
applying the equal-area quadratic spline (Arrouays et al., 2014). The legacy dataset has 
been successfully harmonized by Nussbaum et al. (2018), allowing comparison between 
different models applied to predict soil properties for distinct soil layers.

Spatial prediction of soil properties using statistical tools and pedometric concepts is 
supported by correlation with landscape attributes derived from a digital elevation model 
(DEM) and remote sensing data (Dobos et al., 2000; McBratney et al., 2003). Application 
of these techniques was exemplified at Moore et al. (1993), McBratney et al. (2003), 
and Odeh et al. (1994). Most papers concerning prediction of soil properties focus on 
carbon storage and hydrological properties. Multivariate linear regression models and/or 
tree-based models applied to predict soil properties are exemplified by Moore et al. 
(1993), Henderson et al. (2005), Eldeiry and Garcia (2008), Vasques et al. (2008), Ließ 
et al. (2012), Minasny et al. (2013), and Carvalho Junior et al. (2014a).

The study hypothesis is based that the application of digital mapping techniques can 
aid the quantitative spatial prediction of soil particle size components at distinct depths. 
In this sense, the main goal of this study was to compare two different models used to 
predict the spatial distribution of soil mineral particle-size fractions (clay, silt, and sand). 

MATERIALS AND METHODS

Study area and soil sampling

The Guapi-Macacu watershed is located in the Southeast region of Brazil, in the state of Rio de 
Janeiro. In Brazil, the watershed is established as a territorial unit for managing water resources 
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and land use by the National Policy on Water Resources (Law No, 9433/97). The Guapi-Macacu 
watershed is one of twelve in the Guanabara Bay Hydrographic Region. It has a catchment 
area of 1,250.78 km² and a perimeter of 199.2 km. The climate is classified as tropical rainy 
with a dry winter (Aw, according to the Köppen classification system), supporting different land 
uses, such as agriculture, cattle raising, and a preserved natural park under typical rainforest 
vegetation (Atlantic Forest). The area is located between the UTM coordinates 7488481-
7526005 mS and 699292-752193 mW (horizontal datum WGS-84), and it has a wide variety of 
landscape features. The region is located in the central part of Guanabara Graben, known as the 
Macacu Sedimentary Basin, which was formed by several deposition sequences from tectonic 
events at the beginning of the Tertiary (Ferrari, 2001). As an example of landscape variability, 
elevation varies from sea level (0 m) up to 2,600 m within the watershed (Hora et al., 2010). 
The study was conducted in 2010 and 2011, and figure 1 shows the location of sampling sites 
in the Guapi-Macacu watershed in Rio de Janeiro, Brazil.

Conditioned Latin Hypercube Sampling (cLHS) was used to best achieve distribution of 
the sampling sites according to landscape attributes while considering the feasibility of 
acquiring the samples (Minasny and McBratney, 2006; Roudier et al., 2012). To set the 
parameters for conditioning the sampling scheme, a buffer size of 100 m to each side of 
the mapped roads (source: national database in scale 1:50,000 from Brazilian Institute 
of Geography and Statistics - IBGE), the number of sample points (100), correlation and 
data weight (0.5 and 1.0, respectively), and number of iterations (20,000) were set. All 
of these input parameters are required, and the values can be adjusted based on the 
specific research area and limitations (Minasny and McBratney, 2006). The selection of 
sampling points within this watershed was based on the parameters of spatial position, 
elevation slope, curvature, and land use map (Fidalgo et al., 2008). The urbanized 
areas were excluded, and selection of sampling sites was restricted to the buffer area 
(Roudier et al., 2012) defined by preliminary analyses (Carvalho Junior et al., 2014b).
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Figure 1. The location of sampling sites in the Guapi-Macacu watershed within Rio de Janeiro - Brazil.
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Sand, silt, and clay content were obtained according to the procedures described by 
Claessen et al. (1997). The analytical results of the mineral fraction content correspond 
to the depth of the genetic horizons/layers, as identified in the field soil survey. The soil 
was classified according to the Brazilian System of Soil Classification - SiBCS (Santos et al., 
2013) and the corresponding classes in the World Reference Base for Soil Resources - 
WRB (WRB, 2014). The typical classes that occur in the area are Planosols (Planossolos), 
Cambisols (Cambissolos), Gleysols (Gleissolos), Ferralsols (Latossolos), Fluvisols, and 
Regosols (Neossolos Flúvicos and Litólicos, respectively).

Input covariates

The main Geographic Information System (GIS) used was ArcGIS Desktop v.10 (ESRI, 
2010). Terrain attributes were obtained through the System for Automated Geoscientific 
Analyses - SAGA v.2.1.4 (Conrad, 2007). This software is focused on landscape analysis 
but can be used for soil mapping (Conrad, 2007; Hengl, 2009).

Additional analyses related to remote sensing data were performed on Erdas Imagine v.9.1. 
software (Erdas Systems, 2008), and the landform map was created on the Geographic 
Resources Analysis Support System (Grass, 2013), with the Geomorphons add-on. The 
DEM was generated by interpolation of the primary elevation data and the drainage 
network, and was restricted to the watershed limits. The primary elevation data involved 
contour lines and precision elevation points extracted from the official Brazilian charts, 
1:50,000 scale (Brazilian Institute of Geography and Statistics, and Brazilian Geological 
Service). An elevation model with spatial resolution of 30 m was generated by the “Topo 
to Raster” tool in the ArcGIS Desktop v.10. After the interpolation procedure, “sink” cells 
were completely filled so the final DEM would not result in interpolation failures in the 
model and derivatives. 

Digital landscape attributes were generated from the adjusted DEM to expand the set of 
predictive variables used as input for the predictive models. Analyses were first performed 
to understand the variability of terrain variables and soil properties in the watershed. 
They included visual evaluation of the maps and descriptive statistics parameters (mean, 
standard deviation, minimum and maximum). After this procedure, thirty-seven terrain 
variables were selected for testing as predictor variables, as described below.

Attributes derived from the DEM and stream networks, such as elevation, slope, 
curvature, Compound Topographic Index (CTI), and the Euclidean distance from stream 
networks were generated by “Surface tools” in the “Spatial Analyst” toolbox (ArcGIS 
Desktop v.10). The CTI was obtained by a sequence of commands in the “grid” module of 
ArcINFO. These attributes were first tested, and they showed effectiveness in predicting 
soil classes in the same watershed (Pinheiro et al., 2013). Terrain co-variables were 
derived from the 30 m resolution DEM and drainage network using the “Terrain Analysis” 
toolbox in SAGA (System for Automated Geoscientific Analyses) to provide enough 
quantitative data to represent landscape features and environmental functions to 
predict soil properties. The derived covariates included: (i) 15 terrain attributes related 
to relative position and relief features [mass balance index, mid slope position, modified 
catchment area, multiresolution index of ridge top flatness (MrRTF), multiresolution 
index of valley bottom flatness (MrVBF), normalized height, protection index, slope 
height, valley depth, hillshade, channel network base level, altitude above the channel, 
vertical overland flow distance, SAGA wetness index]; and (ii) nine climatic properties 
(sky view factor and simplified sky view factor, solar radiation, total insolation, terrain 
view factor, wind effect, diffuse insolation, direct insolation, duration of insolation). 
Additional information about the procedures for creating terrain attributes in SAGA 
can be found in Olaya (2004).

The landform map was generated by the geomorphon method (Jasiewicz and Stepinski, 
2013), in the Geographic Resources Analysis Support System (Grass), with the geomorphon 
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add-on. The pre-defined parameters to create the landforms correspond to 45 cells 
(1,350 m) of search radius and 1st of flatness threshold.

Remote sensing data from Landsat 5 TM (reference image of September/2011) were 
used as input variables, represented by six spectral bands (1, 2, 3, 4, 5, and 7) and three 
indexes calculated from the spectral bands of Landsat 5 TM, also with a 30 m spatial 
resolution. The indexes were the Normalized Difference Vegetation Index (NDVI), the iron 
oxide index (ratio between band 3/band 1), and the clay mineral index (ratio between 
band 5/band 7). The iron oxide index highlights the presence of iron oxides and sulfates, 
and the clay mineral index highlights the presence of clay minerals, such as alunite, 
illite, kaolinite, and montmorillonite (Sabins, 1997; Chagas et al., 2013). These last two 
indexes are commonly used in remote sensing applied to geology studies to recognize 
hydrothermal alteration and unaltered rocks (Sabins, 1999). The geology map was 
created by vectoring tools in ArcGIS Desktop v.10, based on the official Brazilian charts 
in a 1:50,000 scale (Geological Survey of Brazil and Department of Mineral Resources), 
and was simplified according to the type of parental material in four classes: alkaline 
rocks, granite/gneiss, sedimentary rocks, and quaternary sediments. 

All layers were projected in the Universal Transverse Mercator (UTM) coordinate system, 
and the horizontal data according to the Geocentric Reference System for the Americas 
- Sirgas 2000, Zone 23S.

Modeling procedures 

The procedures used to predict soil properties (sand, silt, and clay) were regression trees 
and multiple linear regression. The statistical procedures were implemented in the R 
software (R Development Core Team, 2014). 

Multiple Linear Regressions (MLR) have been widely used to predict the response of a 
dependent variable from a set of independent variables, as a function of the correlations 
between them. The MLR algorithm was implemented using the lm( ) command, with 
stepwise (backward) analysis, fitting the model by removing variables according to 
confidence level (95 %). The approximation through least-squares was used to validate 
and constitute the best linear unbiased estimators of the regression parameters (Berry 
and Feldman, 1985; Vasques et al., 2008).

Regression Trees (RT) are implemented through the Recursive Partition and Regression Trees 
package, named “rpart” (Therneau et al., 2017), primarily based on the CART (classification 
and regression trees) algorithm (Breiman et al., 1984). The logic of the tree-based methods 
is a binary procedure, which is obtained by recursive partitioning of the dataset in two 
subsets. These methods are more homogeneous, based on the importance of the covariates 
over the data. This procedure is repeated recursively until the number of subsets reaches a 
minimum, or there are no gains in fitting models through further subdivisions. The pre-defined 
parameters were complexity parameter (cp) equal to 0.001 (default) and the model was fitted 
as analysis of variance (Anova) according to the least square mean error. Each partitioning 
tends to minimize the difference between two subgroups at each node, and subdivisions 
that do not improve the fitted model are pruned by cross-validation. Finally, terminal nodes 
represent the predictive value as the average of all measured values (Vasques et al., 2008).

Assuming that the influence of terrain variables on soil properties is markedly closer 
at the soil surface (Florinsky et al., 2002), and topsoil models are stronger than subsoil 
models (Henderson et al., 2005), this study focused on prediction of sand, silt, and clay 
content in the topsoil layer.

To accomplish the proposed goals, the analysis was organized into two steps. In the 
first step, the soil data from the original database was used as input for the predictive 
algorithms. The second step applied the predictive algorithms to the harmonized database 
at the regular depths of the surface layers (0.00-0.05 and 0.05-0.15 m). 
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To meet the specifications of the GlobalSoilMap project (Arrouays et al., 2014), a new 
database was created from the original to represent the harmonized data in the 0.00-0.05 
and 0.05-0.15 m layers. Harmonization of soil properties at regular depths was performed 
using the soil depth function to interpolate the data. The spline function proposed by 
Ponce-Hernandez et al. (1986) represents a nonparametric function, called an equal-area 
spline, appropriated to model soil properties (Bishop et al., 2009; Malone et al., 2009). 
The equal-area spline function considers each horizon as the pre-defined interval and the 
knots of each horizon lie between horizon boundaries, with one inflexion in each interval. 
The knots should lie as near as possible to the inflexion and as far from boundaries as 
possible, which, in essence, preserves the mean value of the soil property (Odgers et al., 
2012). The spline functions were applied from the original data collected in the horizon layer 
(genetic horizons) to harmonize at six pre-defined depths according to the GlobalSoilMap 
project. From the output data generated by this procedure, the data from the first two 
layers (0.00-0.05 and 0.05-0.15 m) were selected to represent the topsoil layer. This 
procedure was performed to contrast the results obtained by the different input databases 
(harmonized data at two depths, and original data).

Maps and graphs were generated to compare performance between models (multivariate 
linear regressions and regression trees), and between input data (original depth and 
harmonized at 0.00-0.05 and 0.05-0.15 m). The results were compared through the 
coefficient of determination (R2), root mean square error (RMSE), complexity of the 
model (number of variables used), and map generalization. All statistical procedures 
used to create the maps and graphs were created on R and RStudio software, and the 
final layout was built with the support of ArcGIS Desktop v.10. 

RESULTS AND DISCUSSION

Landscape covariates and importance in predicting soil texture

A brief description of the covariates and their respective importance in modelling the 
variability of soil texture in accordance with the methods tested are presented in table 1.

The predictive models (MLR and RT) tend to prioritize input variables that provide 
significant explanatory effects (Faraway, 2002). Redundant predictors act as noise to the 
estimation and should be removed to make the model as simple as possible, according 
to the principle of Occam’s razor, which advocates that the simplest theory should be 
chosen from among all theories (Young et al., 1996).

According to table 1, all models included at least one input covariate from remote sensing 
data (Landsat bands or derived indexes) to predict the soil properties of interest. The 
geology map was selected by all MLR models, regardless of the input dataset (original or 
harmonized), showing the direct relationship between parental material and soil texture. 
On the other hand, some of the terrain attributes, such as elevation, geomorphons, 
CTI, mass balance index, wind effect, and direction and duration of insolation, were not 
selected by any model tested in this study. One possible explanation is that the models 
discard variables correlated with each other, as highlighted by Beven and Binley (1992) 
and Deng et al. (2008). For example, a pairs of terrain attributes can vary simultaneously 
such as elevation and slope, insolation attributes, and analytical hill shading. Modified 
catchment area and altitude above the channel were used in one model each, showing 
their restricted influence on prediction of soil properties. 

Table 1 reveals the influence of the geology map, slope, MrRTF, and Euclidean distance 
from stream networks; these factors were used as input in models to predict sand and clay 
contents. The relationship of Euclidean distance from hydrography is important particularly 
for alluvial soils, since they have layers with wide variation regarding thickness and 
properties (Resende et al., 1988). Clay content had the Euclidean distance from streams 
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Table 1. Terrain attributes in the watershed: description, references, and contribution to predictive models 

Covariates Description References
Original data 0.00-0.05 m 0.05-0.15 m
MLR RT MLR RT MLR RT

Landsat data 
(band 1 to 5, 7, 
and indexes)

Six multispectral bands from Landsat 
5 TM; derived indexes: NDVI (band 
4 - band 3)/(band 4 + band 3); clay 

minerals (band 5/band 7); Iron Oxide 
(band 3/band 1)

Yang et al. (1997), 
Sabins (1997, 1999), 
Chagas et al. (2013), 
Pinheiro et al. (2013)

(1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

Geology map
Simplified map from lithology units 
(Brazilian Department of Mineral 
Resources, at a 1:50,000 scale)

Pinheiro et al. (2013) (1,2) N (1,2) N (1,2) N

Landform map

Landform map (Geomorphon 
classification) with the ten most 
common landforms (flat, peak, 

ridge, shoulder, spur, slope, hollow, 
footslope, valley, and pit), considering 
a broad range of scales according to 

the search radius distance (predefined 
as 45 cells) and flatness threshold (1°)

Jasiewicz and 
Stepinski (2013) 0 0 0 0 0 0

Elevation
DEM from interpolation of primary 

elevation data, described by 
Pinheiro et al. (2012)

Hutchinson and 
Gallant (2000), 

Moore et al. (1991)
0 0 0 0 0 0

Slope Slope gradient, first derivative from 
the DEM (%)

Thompson et al. 
(2001), Wilson and 

Gallant (2000)
0 (1,2) 0 (1,2) 0 (1)

Curvature 
classification

Classification of surface curvature 
based on the combination of profile 

and plan curvatures. Negative values 
correspond to concave surfaces, 
positive to convex, and planar 

surfaces between -0.01 and 0.01

Hall and Olson, 
(1991), Gessler et al. 

(1995), Figueiredo 
(2006)

(1,2,3) 0 (1,3) 0 (1,2) 0

Euclidean 
distance

Linear distance of the nearest stream 
network feature (m)

Pinheiro (2012), 
Cunha (2013) (1) (1) (1) (1) (1) (1,2)

Compound 
topographic 
index - CTI

Topographic wetness index calculated 
according to slope and catchment 

area [CTI = ln (As/tan ß)], where As 
is the catchment, and ß represents 

slope in radians

Böhner and Selige 
(2006), Moore 
et al. (1993), 

Gessler et al. (1995)
0 0 0 0 0 0

Mass balance 
index

Represent areas of soil loss and 
accumulation. Negative values 
correspond to depressions, and 

positive values are related to convex 
steep and erosional slopes. Values 

near zero represent balance between 
soil loss and accumulation

Moller and Volk 
(2015), Moller et al. 

(2008)
0 0 0 0 0 0

Mid-slope 
position

Relative vertical distance to the mid-
slope valley or crest directions

Böhner and Antonic 
(2009), Häring et al. 

(2012)
(3) 0 (3) 0 (3) 0

Modified 
catchment area

Flow accumulation in pixels as a sum 
of precedent flow in catchment area 

(pixels or square meters)

Lea (1992), 
Costa‐Cabral and 

Burges (1994)
0 0 0 0 0 (1)

Multiresolution 
index of ridge top 
flatness - MrRTF

Indicate flat positions on high 
elevation areas

Gallant and Dowling 
(2003) (1,2) (2) (1,2) (2) (1,2) (2)

Multiresolution 
index of 
valley bottom 
flatness -MrVBF

Indicate flat surfaces on valley bottom Gallant and Dowling 
(2003) (1) 0 (1,2) 0 (1) 0

Continue
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as a predictor covariate in all RT and MLR models. Relationships between this covariate 
and soil properties were observed in the field survey, particularly near the larger river 
basins, showing the influence of water on the genesis of soils, such as Fluvisols. These 
soils exhibited low clay content since the smaller particle size is easily removed from the 
soil profile by the action of the flow stream. This corroborates the soil map produced by 

Continuation

Normalized 
height

Relative topographic position (%) 
used for modeling relative heights 

and slope positions

Böhner and 
Conrad (2007), 

Nguyen et al. (2006)
(3) 0 (3) (1) 0 (3)

Protection index Maximum angle of zenith or at nadir 
relating a point to surrounding relief

Yokoyama (2002), 
Bruna et al. (2013), 
Yokoyama (2002)

(3) (1) (3) (1) (3) (1,3)

Sky view 
factor and Sky 
view factor 
(simplified)

Represents the fraction of visible sky 
viewed from the ground up. Varies 

from 0 to 1 from the location center

Böhner and Antonic 
(2009), Zakšek et al. 

(2011)
(1,2,3) (1) (1,2,3) 0 (1,2,3) (1,2)

Slope height
Vertical distance from the base of 
the slope to the crest, or line of 

intersection of the two slope planes

Böhner and Conrad 
(2007), Gökceoglu 
and Aksoy(1996)

(1,2) 0 (1,2) 0 (1,2) 0

Solar radiation
Potential incoming solar radiation 
(insolation) or amount of incoming 

solar energy (KWH m-2 yr-1)

Böhner and Antonic 
(2009), Thompson 

et al. (2012)
(2,3) 0 (2,3) 0 (2,3) 0

Total insolation Sum of direct and diffuse incoming 
solar radiation (KWH m-2 yr-1)

Böhner and Antonic 
(2009), Wilson and 

Gallant (2000)
(1,3) 0 (1,3) 0 (1,3) 0

Terrain view 
factor

Factor of terrain obstruction to 
incoming radiation

Böhner and Antonic 
(2009), Sandmeier 
and Itten (1997)

(1,2,3) (3) (1,2,3) (2,3) (1,2,3) 0

Valley depth Vertical distance of a base level 
channel network (m) Conrad (2012) (3) 0 (3) 0 (3) 0

Altitude above 
the channel 

Vertical distance of stream network 
(m)

Prates et al. (2012), 
Brenning (2009) 0 0 0 (2) 0 0

Vertical overland 
flow distance

Vertical distance projected of mean 
runoff length (m)

Freeman (1991), 
Quinn et al. (1991), 
Gomi et al. (2008)

(3) 0 (2,3) 0 0 (2,3)

SAGA wetness 
index

Similar to the ‘Topographic Wetness 
Index’ (TWI); however, it is based on a 

modified catchment area
Böhner et al. (2002), 
Moore et al. (1993) (3) 0 (3) 0 0 (3)

Wind effect Climatic factor (m s-1)
Böhner and Antonic 
(2009), Ließ et al. 

(2014)
0 0 0 0 0 0

Hillshading The angle between the surface and 
the incoming radiation (radians) Tarini et al. (2006) 0 (2) 0 (2) 0 0

Channel network 
base level

Difference between the DEM and a 
surface interpolated from the channel 

network (m)
Grimaldi et al. 

(2007) (1,2,3) (3) (1,2,3) (3) (1,2,3) 0

Diffuse 
insolation

Incoming solar radiation reflected 
by atmospheric components 

(KWH m-2 yr-1)

Böhner and Antonic 
(2009), Wilson and 

Gallant (2000)
(3) 0 (3) (1,2) (3) (1)

Direct insolation
Incoming solar insolation 

perpendicular to surface, excluding 
diffuse insolation (KWH m-2 yr-1)

Böhner and Antonic 
(2009), Wilson and 

Gallant (2000)
0 0 0 0 0 0

Duration of 
insolation

Mean time of incoming insolation by 
day (h day-1)

Böhner and Antonic 
(2009), Wilson and 

Gallant (2000)
0 0 0 0 0 0

MLR = Multiple Linear Regression; RT = Regression Tree; NDVI = Normalized Difference Vegetation Index. (1) = Clay; (2) = Sand, (3) = Silt; 0 = 
not used.
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Pinheiro et al. (2017) for the same area. The terrain attributes of valley depth, normal 
height, and SAGA wetness index were important only for predicting silt content, which was 
also observed in the field, and table 1 shows each covariate used to predict the texture 
components. Higher silt contents were related to less developed soils, such as Regosols 
(Neossolos Litólicos Distróficos), Cambisols (Cambissolos Haplicos Tb Distróficos), and 
Fluvisols (Neossolos Flúvicos Tb Distróficos). The Fluvisols had the highest values for 
wetness index due to their low slopes, and their occurrence was related to deep and 
irregular fluvial deposits in the broader valleys. The attributes of analytical hillshade 
and altitude above the channel were used only in sand prediction models. Topsoil layers 
with high sand content were also related to proximity to river channels and young soils.

It is well known that success in modeling environmental characteristics is related to the quality of 
the input data, associated with a powerful set of predictive covariates (Zhu, 2001; Minasny et al., 
2003). In this sense, this study can contribute to improving the modeling techniques applied to 
the mapping of soil properties. As for the input data, harmonization of the data allows creation 
of a map for the target properties corresponding to a layer of pre-defined thickness, which can 
be useful for agricultural purposes, for example. As for predictive covariates, by testing a large 
set of environmental data, it was possible to identify primarily those covariates related to soil 
texture, but that also may be related to other soil properties in this watershed, such as cation 
exchange capacity (CEC) and soil types. However, to build better predictive models for soil 
particle size, further studies are necessary for determining the appropriate input covariates to 
understand the relationships between landscape attributes and soil variability.

Variability of soil texture in the watershed

The statistical description of soil properties (sand, clay, and silt) based on soil sample analysis 
(original data and harmonized data) (0.00-0.05 and 0.05-0.15 m) is presented in table 2. 

The Guapi-Macacu watershed exhibited substantial variability in soil types, predominantly 
Ferrasols - Latossolos (28 %), Acrisols - Argissolos (24 %), Cambisols - Cambissolos 
(18 %), and Gleysols - Gleissolos (15 %). Soils with high sand content were common 
along the Macacu and Guapi-Açu floodplains, which have wide texture variation due to 
river deposition systems and events. In the floodplains, particularly near river deltas and 
in estuarine deposits, Histic horizons and Gleysols with low pH (<4.5) were documented. 
Clayey soils show a wide area of distribution and were primarily derived from granite and 
gneiss parent materials. Some Acrisols have abrupt textural changes, with sandy surface 
horizons above clayey horizons (Santos et al., 2013). Parent materials of sedimentary rock 
origin are limited in the watershed and, in general, the soils formed have clayey textures 
and xanthic properties (WRB, 2014). A detailed analysis of soil-landscape relationships 
and soil genesis in the area can be consulted in Pinheiro et al. (2017). 

The spline fitted curve of the profile (Figure 2) illustrates the original data (mean value 
corresponding to the depth of layer/horizon) and the harmonized data (fitted curve) 
according to the pre-defined depth intervals.

Table 2. Statistical description of soil properties based on soil samples of topsoil layer (original data and data harmonized to 0.00-
0.05 and 0.05-0.15 m layers)

Soil particle 
size(1)

Original Data 0.00-0.05 m 0.05-0.15 m
Min Avg Max Min Avg Max Min Avg Max

g kg-1

Clay 60 279.5 655 51.1 272.4 645.4 57.6 281.3 656.7
Total sand 43 554 906 45.1 557.5 927.2 42.7 551.9 911.7
Silt 34 166.5 575 21.7 170.1 569.1 30.7 166.8 573.4

Min = minimum; Avg = average; Max = maximum. (1) Obtained by densimeter method (Donagema et al., 2011), classified as clay (<0.002 mm), silt 
(0.002-0.05 mm), and sand (>0.05 mm).
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The profile distribution of sand decreased with depth (Figure 2c). In contrast, the clay 
distribution increased substantially below 0.50 m of depth, and in the same layer, 
the silt fraction decreased drastically (Figures 2a and 2e). Silt content had decreasing 
values with depth to the bottom of the solum (approximately 1 meter). Below the 
solum depth, the increase in silt content in particular can be related the influence 
of weathered parental material. This textural pattern is typical for Haplic Ferralsols 
(Dystric), classified as Latossolo Vermelho-Amarelo according to the Brazilian System of 
Soil Classification - SiBCS (Santos et al., 2013), which are predominant in the watershed 
(Pinheiro et al., 2013). The spline function was executed on all sample point data to 
improve the capacity of preliminary results to predict the soil mineral fraction in the 
surface layer and to standardize the input database according to the GlobalSoilMap 
project (Arrouays et al., 2014).

Digital mapping of mineral soil particle size fraction

The linear models showed a greater range and more even distribution of output values 
compared to the predicted attributes. With the regression tree output, the values were 
discreet and points were often linear and parallel to the ‘x’ axis (Figures 3a, 3b, 3c, 3g, 
3h, 3i, 3m, 3n, and 3o). 
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Figure 2. An example of clay, sand, and silt content variability with depth within a soil profile, with original data and harmonized 
data created from a spline function.



Pinheiro et al. Prediction of topsoil texture through regression trees and multiple linear...

11Rev Bras Cienc Solo 2018;42:e0170167

Original Data 0.00-0.05 m 0.05-0.15 m
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Figure 3. Plotted results of clay, sand, and silt content predictions for the three input datasets (original data, and harmonized layers 
of 0.00-0.05 and 0.05-0.15 m). RT = Regression Tree; MLR = Multiple Linear Regression; RMSE = Root Mean Square Error; Y axis = 
predicted values; X axis = observed values.
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In general, the RMSE showed low values when the original database was used, although 
the data range was large. The data range for sand was 112.13-144.05 g kg-1, for clay was 
94.68-106.35 g kg-1, and for silt was 46.10-60.27 g kg-1. When utilizing the RT models, 
the output values according to the terminal nodes (leaves) and the plot results show a 
horizontal trend (Figure 3) that suggests a grouping of output values subordinated to 
the homogeneity of the output nodes. This homogeneity is intrinsic to the method since 
the output values are grouped in terminal nodes.

The RT models fitted the predicted results better than MLR models, and had the lowest 
values for RSME errors (94.68 for clay content, 112.13 for sand content, and 46.10 for 
silt content) suggesting better predicted results than the RLM models, which exhibited 
101.32 for clay content, 138.43 for sand content, and 57.66 for silt content. These 
values were within the range that was proportional to the magnitude of the input data 
values. A lower RMSE is associated with greater predictive ability, but this index cannot 
be used to compare different properties since it depends directly on the scale of values 
(Henderson et al., 2005). Regarding clay content, the mean value for RSME was 103.00 
for the MLR models and 96.78 for the RT models. The lowest index values were obtained 
for silt content, with a mean value of 46.10 for the RT models and 58.53 for the MLR 
models. The highest mean values of RSME were found in sand prediction (140.70 in MLR 
models and 115.65 in RT) due to the assumed natural range of sand content, which is 
larger than that of the other components. A detailed discussion about model performance 
is presented below.

Evaluation and selection of the models to represent topsoil texture

Results of predictive models (multiple linear regressions and regression trees) for the 
three soil properties and different input databases are summarized in table 3. 

General analysis of the models primarily showed better performance of regression 
trees than multiple linear regressions for all three properties of mineral soil fraction 
content, regardless of the database used. Nussbaum et al. (2018) observed that linear 
regression models are unstable with a large number of covariates. The authors indicate 
that difficulties in working with datasets with a large number of covariates are chances 
of over-fitting calibration data, multi-collinearity, and noisy covariates. Unsatisfactory 
performance from linear regression models in predicting soil particle size, probably due 
to inter-correlation among covariates, was observed by Chagas et al. (2016).

Some positive aspects of the models were the ability to quickly tune parameters and to 
yield insight into decision rules and predictors. Vasques et al. (2008) had different results 
predicting total soil carbon, in which the stepwise multiple linear regressions showed 
better performance than regression tree models.

Sand content showed better performance in the regression tree models, in which all 
R2 values were greater than 0.52 in the RT models, and the highest value was 0.58. 

Table 3. Summary of results for all models tested in the watershed according to soil particle size, model type, and depth

Soil 
property

Predictive 
model

Original data 0.00-0.05 m 0.05-0.15 m Variance(1)

R2 Adj R2 N R2 Adj R2 N R2 Adj R2 N R2 Adj R2

Clay
MLR 0.42 0.32 15 0.47 0.16 15 0.40 0.30 15 0.0013 0.0076
RT 0.48 0.47 6 0.52 0.51 7 0.46 0.13 7 0.0009 0.0436

Sand
MLR 0.38 0.28 13 0.34 0.25 12 0.39 0.29 13 0.0007 0.0004
RT 0.58 0.57 5 0.56 0.56 7 0.52 0.52 6 0.0009 0.0007

Silt
MLR 0.51 0.39 19 0.47 0.36 17 0.51 0.40 18 0.0005 0.0004
RT 0.66 0.66 5 0.65 0.64 5 0.69 0.68 3 0.0004 0.0004

(1) Variance between coefficients of determination (R2); Adj R2 = adjusted R2; RT = regression tree; MLR = multiple linear regression.
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Meanwhile, multiple linear regressions had R2 values ranging from 0.34 to 0.39. Among 
the predicted soil properties, silt content had the best performance, in which all R2 
values were higher than 0.65 in all RT models (Figure 3 and Table 3). Clay content 
prediction also showed better performance with RT models, reaching an R2 of 0.52 
with the harmonized data in the 0.00-0.05 m layer; the lowest R2 value (0.46) was in 
the 0.05-0.15 m layer. The R² values in this study have higher correlations than the 
values described by Henderson et al. (2005) using tree-based models for prediction 
of particle size fractions in Australian topsoil layers (R2 values reaching 0.44). Similar 
values for mineral soil prediction were obtained by Sudduth et al. (2010) studying soils 
in Missouri (USA) where the clay, sand, and silt had R2 values of 0.56, 0.28, and 0.68, 
respectively. The values for clay and silt contents are considered relatively good, due 
to the high variability of these properties in soils. However, for sand content, the value 
are considered low. Lower values for soil texture prediction (average values of R2 lower 
than 0.20) were obtained by Carvalho Junior et al. (2014a) in a hillslope environment 
in Brazil, using the GlobalSoilMap harmonized depths.

The coefficient of determination (R2) is a well-known index used to evaluate regression 
models. However, comparison between models with a different number of variables is 
more appropriate through the adjusted R2. This index is also useful in comparing models 
with distinct input datasets, since the algorithm compensates for different sample sizes 
(Hair et al., 2009). The adjusted R2 and the R2 showed similar patterns of variability, with 
low values mostly ranging from 0.13 to 0.68 (Table 3). The variability of the predictive 
models for each soil property was compared through variance in the coefficients of 
determination, showing small values of variance between MLR and RT models; the greatest 
variability was related to clay prediction. Carvalho Junior et al. (2004a) observed similar 
performance between MLR and RT models used to predict soil texture components.

Concerning the number of covariates, the best performance model (R2 = 0.69) used the 
lowest number of terrain variables (3), which suggests a strong correlation among those 
terrain variables (band 4 of Landsat, the clay mineral index, and the protection index) 
and the silt content. In general, the RT models used 3 to 7 covariates, and an average 
of 6 covariates.

Tree models produced discreet output values in the terminal nodes (leaves), and for that 
reason, they were considered a good technique for separating a dataset into homogeneous 
groups. The range of terminal nodes was from 5 to 8, with an average of 7. Similar 
results regarding the number of covariates and terminal nodes of regression trees was 
demonstrated by Vasques et al. (2008) for soil carbon prediction when models used, on 
average, seven covariates and ten terminal nodes. Figure 4 presents the maps of the 
soil mineral fractions with the terminal node values related to the area.

In general, the surface horizons of soils in the watershed showed sand contents higher 
than silt and clay, as observed in the field survey. This was correlated with the soil 
classes, predominantly Ferrasols and Acrisols, with a clay content increasing along with 
soil depth. Another reason is the occurrence of surface laminar erosion and landslides, 
removing finer soil particles, such as silt and clay, due to steep slopes that are common 
in the watershed, as observed by Pinheiro et al. (2017). This may be observed in figure 4, 
particularly in the northern portion of the watershed within the mountain range, which 
showed high values of sand content. These observations were corroborated in the field 
survey and by interpretation of analytical data.

Moriasi et al. (2007) suggested that qualitative analysis (visual comparison) and 
quantitative statistics should be used in evaluation of model performance, particularly 
in watershed modeling. Clay content distribution showed that the topsoil layer had 
lower clay content in the floodplains and greater content near the main river channels, 
which was influenced by deposition of small particles in suspension in depositional 
environments of slow moving water. According to the prediction map and histograms 
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Figure 4. Prediction maps for sand (original data), clay (0.00-0.05 m), and silt (0.05-0.15 m) contents in the watershed with the 
graphs illustrating the area related to the terminal nodes.
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(Figure 4), more than 54 % of the watershed area had clay content in the topsoil layer, 
ranging from 280 to 300 g kg-1. In contrast, greater sand contents were related to active 
floodplains and the sand content was lowest at the mouth of the watershed where clay 
content was highest due to the depositional environment. In this area, the topsoil has the 
highest values of total organic carbon, which is also related to the estuarine depositional 
environment near sea level.

In general, the soils in the watershed had irregular distribution of silt, with a trend of 
high silt content where Fluvisols predominate. Areas with high silt content in the surface 
layer were also identified in landscapes with a steep slope in the mountain range, with 
poorly developed soils (Regosols) and the presence of rock outcrops. Both types of soils 
show the strong influence of parental material enhancing an incipient pedogenic process 
and structural development.

The main differences in the final products (attribute maps) are inherent to the models 
since the RT model produces discreet output values corresponding to each terminal 
node (Vasques et al., 2008), instead of the wide range of continuous values presented 
by the MLR models.

The analysis indicated that differences among databases (original and harmonized 
data) were small, which suggests that they can likewise be used for modeling. Thus, soil 
scientists are encouraged to harmonize their data, as proposed by the GlobalSoilMap 
project, and in this way contribute to the global soil database of soil properties.

The products from the digital mapping approach may enhance soil survey reports, 
providing easier interpretation for soil management and the uncertainties associated 
with soil property predictions. Additionally, the digital soil map products provide higher 
resolution property predictions, which can be combined to develop many use-oriented 
indexes to target particular management issues related to soil-landscape function. All 
these beneficial outcomes from digital soil mapping can be used to address land use 
decisions in the Guapi-Macacu watershed, Rio de Janeiro, and other locations where 
these maps are developed.

CONCLUSIONS
The regression tree models performed better for all the predicted properties and 
soil depths tested, although multiple linear regression showed similar results. The 
harmonized dataset at the 0.00-0.05 and 0.05-0.15 m layers, in general, had better 
results for clay and silt properties, with values of 0.52 for clay in the 0.00-0.05 m 
layer, and 0.69 for silt in the 0.05-0.15 m layer. The prediction of sand content 
showed better results with the original data depth as input, although all regression 
tree models for this attribute had R2 values greater than 0.52, and small variance 
among them (0.0007). Variance between the coefficients of determination was small; 
thus, both databases (original and harmonized) may equally be applied to modeling 
the soil properties in the watershed. 

The generalization of soil texture components (sand, clay, and silt) performed by the 
regression tree methods were consistent with field observations and the watershed 
landscape characteristics. This evidence supports a relationship between terrain 
attributes and topsoil properties, which can be determined by field observations and 
model predictions.

The number of covariates reflected the complexity of the models. The RT models used 
an average of six covariates (up to seven), whereas the MLR models had an average of 
sixteen predictors. More research is needed to create additional efficient input variables 
to help resolve soil variability and improve the accuracy of soil map products.
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