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Abstract

Background: Meat and egg-type chickens have been selected for several generations for different traits. Artificial
and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic
footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian
lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify
putative regions under selection using Fst method, and find putative pathways under selection.

Results: A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the
broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant
non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may
alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways
related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and
metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over
300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants
were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL
data. The putative regions of selection signatures revealed interesting candidate genes and pathways related
to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development.

Conclusions: In this study, Fst method was applied to identify high confidence putative regions under selection, providing
novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic
traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common
genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies
involving association analysis with phenotypes of economic interest to the poultry industry.
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Background
Chickens are one of the most important animals in the
world, not only because of the intensive production of
meat and eggs, but also because they are a model for de-
velopmental and genomic studies. The chicken genome
has become an important tool for the worldwide avian
research community since 2004, with the release of the
first draft of the genome from a single female red jungle
fowl, which is the wild ancestor of domestic chicken [1].
The domestic chicken has hundreds of different

breeds, but commercial chickens can be divided into
two main groups – broilers (meat-type) and layers (egg-
type), which have been artificially selected for centuries.
These two types have different phenotypic and genotypic
profiles as a consequence of distinct genetic back-
grounds and intensive genetic selection for different
traits [2]. Broiler selection is focused on growth and
muscle deposition, e.g. body weight, feed conversion,
and breast weight. On the other hand, selection of layer
chickens is focused mainly on reproductive traits, e.g.
egg production and egg quality.
Different selection criteria applied for broiler and layer

lines resulted in considerable differences in growth, devel-
opment, and metabolic mechanisms during embryogen-
esis and hatching [3]. This intensive selection, which
resulted in important changes in chicken phenotypes, can
be detected by selection signatures in the genome [4, 5].
Recently, millions of SNPs and INDELs have been

identified from different chicken genomes based on next
generation sequencing data (NGS) [6–8], and it is now
possible to detect regions of selection signatures on a
genome-wide scale. Recent studies in chickens identified
regions under selection using only broiler lines [9, 10],
only layer lines [11, 12], or pooled sample data [4, 7].
In Brazil, Embrapa Swine and Poultry National Re-

search Center maintains several chicken lines under
multi-trait selection in Brazilian climatic and nutritional
conditions for more than 20 years. Two of those lines, a
white-egg type (layer) and a meat-type (broiler), due to
considerable difference in their growth rates and carcass
yields, were utilized to generate an F2 experimental
population for QTL mapping studies [13, 14]. The CC
layer line used in this study is a white-egg laying hen
originated from the White Leghorn, and it has been se-
lected since 1989 mainly for reproductive traits such as
egg production and fertility, besides egg quality traits
[15]. The broiler TT is a paternal line originated from
the White Plymouth Rock, New Hampshire and White
Cornish breeds, and it has been selected since 1992
mainly for growth and meat traits such as body weight,
carcass, and cuts yields [15]. The average weight of TT
broilers (~ 2.4 kg) was almost five-fold higher than that
of CC layers (~ 0.5 kg), when reared as broilers, and also
presented higher abdominal fat percentage and breast

yield compared to CC [16]. Moreover, the layer line has
the egg production average at 70 weeks of about 210
eggs and the first egg at 140 days [17]. Genomic
characterization of these two lines and their comparison
with existing commercial chicken lines can provide valu-
able information about artificial and natural selection in
these lines.
In order to achieve a greater understanding of the gen-

etic differences between these two Brazilian white-egg
layer and broiler lines, a deep catalog of genetic variants
(SNPs and INDELs) were generated by sequencing the
genome of 28 chickens (14 per line) at medium sequen-
cing coverage. SNPs and, for the first time in chicken,
INDELs were utilized for detecting potential selection
signatures using Fst approach. Genes located in candi-
date regions under selection and genes with variants of
potential functional effect were further analyzed to con-
sider their possible influence on economically important
traits in chickens, such as fat deposition, growth and
reproduction. In summary, this study provides novel in-
sights into selection footprints that can help elucidate
the functional mechanisms underlying important traits
relevant to broiler and layer chicken lines. In addition,
this study presents detailed information about variants
in the Brazilian broiler and layer chicken lines that could
be important for genetic studies involving association
analysis with relevant phenotypes.

Results
Sequencing and alignment
Approximately 5 billion short reads were generated from
14 broilers, and 14 white-egg layers. After quality trim-
ming, ~ 78% of the reads were retained. About ~ 98.8%
of the quality-processed reads could be aligned to the
chicken reference genome (Gallus_gallus4.0). After re-
moval of PCR duplicates, the average sequencing cover-
age for the 28 individuals was ~ 11.2 X (average of 11.4
X for broiler line and 10.9 X for white-egg layer line).

Polymorphism identification
The initial variant call resulted in 15,944,063 SNPs and
1,997,771 INDELs from 28 individuals analyzed, includ-
ing autosomes 1–28 and 32, two linkage groups, mito-
chondrial, sex chromosomes (W/Z), and unplaced
scaffolds. The genome-wide average density of variants
considering variants from all 28 chickens was 16.84
SNPs/kb and 1.72 INDELs/kb. SNP densities for each
line were 13.15 SNPs/kb for broilers and 10.82 SNPs/
kb for layers. INDEL densities for each line were 1.41
INDELs/kb for broilers and 1.20 INDELs/kb for
layers. Additional file 1 shows the frequency of substi-
tution types in the SNPs that were initially called.
The most frequent substitutions were G to A (18.5%)
and C to T (18.4%).
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Filtration of the variants based on several criteria (see
Methods) removed around 4% of SNPs and 15% of
INDELs, resulting in the final list of 13,927,521 SNPs
and 1,361,946 INDELs from the 28 individuals. Un-
placed scaffolds were not considered for the subsequent
analyses, hence 478,182 SNPs and 26,057 INDELs were
excluded from these regions. Also, for all the down-
stream analyses, only the filtered datasets of variants
were considered.
The transition and transversion (TS/TV) ratio for

SNPs initially detected in the whole-genome was 2.17,
while the ratio in the filtered set was 2.31.
More variants were detected in the broiler (n= 11,856,959

SNPs and 1,200,710 INDELs in the filtered set) than in the
layer line (n = 9,780,747 SNPs and 1,046,645 INDELs).
About 26% (3,668,592) of all the SNPs were detected ex-
clusively in the broiler line while ~ 12% (1,592,380) were
detected only in the layer line (Fig. 1a). Similarly, about
22% (289,244) of the INDELs were specific to broiler,
while ~ 10% (135,179) were specific to the layer line
(Fig. 1b).
Moreover, a higher proportion of heterozygous vari-

ants were identified in the broiler line (on average 53.9%
of SNPs and 46.6% of INDELs per individual) than in
the layer line (average 44.8% of SNPs and 38.8% of
INDELs) (Additional file 2). For both lines, INDEL vari-
ants showed greater level of homozygosity than SNPs.
Considering all 28 chickens together from both lines, on
average, 50.6% of the SNPs and 57.3% of the INDELs
were homozygous per chicken, while the rest were
heterozygous.
Frequency distributions of alternate allele (AAF) of

SNPs and INDELs were estimated within the two lines.
Our data shows that most of the SNPs (54%) and
INDELs (46.3%) from the broiler and the layer lines had
low frequency (≤ 0.3) (Fig. 2). However, some variants

had reached near fixation (alternative allele frequency ≥
0.9) within lines. About 9.6% of the SNPs and 8.8% of
the INDELs in the layer line were fixed, while the broiler
line showed 5.9% and 5.8% of the SNPs and INDELs, re-
spectively, as fixed.

Functional annotation of polymorphisms
Annotation showed that most of the variants belonged to
non-coding regions of the genome, such as intergenic
(38.5% SNPs and 39.4% INDELs), and intronic (42.1%
SNPs and 42.9% INDELs) regions. Some of the variants
(11.6% SNPs and 10.9% INDELs) had multiple annotations
as those could be classified into multiple categories. Only
about 1.2% of the SNPs were located in exonic regions, in-
cluding synonymous (69.9%), non-synonymous (29.8%)
and stop gain/loss SNPs (0.3%) (Table 1). Compared to
SNPs, only 0.2% of the INDELs were located in exonic re-
gions, including frameshift (54%) and non-frameshift
INDELs (42.8%) (Table 1).
In the present study, it was possible to predict the po-

tential effect for 85% of the non-synonymous SNPs using
the SIFT algorithm [18] which predicted 7255 SNPs
(16%) to be evolutionary intolerant and 38,363 (84%) tol-
erant. Out of the 7255 intolerant SNPs, 2562 were
present exclusively in the broiler line and 1302 were
present only in the white-egg layer line.

Metabolic pathway analyses of polymorphisms of
potential functional impact
Metabolic pathways of genes harboring variants of high
potential functional effects (e.g. intolerant SNPs and
frameshift and non-frameshift INDELs) were investi-
gated using the QIAGEN’s Ingenuity® Pathway Analysis
software (IPA) [19].
The analysis of all genes containing intolerant SNPs

from the white-egg layer and the broiler lines combined

Fig. 1 Venn diagrams of SNPs (a) and INDELs (b) shared between broiler and layer lines. The size of the circles reflects the relative number of filtered
variants from each line within the total number of SNPs (n = 13,449,339) or INDELs (n = 1,335,889)
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resulted in eight significant networks (Table 2). A total
of 260 genes harboring intolerant SNPs participated in
these eight pathways, which were related to connective
and metabolic disorders, embryonic development, car-
diovascular diseases, and carbohydrates metabolism,
among others.
When the same analysis was performed separately for

the broiler and the white-egg layer lines using genes har-
boring intolerant SNPs specific to a line, clearly different
networks were observed (Table 3). In the layer line,
seven significant networks were identified mainly related
to reproductive system development and cellular func-
tions, and also endocrine system (Table 3). In the broiler
line, 12 significant networks were identified, which were
mainly related to lipid and carbohydrate metabolism,
metabolic and dermatologic diseases, neural develop-
ment, and also organism injury (Table 3).
The metabolic pathways obtained from the analysis of

coding INDELs showed a total of 257 genes participating
in nine metabolic pathways, mainly associated with
diseases and disorders, for example: embryonic develop-
ment, connective tissue disorders, gastrointestinal, meta-
bolic, neurological and hepatic diseases, cardiovascular
development, and cancer (Additional file 3). When the
IPA analysis was performed separately for the broiler
and the layer lines using genes harboring line-specific
coding INDELs, three significant networks for each line
were detected, and different networks were observed for

Fig. 2 Distribution of alternative allele frequencies of SNPs (a) and INDELs (b) from layers and broilers

Table 1 Summary of functional annotation of SNP and INDEL
variants from layer and broiler chicken lines

Category SNP Count SNP % INDEL Count INDEL %

Total no of variants 13,449,339 1,335,889

Total annotation 15,223,947 100 1,500,714 100

Alternative annotation 1,774,608 11.66 164,825 10.98

Intergenic 5,866,525 38.53 590,736 39.36

Intronic 6,409,486 42.10 644,103 42.92

Exonic 175,258 1.15 2555 0.17

1 kb downstream 1,274,658 8.37 123,378 8.22

1 kb upstream 1,306,400 8.58 116,815 7.78

UTR3’ 142,796 0.94 17,587 1.17

UTR5’ 26,064 0.17 2462 0.16

Splicing 20,703 0.14 2866 0.19

ncRNA 1814 0.012 164 0.01

miRNA 243 0.002 48 0.003

Exonic categories

Synonymous 122,502 69.90 – –

Non-synonymous 52,219 29.80 – –

Stopgain 424 0.24 – –

Stoploss/retained 88 0.05 – –

Frameshift – – 1381 54.01

Non-frameshift – – 1094 42.82

Coding unknown 25 0.01 80 3.13
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the broiler and layer lines, e.g. growth and cardiac devel-
opment in broilers (Additional file 4).

Genome-wide scan for selection signatures
Fst values were obtained from SNP and INDEL datasets
separately using an overlapping sliding window of 20 kb
with 10 kb step size. A sufficient number of markers per
window was obtained, ranging between 10 to 1094 SNPs

(average of 268/window) and 5 to 114 INDELs (average
of 26/window).
Genome-wide weighted Fst distribution was examined

(Fig. 3) based on 91,649 and 89,847 windows from SNP
and INDEL separate datasets, respectively, between two
lines (meat and white egg-type). The majority of the
windows (60–63%) had low Fst values (< 0.3), and a few
windows showed extremely high Fst values > 0.9 (11 and 3
windows for the SNP and INDEL datasets, respectively).

Table 2 Significant networks with intolerant SNPs from the layer and broiler lines combined

Moleculesa Total no of molecules Score Top diseases and functions

AGAP3, APOLD1, CALCR, CDKL1, EDIL3, FHL5,
LEPR, LEPROT, NCOR2, TGFBR1

33 38 connective tissue disorders, metabolic disease,
cellular assembly and organization

AMOTL2, API5, BICD1, DZIP1, ERK, FBF1,
HEATR1, IFT122, NIN, TEX11

34 35 cellular assembly, organization, morphology and
maintenance

GALR3, GPR6, GPR20, GPR26, GPR97, GPR98,
LPHN3, LYST, MC2R, MC3R

34 35 cell signalling and interaction, cellular function and
maintenance

ABTB1, BRI3BP, CHD9, DDX18, DDX31, ESR1,
FKBP7, GREB1, PPIL4, WHSC1

32 33 organismal, embryonic and tissue development

ACTR10, ANK2, APC2, DCTN4, DISC1, DNAH1,
DNAH3, DNAH5, FARSB, KIF3C

32 33 cellular assembly and organization, nervous system
development, cancer

ACTA2, DSC2, DSG2, DTX1, DTX3L, MTCL1,
NOTCH2, SERPINB12, SRC, TMCO4

33 33 cardiac arrhythmia, cardiovascular disease and
congenital heart anomaly

AK7, AK8, AK9, ARC, CAPN6, CAPN8, CAPN9,
HIP1, KNTC1, PIPOX

30 33 nucleic acid and carbohydrate metabolism

AP5Z1, ASTE1, FLT3, FOXK2, HSP, HSPA2,
HSPH1, METAP1, TSC1, PHF3

32 31 cell cycle, developmental and hereditary disorders

aExample of ten molecules present in each network

Table 3 Top five significant networks from intolerant SNPs exclusively from the layer or broiler line

Moleculesa Total no of molecules Score Top diseases and functions

Layer line

BPI, DISC1, DYX1C1, IRG1, KNTC1, MAST2,
MLKL, ODF2L, TELO2, TPO

34 54 cellular morphology, assembly, organization
and maintenance

ACO1, FSH, ING1, LH, NEB, NPR2, PHKA2,
RB1CC1, TNK2, Tropomyosin

27 37 organ morphology, organismal development
and reproductive system development

AFF1, BARD1, CDC2, Cyclin A, Cyclin D, Cyclin E,
EFHC1, ESR1, GNPAT, RB

27 37 developmental disorder, immunological disease
and cancer

Alpha tubulin, Beta Tubulin, Dynein, EDIL3,
ERK, FBN1, GPSM2, Growth Factor Receptor,
INCENP, NPHP1

26 35 cellular assembly, organization, function,
maintenance and cycle

ADCY, Caveolin, FHL5, GLUD1, IDH2, INSR, Insulin,
LEPR, Proinsulin, Trypsin

24 31 reproductive system development, cellular growth
and proliferation and endocrine system disorders

Broiler line

AMY2A, Amylase, Apyrase, DMBT1, EDA2R, NGNL2,
INF2, NKRF, NUAK2, OTULIN

32 41 lipid metabolism, nervous system development and
post-translational modification

AMOTL2, ERK, FBF1, IQCE, MIPOL1, SCEL, SETD5,
SH3RF2, SMPD1, TIPIN

32 41 carbohydrate and drug metabolism and small molecule
biochemistry

AKAP, AKAP6, AKAP9, DISC1, LXN, MAPRE3, PCNXL4,
PPM1E, RPS6KA1, SCT

32 41 cellular morphology, assembly, organization, function
and maintenance

DCHS1, DHX30, EFCAB11, ESR, FTSJ3, HEATR1, MGA,
MRPL3, NDC1, UTRN

31 38 metabolic disease, hereditary disorder and cell cycle

Aconitase, CRISP2, LAMA1, MEF2, MYBPH, MYH2,
MYO9A, NFS1, OFD1, Tubulin

30 37 cancer, dermatological diseases, organismal injury and
abnormalities

aExample of ten molecules present in each network
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SNP dataset had the mean weighted Fst of 0.2779 (SD
0.14), and INDEL dataset had the mean weighted Fst of
0.2645 (SD 0.14).
Even though the number of INDELs per window was

smaller than those in the SNP dataset, similar regions
were identified in the SNP and INDEL analyses, with a
significant positive correlation (r = 0.66; p < 0.001) be-
tween the Fst values from the same window of putative
selection signatures (top 1% Fst values) of SNPs and
INDELs analysis.
Based on the SNP dataset, 92 windows with top 0.1%

Fst value (Fst ≥ 0.817, Fig. 4) were considered as strong
candidates of selection signatures while 916 windows with
top 1% Fst (Fst ≥ 0.6718, Fig. 4) were deemed as putative.
These putative selection signature windows represented
most of the chromosomes evaluated, except GGA16, 21,
22, 23, 25 and 27. The highest Fst value observed was
0.976 (GGA8: 28,220,001–28,240,000). Many windows

that passed the top 1% Fst threshold could be merged into
larger regions when those were adjacent or overlapping,
e.g. on GGA26, 32 windows passing the threshold could
be grouped into two regions only (GGA26:10,001–
350,000 and GGA26:4,090,001–4,110,000). Merging adja-
cent windows resulted in 345 regions (~ 12.8 Mb in total)
for SNP based analysis. The 916 putative selection signa-
ture regions from SNP-based analysis intersected with 307
genes, including 37 novel chicken genes, eight miRNAs,
and four ultra-conserved elements (Additional file 5).
When the INDEL dataset was analyzed, 90 candidate

windows were identified with strong evidence of selection
(top 0.1%, Fst ≥ 0.7865, Fig. 5), and 896 windows as puta-
tive selection signatures (top 1%, Fst ≥ 0.6537, Fig. 5).
These regions represented all autosomes analyzed (chro-
mosomes 1–28), except GGA12, 16, 22, 23, 25 and 27.
The highest Fst value (0.951) was observed in one window
on GGA13 (16,930,001–16,950,000). Merging the adjacent
windows from INDEL-based analysis resulted in 425 re-
gions (~ 13.5 Mb in total length). Annotation of these
INDEL-based selection signatures represented 363 genes
or functional features, including 48 novel chicken genes,
nine miRNAs, two small nucleolar RNAs, and four ultra-
conserved elements (Additional file 5).
Out of the 307 genes from the SNP-based analysis

and the 363 genes from the INDEL-based analysis,
220 genes were common. When all merged signature
regions (top 1% of Fst values) obtained from both
analyses (345 and 425 regions) were compared, most
of the regions (n = 260 with total length ~ 8.6 Mb)
were found to be common between the two analyses.

Candidate genes under selection for fat deposition and
muscle development
A number of genes potentially related to fat deposition
and muscle development were identified among the
genes overlapping selection signature regions (Table 4).

Fig. 3 Genome-wide distribution of Fst in broiler and layer chickens
from SNP and INDEL datasets. The weighted Fst distribution was
obtained from 91,649 and 89,847 windows from SNP and INDEL
datasets, respectively

Fig. 4 Manhattan plot of genome-wide putative signature selection regions between broiler and layer lines (SNP dataset). Blue line represents the top
1% of Fst values and red line represents the 0.1% of the Fst values
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We analyzed all the genes under putative selection,
307 from SNP-based analysis and 363 from INDEL-
based analysis, with GeneMANIA prediction server [20],
which performs a functional enrichment analysis to find
the biological functions of genes. The genes from the
SNP-based selection signatures resulted in two
enriched pathways: muscle system process and nega-
tive regulation of ion transport (Additional file 6).
The 13 genes from the pathway related to muscle de-
velopment were ACTC1, AKAP6, ATP2A2, CACNA1S,
CAV3, KCNMA1, MYOCD, NOS1, PDE4D, TPM4,
TTN, VCL, and VIPR1.
The genes from the INDEL-based selection signatures

resulted in six enriched pathways related to lipid metab-
olism, e.g. regulation of lipase activity, and lipoprotein
particle remodelling (Additional file 7). Some of the
genes present in the pathways related to lipid metabol-
ism were AKAP6, APOA1/4/5, ADCY2/9, ITPR2,
PLA2R1, SCARB1, and OPHN1. Also, we identified one
pathway related to muscle differentiation with genes that
were also present in the SNP enrichment analysis, such
as ACTC1, AKAP6, NOS1, MYOCD, and TTN.
Thus, candidate genes for fat deposition from SNP-

based selection signature analysis include ITPR2
(GGA1), ADCY2 (GGA2), LPGAT1 (GGA3), AKAP6
(GGA5), IGFBP2 and PLA2R1 (GGA7), and CLPS
(GGA26). Candidate genes identified for muscle devel-
opment are ACTC1 and AKAP6 (GGA5), IGFBP2
(GGA7), NOS1 (GGA15), MYOCD (GGA18), and
MAPK13/14 (GGA26).
All the above mentioned candidate genes for fat me-

tabolism were detected by both SNP and INDEL-based
analyses, with the addition of five more candidates de-
tected only by INDEL analysis: LPIN1 (GGA3), ADCY9
(GGA14), and APOA1/4/5 (GGA 24). For muscle devel-
opment, the same candidate genes were identified in
SNP and INDEL analyses, except the MYOCD gene,

detected only in the SNP analysis, and IGF1R, detected
only in the INDEL analysis.
Furthermore, we also checked genes containing any

intolerant SNP that overlapped with selection signature
regions. Sixty-three intolerant SNPs were found within
selection signature regions, and they represented 39
genes (Additional file 8). Some of these genes have rele-
vant functions, such as related to growth, e.g. AKAP6,
NOS1, MAPK13, and CACNA1S.
We also identified candidate genes within the putative

signature selection regions for other important traits in
chicken such as cardiac, skeletal and embryonic develop-
ment, broodiness, energy metabolism, and reproduction
(Table 4). These candidates are described in more details
in the Discussion section.

Overlap of selection signatures with known QTLs
In order to to achieve greater accuracy in the detection of
the putative selection signatures, the merged regions (345
and 425 from SNP and INDEL analyses, respectively) were
compared with known QTL regions in chicken according
to the Animal QTLdb (release 29, n = 5462) [21]. About
97% of the selection signature regions overlapped with
one or more QTLs for different traits.
Also, a statistical test based on permutation sampling

was used to access the significance of the observed over-
laps between the putative selection signature regions and
QTLs. Based on the regions under selection from the SNP
analysis, traits related to fat deposition, body weight,
muscle weight, growth, egg production, bones, and others
showed significant overlaps (permutation p-value < 0.05,
Fig. 6). When the INDEL-based analysis was considered,
similar traits had significant overlaps (Fig. 7).

SNP and INDEL validation
SNPs were validated by comparison against two different
datasets: (i) 15 M SNPs detected in a previous study by

Fig. 5 Manhattan plot of genome-wide putative signature selection regions between broiler and layer lines (INDEL dataset). Blue line represents
the top 1% of Fst values and red line represents the 0.1% of the Fst values
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Table 4 Genes associated with traits of interest in poultry located in putative signatures of selection regions

aNumber of signature selection regions (windows) identified
bMean value of Fst considering all windows combined
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Fig. 6 Significant overlap of putative selection signature regions from SNP-based analysis with relevant chicken QTL-traits. Red bars indicate the
observed overlap (selection signature regions overlapping with the respective trait), blue bars indicate the random overlap (1000 permutations),
and the error bars indicate the standard deviation. The permutation p-values are listed on the right

Fig. 7 Significant overlap of putative selection signature regions from INDEL-based analysis with relevant chicken QTL-traits. Red bars indicate the
observed overlap (selection signature regions overlapping with the respective trait), blue bars indicate the random overlap (1000 permutations),
and the error bars indicate the standard deviation. The permutation p-values are listed on the right
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Gheyas et al. [7], and (ii) 600 K Affymetrix® Axiom® HD
genotyping array data from two chickens (one male
white-egg layer and one male broiler), which have also
been sequenced in the present study. Comparison of the
SNP catalog from Gheyas et al. [7] showed that 79.7% of
our variants were common between the studies when
only the genomic positions were compared, and 78.94%
were common when both the position and allelic infor-
mation were compared.
Comparison of the sequence genotype data against

the 600 K SNP array dataset showed very high level
of concordance (Additional file 9). For the two
chickens used in this comparison, we could analyze
genotypes of 575,599 SNPs for the layer (443,350
homozygous and 132,249 heterozygous) and 574,482
SNPs for the broiler (404,763 homozygous and
169,719 heterozygous), as these were present in the
chip. Over 98% of the SNPs had the same genotypes
between the NGS and array datasets (GEN-CONC),
both for the broiler and the layer chicken. Slightly
higher GEN-CONC was observed for homozygous
SNPs than for heterozygous ones.
In addition, we randomly checked some of the

discordant genotypes, and noticed that the majority of
these had poor genotype quality (< 30) in NGS even
though their variant qualities were high. The error rate
in SNP genotype call (considering the non-concordance
of genotypes between NGS and array data for SNPs that
could be compared) was only 1.51% for the layer chicken
and 1.81% for the broiler.
We also validated a large number of functional vari-

ants - intolerant non-synonymous and stopgain/loss
SNPs against the 600 K array data. These included 757
intolerant SNPs (380 from layer and 377 from broiler
chickens), and 37 stopgain/loss SNPs (18 from layer and
19 from broiler chickens). Importantly, over 41% of the
63 intolerant or stopgain/loss variants detected in the se-
lection signature regions were present in the 600 K
genotyping array and could be validated.
The INDELs identified in this study (n = 1,335,889)

were also validated by comparison with results from two
major recent studies [8, 22]. We combined these two
previous datasets, and based on positions only, we ob-
served that 77.24% (n = 1,031,932) of the INDELs in our
study were common with the previous studies. When
the alleles were also compared along with positions,
62.62% of the INDELs were validated (n = 836,552).

Discussion
Polymorphism identification and functional annotation
A genome-wide SNP and INDEL identification in the
Brazilian white-egg layer (CC) and broiler (TT) lines was
performed to obtain a detailed map of genetic variation
in these lines. The initial variant call resulted in

approximately 16 million SNPs and 2 million INDELs
with an average density of 16.84 SNPs/kb and 1.72
INDELs/kb. Our results are consistent with recent stud-
ies, which reported similar densities in chicken [6–8,
23].
After filtration, a total of 13.93 million SNPs and

1.36 million INDELs were retained, with more vari-
ants detected from the broiler line, including hetero-
zygous variants.
The transition and transversion (TS/TV) ratio for SNPs

increased after the filtration process, showing that SNP fil-
tration improved the TS/TV ratio, as higher ratios indicate
better accuracy and lower false-positive rates [24]. In
chicken, similar TS/TV ratios were reported [25].
Heterozygous variants are more difficult to be identi-

fied than homozygous ones. It has been estimated that a
sequencing coverage of 6–10 X is sufficient to detect
99% of all variants (homozygous and heterozygous);
however, some studies reported that a higher coverage
(> 20 X) is necessary for detecting 99% of heterozygous
SNPs [26, 27].
A recent study [28] analyzing the same Brazilian

layer and broiler lines using reduced-representation-
sequencing also reported a higher proportion of
heterozygous SNPs in the broiler line. The greater
variability and heterozygosity observed in the broiler
line was likely due to its broad genetic background,
which is similar to other commercial chickens and
includes the White Plymouth Rock, New Hampshire
and White Cornish breeds [15]. On the other hand,
the layer line utilized in this study is a white-egg
laying hen, which originated solely from the White
Leghorn breed [15].
Even though there are millions of SNPs and INDELs

along the genome, only a few are expected to explain
the phenotypic differences observed between the two
lines. As expected, annotation of the variants showed
that most of them belonged to non-coding regions of
the genome, and just 1.2% of the SNPs and 0.2% of the
INDELs were located in exonic regions, including
122,502 non-synonymous SNPs. Non-synonymous SNPs
and SNPs located in regulatory regions are known to
have the highest phenotype impact [29].
Although, most of the variants were located in non-

coding regions, we identified 7255 intolerant non-
synonymous SNPs, 512 stopgain/loss SNPs, 1381 frame-
shift and 1094 non-frameshift INDELs that may alter
protein functions.
Both frameshift and non-frameshift INDELs affect

protein sequence by being located within coding regions.
Frameshift mutations, however, can also have a major
deleterious impact on protein function as these alter the
amino-acid reading frame. On the other hand, non-
frameshift INDELs do not change the reading frame, but
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they can still alter the protein function by inserting or
deleting one or more amino-acids in the protein se-
quence. The impact of INDELs on transcription has not
been well investigated, but it has been suggested that
this may be considerable [30]. Non-coding INDELs,
e.g. located in 1 kb down/upstream regions, can affect
gene regulation by modulating transcription or silen-
cing genes [30].
The chicken genome is still poorly annotated for func-

tional non-coding regions [31], which can be involved in
important biological functions as was shown in humans
[32]. Because of this, it is currently difficult to predict
the potential effect of variants located in non-coding re-
gions, particularly in potentially important regions e.g.
UTR, up/downstream, splicing and ncRNA.

Metabolic pathway analyses of polymorphisms of
potential functional impact
In order to gain insights into how the polymorphisms
identified could explain the phenotypic changes ob-
served in the two Brazilian chicken lines, metabolic
pathways of genes harboring variants of high potential
functional effects were investigated.
The analysis of all genes containing intolerant SNPs

from the white-egg layer and the broiler lines combined
resulted in eight networks related mainly to connective
and metabolic disorders, embryonic development, car-
diovascular diseases, and carbohydrate metabolism.
The effects of the potential disruptions of these

important pathways caused by intolerant SNPs may
explain various disorders observed in commercial broiler
and layer chickens. Broiler chickens, for instance, have
been selected for weight gain, feed efficiency, breast and
carcass yields, which results in a substantial increase of
growth in a short period. This particular scenario for
meat-type chickens can result in heart ventricular hyper-
trophy and overload of the cardiopulmonary system,
leading to pulmonary hypertension syndrome (ascites),
which can cause chicken mortality or whole carcass con-
demnation during slaughter [33].
On the other hand, layer chickens, which have been

mainly selected for high egg production, have a reduced
body weight than the broiler chickens and can develop
diseases such as fatty liver hemorrhagic syndrome (FLS)
and osteoporosis [3]. FLS is a result of excessive accu-
mulation of fat in the liver when lipoprotein transport is
disrupted during high egg production and cause haem-
orrhage and sudden death [34].
When the analysis was performed using genes harbor-

ing intolerant SNPs specific to a line, clearly different
networks were obtained for each line. In the layer line,
networks were identified mainly related to reproductive
system development, cellular functions, and the endo-
crine system. The latter in layers is particularly

important for reproductive aspects, which involve differ-
ent hormones and their receptors e.g. growth hormone
(GH), prolactin (PRL), thyroids, luteinizing hormone
(LH), melatonin, and others [35, 36]. For instance, GH is
a regulator of ovarian and oviductal functions in
chicken, acting in the modulation of LH and the synthe-
sis of insulin-like growth factors [35]. Also, prolactin is
involved with different physiological processes that are
important for poultry reproduction; hence, PRL is a can-
didate gene for egg production in chicken [36].
In the broiler line, networks were obtained mainly re-

lated to lipid and carbohydrate metabolism, metabolic
and dermatologic diseases, neural development, and or-
ganism injury. It is well known that commercial broiler
lines gain much more weight and muscle mass than
layer chickens. It was observed that at 41 days of age,
the Brazilian broiler chicken line weighed on average
2395 g, while the layer chicken line weighed only 513 g,
when reared as broilers, resulting in about a five-fold dif-
ference between these two lines. Also, the breast yield
for the broiler line was 6% higher compared to the
layer line [15, 16]. This difference in muscle develop-
ment and growth between broilers and layers can be
observed in the early stages of chicken embryos as
previously reported [3].
Another important difference between these two lines

is lipid metabolism and fat deposition. Broiler chickens
accumulate more fat than layers, and lipid metabolism
differences were detected during chicken embryogenesis,
e.g. higher triglyceride content in the liver of broilers [3].
It was observed that at 41 days of age, the Brazilian
broiler chicken line presented 2.41% of abdominal fat
percentage, while the layer chicken line displayed 0.16%
[16]. However, so far, the differences between broiler
and layer chicken lines regarding adipose growth are not
well understood [37].
Frameshift and non-frameshift INDELs are very im-

portant as well, because they are located in coding re-
gions, and both can affect protein sequence. The
metabolic pathways obtained from the analysis of coding
INDELs showed pathways mainly associated with dis-
eases and disorders. Many diseases in humans have been
found to be associated with INDELs (e.g. different types
of cancer), and it was estimated that INDELs are respon-
sible for 24% of the inherited diseases in humans [38].
Previous studies in chicken have also found INDELs to
be associated with various health-related problems, such
as retinal degeneration and embryonic mortality [39],
production traits, such as egg production [40], and per-
formance and carcass traits [41]. The frameshift and
non-frameshift INDELs identified in the present study
could also be involved with health problems, but further
association studies need to be performed to elucidate
their effects.
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Genome-wide scan for selection signatures
Intensive artificial selection can cause high degree of
genetic differentiation between populations in specific
genomic regions, which can result in selection foot-
prints. There are different methods and tools available
to detect evidence of selection. Traditionally, the Fst
method has been a suitable choice based on allele fre-
quency between populations [5].
Fst values were obtained from SNP and INDEL data-

sets separately using an overlapping sliding window of
20 kb, which was also utilized in previous studies in
chicken [42, 43]. Although some studies used 40 kb win-
dows [4, 7, 44], we decided to use 20 kb size-windows
because previous studies reported that haplotype blocks
in chicken have around 10 kb. The haplotype blocks de-
scribed in chicken have different sizes depending on the
line analyzed. In one study, haplotype block size was dif-
ferent in commercial and non-commercial broiler and
layer chickens, but the length was typically less than
10 kb [42]. Also, traditional and village chickens were
evaluated, and a median block size of 11–12 kb was ob-
served [43]. Another reason to use 20 kb windows was
to obtain a better resolution of the regions combined
with a sufficient number of variants in each window.
We obtained a sufficient number of markers per win-

dow with an average of 268 SNPs/window and 26
INDELs/window. In similar studies in chicken, Qanbari
et al. [44] obtained a mean of 199 SNPs per 30–40 kb
window; Stainton et al. [10] had < 30 SNPs per window,
and Gholami et al. [11] analyzed windows of 40 SNPs.
Detecting regions under selection with Fst methods re-
quires at least 10 samples [45]. Moreover, presence of a
large number of markers significantly increases the
power of the analysis [45]. Even though we only analyzed
14 individuals per line, our method is robust as NGS
data were used with dense marker sets.
A majority of the windows had low Fst values (< 0.3),

although a few windows showed extremely high Fst
values (> 0.9). Our results corroborate with similar Fst-
based studies in chicken. For instance, Gholami et al.
[11] obtained Fst values using the Wright method in
commercial layer chickens and observed average values,
depending on the breed, between 0.09 and 0.27. Stainton
et al. [10], like in our study, utilized the Weir and
Cockerham’s pairwise Fst estimator and obtained mean
values between 0.015 and 0.17 depending on the broiler
line analyzed, reflecting the fact that each broiler line
had slightly different selection criteria which resulted in
a range of broiler lines with different characteristics.
Separate Fst analyses, with SNPs and INDELs, were

performed to check if different putative signature re-
gions would be detected. Most of the signature regions
identified were found to be common between the two
analyses (SNPs and INDELs), with a high level of

correlation. This shows that even though the INDEL
dataset was only ~ 10% of the SNP dataset in size, both
datasets detected practically the same regions under se-
lection. Our study is the first in chicken to use INDEL
variants to detect footprints of selection. There are, how-
ever, a few studies in other species, for example in
humans [46]. In this study, INDELs have been used for
identification of selection signatures, and they suggested
that regions surrounding INDELs are more frequently
involved in recent selective sweeps [46]. We believe that
INDEL variants are also a good option for selection sig-
natures analyses even with a reduced density than SNPs,
but further studies are necessary to evaluate it in more
detail.
Genetic drift is a well-known factor that can also cause

divergences in genomic regions. It is almost impossible
to determine if a putative selection signature was caused
by drift [47]. Besides, a combination of genetic drift and
selection could be responsible for eliciting signals similar
to selection footprints [48]. Despite that, there are differ-
ent ways to minimize the false discovery of selective
sweeps, such as the use of a stringent Fst cut-off or
checking the overlap of those regions with QTLs [47,
49]. In our study, different steps were utilized to
minimize the detection of false positive regions due to
drift: (i) stringent Fst cut-off was applied (> 99% Fst); (ii)
windows with less than 10 SNPs or 5 INDELs were
excluded and weighted Fst values were used; (iii) puta-
tive selection signature regions were overlapped with
known QTL regions from chicken QTLdb and permuta-
tion tests were applied to check the significance of these
overlaps (results presented and discussed in sections
below); (iv) putative selection signature regions were fur-
ther interpreted based on different downstream analyses
such as annotation and pathway enrichment analysis of
genes within the signature regions (presented and dis-
cussed in sections below); and (v) Fst analyses were per-
formed utilizing SNP and INDEL datasets separately to
obtain more accurate results.

Candidate genes under selection for fat deposition and
muscle development
We analyzed all genes under putative selection using
network and gene enrichment analyses, and gene func-
tion by literature search, and we identified candidate
genes for fat deposition and muscle development. There
were 307 from SNP-based analysis and 363 from
INDEL-based analysis. Candidate genes associated with
fat deposition were ADCY2/9, APOA1/4/5, AKAP6,
CLPS, IGFBP2, ITPR2, LPGAT1, LPIN1, and PLA2R1.
Candidate genes associated with muscle development
were ACTC1, AKAP6, IGFBP2, IGF1R, NOS1, MAPK13/
14 and MYOCD.
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The AKAP6 gene is present in both muscle devel-
opment and lipid metabolism pathways. A recent
study suggests that this gene is an important regula-
tor of muscle regeneration and myoblast differenti-
ation in mice [50], in addition to its role in cardiac
functions [51]. This gene seems to play a major role
in the regulation of different processes, and further
studies in chicken are necessary to investigate its role
in greater details.
The 30 kb selective sweep region (GGA7:22,790,001–

22,820,000), covering the gene IGFBP2 identified in our
study (with variants mainly fixed in the layer line), was
previously reported in a comparison of various layer
chickens [11]. This gene is known to be related to
growth [52] and fat deposition [53] from previous stud-
ies in chicken.
A putative selection signature region of 20 kb size was

identified (GGA10: 16,210,001–16,230,000) with 24
INDELs overlapping the gene IGF1R with variants
mainly fixed in the layer line. Recent studies in chicken,
using the same method described here, also identified
the same gene under selection in a commercial broiler
[10] and layer [12] lines. This gene plays an important
role in chicken growth [54] and may also be related to
reproduction in layers [55].
One selective sweep of 40 kb (GGA28: 3,860,001–

3,900,000) overlapping the insulin receptor gene
(INSR) was identified in our study with variants
mainly fixed in the broiler line (Table 4). This region
has been previously reported in studies with layers
[44], broilers [4], and both broilers and layers [7].
Also, INSR was associated with growth in chicken in
a previous study [56].

Candidate genes under selection for other important
traits in poultry
Apart from fat deposition and muscle development
traits, genes within the putative signature selection re-
gions were found to be candidates for other important
traits in chicken, such as cardiac, skeletal and embryonic
development, broodiness, energy metabolism, and
reproduction. For instance, the MEIS2 gene is related to
the development of brain, heart, eyes, cartilage and
hematopoiesis [57]. In our study, 17 adjacent windows
were detected as putative selection signatures (GGA5:
30,490,001–30,690,000) harboring the MEIS2 gene,
which were merged into one large region of 200 kb, pos-
sibly indicating a strong selection region. In the study of
Gheyas et al. [7], they identified broiler-specific SNPs in
the MEIS2 gene.
In addition, two genes, ITPR2 and VIPR1, were identi-

fied in the putative selection signature regions, which are
possibly related to layer reproductive traits. One recent
GWAS study in chicken revealed that the ITPR2 gene was

associated with eggshell ultrastructure [58]. On the other
hand, the VIPR1 gene was found to be associated with
broodiness [59], and egg number in chicken [60].
Certain regions or genes are known to be selected in

domesticated chickens, such as TSHR (affecting repro-
ductive behaviors) and the BCDO2 (for yellow skin) as
have been discussed in a number of previous studies [4,
7, 44]. These genes, however, were not picked up in our
study as we applied Fst-based approach for detection of
selection footprints between meat-type (broiler) and
white-egg layer lines. However, both regions were
checked in more detail in both lines. In the TSHR and
BCDO2 genes, there were 812 and 187 SNPs, respect-
ively and 57 and 23 INDELs, respectively. Most of these
variants were fixed (homozygous) in both lines, espe-
cially in the BCDO2 gene, showing that these selection
signatures are clearly present in both chicken lines.

Overlap of selection signatures with known QTLs
In order to gain confidence in detecting selection signa-
tures and linking these regions to potential phenotypes,
we compared the identified selection signature regions
with known QTL regions according to the Animal
QTLdb [21].
Approximately 97% of the selection signature regions

overlapped with one or more QTLs for different traits.
This provides an independent support for the validity of
the selection signature regions detected in this study.
These QTLs corresponded to 190 traits related to fat de-
position, growth, carcass, egg production and quality,
bones, blood parameters, and organs, among others.
In addition, a statistical test was performed to check if

overlaps of the selection signature regions with QTLs
were significant and not just by chance. This comparison
revealed that a higher proportion of the putative signa-
ture regions identified in this study were located in QTL
regions associated with relevant traits in chicken, and
should be further investigated.
The results showed that almost all the selection signa-

ture regions overlapped with different QTLs, providing
additional confidence of the putative selection regions
identified, and also may be an indication of genetic cor-
relation between traits due to pleiotropy.

SNP and INDEL validation
Availability of variant information from previous NGS
studies and high throughput genotype data from 600 K
arrays offer an excellent opportunity to carry out cross-
study and cross-platform (NGS vs array) comparisons to
achieve greater confidence in the variant and genotype
calls. We took this opportunity to validate SNPs and
INDELs detected in the present study.
SNPs were validated by comparing NGS data against

two datasets: 15 M SNPs detected in a previous study by
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Gheyas et al. [7] and SNP data from 600 K Affymetrix®
Axiom® HD genotyping array from two chickens.
We validated more than 78% of our SNPs by compari-

son with the catalog from Gheyas et al. [7]. This provides
a strong validation of the SNPs detected in our study.
In addition, we observed high levels of concordance

with 600 K SNP array data. We noticed a slightly higher
percentage of genotype concordance for homozygous
SNPs than for heterozygous ones, which were also ob-
served previously in a study with bovine variants [61].
The majority of the discordant genotypes checked had

poor genotype quality in our NGS data even though
their variant qualities were high. A possible explanation
of this could be that the sequencing coverage was not
sufficient in these cases for accurate prediction of the
genotype.
We observed low error rates in our study (considering

the non-concordance of genotypes between NGS and
array data for SNPs), showing that alignment and SNP
calling were efficient.
The 600 K array allowed us to validate a large number

of functional variants, intolerant non-synonymous and
stopgain/loss SNPs, thereby providing confidence in
their detection.
Moreover, INDELs identified in this study were also

validated by comparison with two major studies [8, 22],
which have generated the largest catalogs of INDELs in
chicken. We observed that 77% of the INDELs reported
in this study were common with the two previous stud-
ies evaluated, and 62% had the same alleles. Similar re-
sults were observed before based on the same type of
comparison [8]. The lower percentage of concordance,
when allele information was considered, is an indication
that the INDEL alleles differ among different chicken
populations, probably because a large proportion of
INDELs actually consists of microsatellite like tandem
repeats. This comparison, with the two major INDEL
studies in chicken [8, 22], shows that the methodologies
used in this study were efficient for detecting and filter-
ing INDELs, and ~ 23% of novel INDELs were detected.

Conclusions
In this study, we performed a genome-wide identifica-
tion and characterization of genetic variations, and
found putative genomic footprints of selection from two
different chicken lines, a white egg layer and a meat-type
(broiler) line, which have been under multi-trait selec-
tion in Brazilian climatic and nutritional conditions for
more than 20 years. Approximately 15 million genetic
variants were identified. Of which, over 10 thousand are
expected to alter protein functions. Important pathways
related to lipid metabolism, growth, and reproductive
traits were detected from the analysis of SNPs and
INDELs, especially the line-specific variants.

Fst-based analyses were used to identify putative re-
gions of selection showing population differentiation.
This approach revealed a number of highly plausible
candidate genes and pathways under selection for fat
metabolism, growth, reproduction, and cardiac develop-
ment. Moreover, this is the first study to utilize genome-
wide INDEL variants in chicken to identify selection sig-
natures, showing high level of correlation in results be-
tween the SNP and INDEL based data.
To minimize the effect of genetic drift, different ap-

proaches were applied to identify high confidence re-
gions of putative selection. However, despite the effort
to avoid detecting regions caused by random drift, some
of the regions detected in this study may represent false
positives, especially the ones that did not overlap with
genes having known phenotypic association with QTLs.
Further analysis in different populations would be re-
quired to confirm the accuracy of those regions.
In summary, this study provides novel insights into se-

lection footprints that can help elucidate the functional
mechanisms underlying important phenotypic traits
relevant to broiler and layer chicken lines. In addition,
we have presented a detailed genetic catalog of variants
both line-specific and common from two Brazilian
broiler and layer chicken lines that can be used for fu-
ture genomic studies involving association analysis with
relevant phenotypes, and consequently, facilitate the
identification of causative mutations in chicken, and an
important resource for marker-assisted or genomic se-
lection for important traits in chicken.

Methods
Genome re-sequencing of experimental chicken lines
Twenty eight chickens from two different experimental
lines with pedigree control and multi-trait selection by
Embrapa Swine and Poultry National Research Center
(Brazil) were sequenced: 14 individuals from a paternal
broiler line called TT (7 females and 7 males), and 14
from a layer line called CC (7 females and 7 males). Previ-
ously, these two experimental lines were used to generate
a reciprocal F2 Resource population for QTL mapping
studies [13, 14].
The broiler line (TT), originating from the White

Plymouth Rock, New Hampshire and White Cornish
breeds, has been selected since 1992 for body weight,
feed conversion, carcass and parts yields, chick viability,
fertility, hatchability of fertile eggs, and reduced fat de-
position and metabolic disorders [15]. On the other
hand, the white-egg layer line (CC), originating from the
White Leghorn, has been selected since 1989 for egg
production, egg weight and quality, chick viability, feed
conversion, sexual maturity, fertility, hatchability of fer-
tile eggs, and decreased body weight [15]. Chickens were
selected based on their performance for the traits

Boschiero et al. BMC Genomics  (2018) 19:83 Page 14 of 18



mentioned above, and each line was raised under spe-
cific feeding regimes [16].
Each chicken was sequenced individually using a

paired-end protocol in the HiSeq2500 sequencer (Illu-
mina) with paired read length of 101 bases. Further de-
tails on library preparation and sequencing can be
obtained from Moreira et al. [23].

SNP and INDEL identification and filtration
First, the quality of the sequencing reads was checked
with FastQC tool [62]. Read quality trimming was per-
formed using SeqyClean tool (v.1.3.12) [63] to select
reads with average Phred score quality ≥ 24 and mini-
mum length of 65 bp. The reads were aligned against
the Gallus_gallus-4.0 chicken reference genome [64]
using Bowtie2 v.2.1.0 [65]. PCR duplicates were removed
using Picard [66] (v.1.112). Then, SNP and INDEL iden-
tification was performed with SAMtools v.1.2 [67] using
the mpileup option with mapping and base qualities
(Phred score) ≥ 20. All 28 sample BAM files were ana-
lyzed together to improve the variant calling in low
coverage regions. After the initial calling, different filtra-
tion criteria were applied to reduce the number of false-
positives and to avoid copy number variation regions.
The filtration criteria included (1) Phred-based variant
quality score of at least 40; (2) minimum depth of cover-
age at the variant site of 5; (3) maximum depth of cover-
age of not more than mean coverage plus 3 standard
deviations; (4) variant supported by both forward and
reverse strands (at least one read on the forward strand
and one on the reverse strand); (5) variant supported by
at least 3 reads, and (6) SNP clusters (> 10 SNPs in
50 bp), and INDEL clusters (gap of 1 bp between two
INDELs) were removed.
A SNP/INDEL was referred to as homozygous when

only a non-reference allele was observed and heterozy-
gous when both the reference and non-reference alleles
were observed. The alternate allele frequencies (AAF) of
SNPs/INDELs were calculated with VCFtools v. 0.1.12
[68], and AAF was estimated based on the number of
times an alternate allele (SNP or INDEL) appears over
all individuals at that site, divided by the total number of
non-missing alleles at that site.

Functional annotation and effect prediction
Sets of unique SNPs and INDELs from the 28 chickens
were annotated using Variant Effect Predictor tool v.75
[69] against the gene annotation database from Ensembl
(release 71) for chicken. For SNP prediction, we also used
the SIFT option from VEP tool [18], which predicts func-
tional effects of SNPs and classifies them either as intoler-
ant (affects protein function) or tolerant (functionally

neutral) based on amino acid properties and sequence
homology (degree of evolutionary conservation).

Metabolic pathway analyses
QIAGEN’s Ingenuity® Pathway Analysis (IPA®) soft-
ware [19] was used with default parameters to find
metabolic pathways of genes with relevant biological
functions from SNPs and INDELs. First, all genes
with putative functional coding variants present in
both lines were analyzed together to find a global re-
sult. Then, variants, exclusively from broilers or
layers, were analyzed separately to find metabolic
pathways affected in a particular line. Different sets of
variants were utilized, viz. genes containing (1) in-
tolerant SNPs (3746 unique genes); (2) intolerant
SNPs exclusively from broilers (1825 unique genes) or
layers (1057 unique genes); (3) frameshift and non-
frameshift INDELs (1462 unique genes), and (4)
frameshift and non-frameshift INDELs exclusively
from broilers (406 unique genes) or layers (182
unique genes). IPA computes a p-score (network
score) derived from p-values and calculated using
Fisher’s exact test. A network score of > 3 (p-value
< 0.001) indicates a > 99.9% confidence that a network
is not generated by random chance; however, a
network score ≥ 30 was considered for determining
significant results. Similar cut-off scores were utilized
in previous studies to ensure that only highly signifi-
cant networks were identified [70, 71].

Genome-wide scan for selection signatures
The Weir and Cockerham pairwise Fst (Fixation index)
method [72] was applied to estimate the genome-wide
genetic differentiation between broiler and layer lines.
Chromosomes W/Z, unplaced, random, and mitochon-
drial were not considered in this study. This method was
performed using VCFtools v. 0.1.12 software [69] with
SNP (n = 12,806,643) and INDEL (n = 1,273,210) datasets
considered separately and using overlapping windows of
20 kb and a step size of 10 kb. Weighted Fst values were
calculated for windows with at least 10 SNPs or 5
INDELs. Windows with the top 1% Fst values were con-
sidered as candidates of selection signatures, while the
extreme top 0.1% windows were considered candidates
with strong evidence of selection. The selection signa-
ture regions obtained were annotated against the
chicken gene database from Ensembl (release 84). All
genes from regions under selection (top 1%) were fur-
ther analyzed to predict the function of these genes with
GeneMANIA prediction server [20] considering human
database (chicken not available). Gene enrichment ana-
lysis was performed considering Q-values calculated
from a FDR test, and pathways with Q-values < 0.1 were
considered significant.
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QTL overlap analysis
QTL overlap analysis was carried out using the regi-
oneR package [73]. From 190 traits, a subset of 62
representing the most relevant in poultry were
selected for this analysis. A permutation test was per-
formed to evaluate the significant associations
between the genomic regions (merged signature
regions) and the QTL regions by random permuta-
tions (n = 1000). In every permutation, the overlap
with the QTLs was recomputed based on the total
genomic size (Mb) that was overlapped. The observed
number of overlaps was compared with the empirical
distribution to obtain the p-values. A p-value < 0.05
was considered to determine significant associations.

SNP and INDEL validation
The SNPs and INDELs detected in the present study
were compared with variants detected from different
populations in previous NGS studies as a means of val-
idation. The filtered SNP set was compared with the
15 M SNPs detected in Gheyas et al. [7], which had gen-
erated the largest catalog of SNPs in chicken. Similarly,
the filtered INDEL set was compared against the com-
bined dataset from two major recent studies: 883,840
INDELs from Boschiero et al. [8] and 1,343,782 INDELs
from Yan et al. [22]. Comparisons were made based on
both positions and allelic information.
The accuracy of the NGS-based SNP genotype calls

was investigated by comparing sequence data from two
chickens against the genotype calls from 600 K Affyme-
trix® Axiom® HD genotyping array from the same chick-
ens, which have been previously genotyped with the
array. The chickens chosen for this analysis had inter-
mediate sequencing coverage of ~ 11 X/chicken.
From the NGS dataset, we compared 13,218,246 SNPs

with 11.2 X coverage from the layer and 13,229,324
SNPs with 11.5 X average coverage from the broiler
chicken. From the chip dataset, the total of 575,599
(layer) and 574,482 (broiler) SNPs were used, excluding
the SNPs located on the linkage groups. In both data-
sets, the chromosomes analyzed were GGA1–28 and sex
W/Z. Both heterozygous and homozygous genotypes
were considered for comparison of the two datasets. The
comparison was performed based on a methodology pre-
viously proposed [61] by calculating two types of con-
cordance: (i) POS-CONC - SNPs with same position in
both datasets, and (ii) GEN-CONC- only POS-CONC
SNPs with same genotypes between the two datasets.
The error rate in genotype call from NGS data was
estimated as the percentage of POS-CONC SNPs which
had non-concordant genotypes between NGS and array
data, i.e. error rate % = [100-(number of GEN-CONC
SNPs/number of POS-CONC SNPs)*100].
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