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A B S T R A C T

A strain within the Metarhizium anisopliae species complex was isolated in 2009 from a soil sample in a banana
plantation in the municipality of Quixeré, Northeastern region of Brazil. Previous studies showed that this insect-
pathogenic strain does not fit with any current taxon within the M. anisopliae species complex, as determined by
both genomic and by mass spectrometric analyses. In the present study, CG1123 (=ARSEF 13308) is shown to
be morphologically indistinguishable from most species in this cosmopolitan species complex, whereas multi-
locus phylogeny confirmed its uniqueness and supports its recognition as a new species, Metarhizium alvesii, in
honor of Sérgio Batista Alves, one of the founders of insect pathology in Brazil.

1. Introduction

The genus Metarhizium Sorokin (Hypocreales: Clavicipitaceae) in-
cludes well-known entomopathogenic fungi that serve as the active
ingredients of over 60 commercial mycoinsecticides worldwide (Faria
and Wraight, 2007). Multilocus phylogenetic analyses have clarified
relationships within this genus and, although morphological differences
are not always evident among species, well-justified proposals of new
taxa have been made (Bischoff et al., 2009; Kepler et al., 2014;
Montalva et al., 2016). Recent taxonomic refinements that focused on
the cryptic diversity within the M. anisopliae species complex using
multigene phylogeny have, so far, recognized 10 species in this group
(Bischoff et al., 2009; Kepler et al., 2014).

With the exceptions of M. globosum, M. guizhouense, and M. in-
digoticum, the remaining species currently treated within the M. aniso-
pliae species complex are noted to occur in Brazil: M. anisopliae sensu
stricto (Faria et al., 2009; Rocha et al., 2013; Lopes et al., 2013b, 2014;
Rezende et al., 2015), M. pingshaense (Xavier-Santos et al., 2011; Lopes
et al., 2014), M. robertsii (Bischoff et al., 2009; Xavier-Santos et al.,
2011; Rocha et al., 2013; Lopes et al., 2013b, 2014; Rezende et al.,
2015), M. brunneum (Lopes et al., 2012, 2014), M. lepidiotae (Lopes
et al., 2013b, 2014), and M. acridum (Magalhães et al., 1997; Driver
et al., 2000; Lopes et al., 2014). Additionally, two taxonomically

unassigned lineages within the M. anisopliae species complex have been
reported (Rocha et al., 2013; Rezende et al., 2015). To our knowledge,
other four Metarhizium species are known from Brazil: M. pemphigi
(Rocha et al., 2013) and M. blattodeae (Montalva et al., 2016) from the
M. flavoviride species complex; and M. brasiliense (Kepler et al., 2014),
which is closely related to M. album, previously treated as M. flavoviride
“Type E” by Driver et al. (2000). Finally, one of Brazil’s most prominent
fungal entomopathogens has been regarded to be Metarhizium (=No-
muraea) rileyi (Alves et al., 1978; Sujii et al., 2002).

One single Metarhizium sp. strain, CG1123, with no clear genomic
relationship to any described species within the M. anisopliae species
complex was obtained at a site located in a tropical zone with dry
summer, according to Köppen's climate classification system (Alvares
et al., 2013). The previous work also both confirmed the pathogenicity
of this strain for the banana weevil Cosmopolites sordidus (Germar)
(Coleoptera: Curculionidae) and provided a preliminary genomic as-
sessment (Lopes et al., 2013a). A complementary study using mass
spectrometry analyses confirmed the uniqueness of this strain as dis-
tinct from any other described species of Metarhizium (Lopes et al.,
2014). In the present study, we characterized the morphology of
CG1123 and conducted more extensive multigenic phylogenetic eva-
luations with this strain in order to evaluate whether this taxon should
be recognized as a new species.
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2. Materials and methods

2.1. Field location, collecting and processing of material

Strain CG1123 was found in February 2009 in an intensively cul-
tivated banana plantation in the municipality of Quixeré, Ceará state,
Northeastern Brazil (Lopes et al., 2013a). It was isolated from a soil
sample and maintained as a monosporic culture. Partial sequences of
the genes β-tubulin (BTUB), RNA polymerase II largest subunit (RPB1),
RNA polymerase II second largest subunit (RPB2) and translation
elongation factor 1-alpha (3′ end of the TEF-1α) were deposited in the
GenBank under the accession numbers KY007611, KY007612,
KY007613, and KY007614, respectively.

2.2. Morphological evaluations

This strain was investigated based on morphological characteristics,
and semi-permanent slide mounts were prepared in lactophenol-cotton
blue. The strain was grown on quarter-strength Sabouraud dextrose
agar+ yeast extract (SDAY/4: 2.5 g L−1 peptone, 10 g L−1 dextrose,
2.5 g L−1 yeast extract, 20 g L−1 agar) for 5–7 days in the dark at
25 ± 1 °C. Fungal microstructures (conidiophores, conidiogenous cells,
and conidia) were examined by brightfield or phase contrast micro-
scopy (Nikon Eclipse E600), documented with a Nikon DS-Fi1 digital
camera, and measured with Motic Images Plus 2.0 software.
Measurements were based on 50 objects per microstructure from which
we calculated mean values, standard error of the mean (± SEM). The
color of the conidial mass was determined using the Pantone color
system (Eiseman and Herbert, 1990) as well a close approximation of
this color for a computer monitor using the values of the CMYK (Cyan,
Magenta, Yellow, black) color system and an adjustment for color
opacity.

2.3. Molecular characterization

Strain CG1123 was grown in 150mL on quarter strength SDY broth
(SDY/4; 2.5 g bacto peptone, 10 g dextrose, 2.5 g yeast extract) for
7 days in a shaker at 125 rpm and 25 ± 1 °C. Hyphae and conidia were
harvested, dried, and ground into a powder in liquid nitrogen with a
mortar and pestle. A SDS (sodium dodecyl sulfate)-based method de-
scribed by Raeder and Broda (1985) was adopted for DNA extraction.
Partial sequences of the following four genes were amplified by poly-
merase chain reaction (PCR): BTUB using the primers BT1F and BT1R
(Bischoff et al., 2009); RPB1 with RPB1C and RPB1Af (Stiller and Hall,
1997); RPB2 with fRPB2-5F and RPB2-7cR (Liu et al., 1999); and 3′ end
of the TEF-1α with primers 983F and 2218R (Rehner and Buckley,
2005). The 5′ end of TEF-1α was previously sequenced by Lopes et al.
(2013a). The PCR products were checked using agarose gel electro-
phoresis and sent for purification and sequencing by Helixxa Genomic
Services (Paulínia, SP, Brazil). Both strands of the PCR products were

sequenced using the Applied Biosystems Big Dye v.3.1 kit and the same
primers described above with an ABI 3500 automatic sequencer. Con-
tigs of CG1123 sequence data were assembled using Chromas Pro (V.
1.5, Technelysium Pty Ltd). Reference sequences were obtained from
GenBank and are listed in Table 1 (see Supplementary Material). Mul-
tiple sequence alignments of each gene were made with Mega 5.0.3 by
ClustalW and manually adjusted. The program jModelTest 0.1.1
(Posada, 2008) was used to identify the best-fit models of nucleotide
substitutions using the corrected Akaike information criteria. A con-
catenated alignment (3′TEF, 5′TEF, RPB1, RPB2 and BTUB) was gen-
erated with Mesquite 3.04 software (Maddison and Maddison, 2015).
Analyses of the consensus sequences of each single gene and the con-
catenated alignment were carried out under the Maximum Parsimony
(MP) method, and bootstrap support (BS) values were provided. Ad-
ditionally, we used Bayesian phylogenetic inference by MrBayes v.
3.2.1 (Ronquist et al., 2012), and BS values were included in the
Bayesian trees. Analysis was run over ten million generations, with tree
sampling every 100 generations; the first 25% of trees were discarded
prior to consensus tree calculation.

3. Results

3.1. Taxonomy

Metarhizium alvesii Lopes, Faria, Montalva & Humber sp. nov.
(Fig. 1).

MycoBank MB819472.
The colonies on SDAY/4 were initially colourless, becoming increas-

ingly yellow immediately below developing conidial hymenia (typically
after 5–8 days) and then greenish as conidia matured with the conidial
mass bluish olive (Pantone 18-0316; CMYK 63:41:77:18). Conidiogenous
cells ovoid to broadly ellipsoid, 10.91 ± 0.24×2.12 ± 0.03 µm (overall
range: 7.55–14.46×1.60–2.80 µm), narrowed apically but without any
obvious neck. Conidia cylindrical, 4.98 ± 0.07×2.63 ± 0.03 µm
(overall range: 3.88–6.55×2.16–3.25 µm) (Fig. 1). M. alvesii cannot be
distinguished from most related taxa based only on conidial and phialidic
morphologies.

Holotype: UFG 50750 is a dried culture of CG1123 deposited in the
Herbariun of the Federal University of Goiás, Goiânia, Brazil.

Ex-Type culture: CG1123, Invertebrate-Associated Fungal Collection
(CFI), at Embrapa Genetic Resources and Biotechnology (Brasilia DF,
Brazil), collected by R.B. Lopes, 02 February 2009, and co-deposited as
ARSEF 13308 in the USDA-ARS Collection of Entomopathogenic Fungal
Cultures (Ithaca, New York, USA).

Type locality: Commercial banana plantation at Quixeré, Ceará
State, Brazil; S 05°09′10.5″, W 38°00′05.2″, at ca. 145m above sea
level.

Type substrate: soil sample from a commercial plantation of banana
(Musa sp., genomic group AAB, cv. Prata-Anã) cultivated for 10 years
and submitted to an intensive agricultural regime, including irrigation

Fig. 1. Conidiogenous cells and conidia of Metarhizium
alvesii. a. Conidia; b. Phialides with developing con-
idia. Bar=10 µm.

R.B. Lopes et al. Journal of Invertebrate Pathology 151 (2018) 165–168

166

mycobank:MB819472


and pesticide applications.
Etymology: M. alvesii is named in honor of Sérgio Batista Alves, an

influential professor of insect pathology at University of São Paulo
(ESALQ-USP, Piracicaba, Brazil) for more than 30 years and who was a
strong, globally known, and respected advocate for the use of microbial
biological control of insect pests.

3.2. Molecular characterization

Phylogeny derived from the concatenated alignment for all five loci
considered in this study (5′ TEF, 3′ TEF, RPB1, RPB2, BTUB) provided
robust results and showed CG1123 to belong in a unique branch
(Fig. 2), thus confirming that this strain is, indeed, genomically distinct
from the other taxa in the M. anisopliae species complex. Bootstrap
values of 100% (MP) and 1 (Bayesian posterior probability) were ob-
tained for the branch in which the strain CG1123 is placed. Analyses for
the 5′ end of the TEF-1α gene allowed discrimination of all taxa cur-
rently recognized in the M. anisopliae complex, whereas other gene
sequences used in our work (3′ TEF, RPB1, RPB2, and BTUB) provided
less informative tree topologies (see Supplementary Material).

4. Discussion

In the current systematics of such hypocrealean entomopathogenic
fungi as Metarhizium spp., morphological traits are no longer regarded
as usable for identification purposes (Glare et al., 1996; Driver et al.,
2000; Rehner and Buckley, 2005). In fact, the only species within theM.
anisopliae species complex whose (globose) conidia are morphologically

distinct is M. globosum (Bischoff et al., 2009). Not surprisingly, mea-
surements for M. alvesii conidia and phialides overlap in size and di-
mensions with other species within the M. anisopliae species complex
(Bischoff et al., 2009; Kepler et al., 2014).

Although molecular tools such as single sequence repeat (SSR)
markers have been proven useful to characterize strains of the M. ani-
sopliae species complex, this approach is not adequate for species
identification or reconstruction of phylogenetic relationships
(Mayerhofer et al., 2015; Castro et al., 2016). CG1123 is currently the
only example of M. alvesii, and the results presented here un-
ambiguously support our claim that it is a new species. Moreover, the
results have shown that CG1123 does not cluster with two unassigned
lineages within this species complex that have been reported in Brazil
(Rocha et al., 2013; Rezende et al., 2015). ESALQ 1636 clustered within
the so-called PARB clade (composed of strains belonging to M. ping-
shaense, M. anisopliae s.s., M. robertsii and M. brunneum), whereas
ESALQ 1374 clustered within MGT (originally composed by M. majus
and M. guizhouense).
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Fig. 2. Bayesian majority rule consensus phylogram of concatenated dataset comprising partial 5′TEF, 3′TEF, RPB1, RPB2 and BTUB gene sequences for Metarhizium strains. Support
values were given as the Bayesian posterior probability (first number) and percentage of bootstrap support derived from a MP analysis (second number). “−” indicates the inexistence of
support value since trees from MP and Baysian analyses do not have similar topology in the specified branch. *Ex-type strains. The scale bar corresponds to 0.006 nucleotide substitution
per site.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jip.2017.12.001.
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