Monitoramento da degradação quimica da mistura biodiesel/diesel

Itânia P. Soares¹ (PQ)*, Patrícia P.K. G. Costa¹ (PQ) e José Antônio de Aquino Ribeiro¹ (PG)

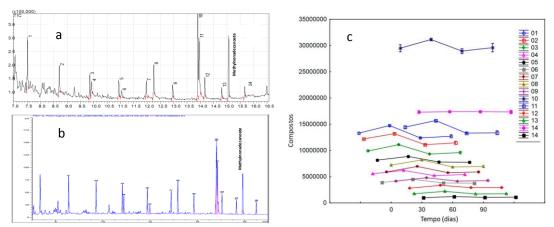
Palavras-chave: biodiesel, diesel, degradação, estocagem.

Em março de 2016, foi aprovada a Lei nº 13.263 que determina que a porcentagem de biodiesel a ser misturado no óleo diesel fosse incrementada em 1% a cada ano, chegando a 10% em 2019, passando assim, em março de 2017 para 8% v/v.

Apesar do diesel e biodiesel apresentarem características físico-químicas semelhantes, possuem estruturas químicas distintas. O diesel contém basicamente hidrocarbonetos alifáticos e aromáticos, enquanto que o biodiesel é formado por compostos oxigenados saturados e insaturados (ésteres de ácidos graxos). Essa diferença estrutural torna o biodiesel mais instável e fatores como ar, água, luz, temperatura e metais podem acelerar a sua degradação química. Essa transformação pode levar a formação de gomas e sedimentos insolúveis que causam problemas nos filtros e nos bicos injetores dos automóveis¹.

Observa-se que existem poucos trabalhos na literatura sobre o processo de degradação química, durante o armazenamento, do diesel, biodiesel e suas misturas. Nesse sentido, o objetivo do presente trabalho foi monitorar a degradação dos principais constituintes da mistura diesel+biodiesel utilizando cromatografia gasosa. Para a caracterização do combustível utilizou-se GC-MS (Gas Chromatography Mass Spectrometry) e para o acompanhamento da possível alteração estrutural dos compostos empregou-se o GC-FID (Gas Chromatograph Flame Ionization Detector).

O combustível analisado B8, ou seja, 8% (v/v) de biodiesel misturado ao diesel S500 (500 ppm de enxofre) foi coletado do bico da bomba de abastecimento em um posto de combustível, na região Centro-Oeste do Brasil. A amostra foi fracionada e armazenada em três (03) tanques-réplica para simulação de condições de armazenamento. A amostra foi analisada no tempo zero, 30, 60 e 90 dias de estocagem, denominados pontos 1, 2 e 3, respectivamente.


A amostra foi diluída em vial de 1,5 mL, na proporção de 25 μ L de amostra para 975 μ L de heptano. Para análise no GC-FID, foi adicionado na amostra o padrão interno nonadecanoato de metila na concentração de 400 μ g mL-1.

As análises cromatográficas foram realizadas nos seguintes equipamentos: GC-MS QP 2010 (Shimadzu) e GC-FID 7890A (Agilent). Utilizou-se a coluna Rtx-5ms (30 m x 0,25 mm x 0.25 μm). As condições analíticas do GC-MS foram: temperatura do injetor e interface de 250 °C, temperatura da fonte de íons 200 °C, gás de arraste hélio com velocidade linear de 38 cm s⁻¹ e injetor no modo split (25:1). A temperatura da coluna permaneceu a 120 °C por 2 min isotermicamente e depois aumentou a 10 °C/min até 300 °C. Essa temperatura foi mantida por 5 min isotermicamente.

Devido à complexidade da amostra (biodiesel+diesel) foram monitorados os compostos que apresentaram sinal mais intenso entre C15 e C28. Dessa forma, o método foi otimizado no GC-MS, e em seguida, foi adaptado para o GC-FID ajustando a temperatura do detector FID para 320 °C. A Figura 1 mostra os cromatogramas obtidos em ambos equipamentos, bem como o comparativo das areas dos compostos.

^{*} itania.soares@embrapa.br

¹ Embrapa Agroenergia – Laboratório de Química de Biomassa e Biocombustíveis – Parque Estação Biológica S/N, Av. W3 norte (final), 70770-901, Brasília, DF.

Figura 1. Análises cromatográficas da amostra B7 por GC: **a**) cromatograma dos íons totais (TIC); **b**) cromatograma GC-FID. (1. Pentadecane, 2. Hexadecane, 3.Heptadecane, 4. 2,6,10,14-tetramethylpentadecane, 5. Octadecane, 6. 2,6,10,14-tetramethylhexadecane, 7. Nonadecane, 8. Methylhexadecanoate, 9. Eicosane, 10. 8,11-Methyloctadecadienoate, 11. 9-Methyloctadecenoate, 12. Methyloctadecanoate, 13. Docosane, 14. Octacosane); **c**) comparação das áreas das substâncias de interesse ao longo da estocagem, utilizando GC-FID.

A análise de variância foi feita pelo teste de Tukey, com significância de 95%, utilizando o software Statistica ®. Os dados com as médias das áreas são apresentados na Tabela 1.

Tabela 1. Avaliação das médias das áreas dos compostos pelo teste Tukey.

Composto		Tempo (dias)			
		0	30	60	90
1	Pentadecane C ₁₅ H ₃₂	13284854 a	14782105 b	12432129 a	12707847 a
2	Hexadecane C ₁₆ H ₃₄	12227402 a	13233089 b	11117441 c	11463484 ac
3	Heptadecane C ₁₇ H ₃₆	9919587 a	11089764 b	9322377 a	9586271 a
4	2,6,10,14-tetramethylpentadecane C ₁₉ H ₄₀	5535271 a	6191801 b	5201829 a	5390091 a
5	Octadecane C ₁₈ H ₃₈	8152477 a	8874646 b	7808779 a	7750708 a
6	2,6,10,14-tetramethylhexadecane C ₂₀ H ₄₂	3916542 a	6191801 b	3784171 a	3744004 a
7	Nonadecane C ₁₉ H ₄₀	5901329 a	6940141 b	5761356 a	5887367 a
8	Methylhexadecanoate C ₁₇ H ₃₄ O ₂	7181917 a	8195594 b	6867618 a	6969874 a
9	Eicosane C ₂₀ H ₄₂	4144310 a	4815722 b	4139966 a	4272525 a
10	8,11-Methyloctadecadienoate C ₁₉ H ₃₄ O ₂	29481676 a	31158206 a	28949337 a	29625526 a
11	9-Methyloctadecenoate C ₁₉ H ₃₆ O ₂	14467760 a	15718215 b	13302086 с	13383301 с
12	Methyloctadecanoate C ₁₉ H ₃₈ O ₂	2803682 a	3363287 b	2905076 a	2923790 a
13	Docosane C ₂₂ H ₄₆	1747360 a	2218222 b	1718943 a	1758216 a
14	Methylnonadecanoate (standart) C ₂₀ H ₄₀ O ₂	17328261 a	17422175 a	17409205 a	17340992 a
15	Octacosane C ₂₈ H ₅₈	985598 a	1214593 b	1049447 a	1095137 a

Houve um aumento de área com trinta dias de estocagem comparado ao tempo zero. O fato pode ser explicado pela evaporação de compostos voláteis do diesel, fazendo com que os compostos monitorados fossem concentrados. Estatisticamente o tempo de trinta dias é diferente do tempo zero e que os tempos zero, sessenta e noventa dias são estatisticamente iguais, porém diferentes de trinta dias, para tosdos os compostos (exceção do 8,11-Methyloctadecadienoate). O fato permite afirmar que em sessenta dias houve degradação química dos compostos monitorados.

Agradecimentos: Ao CNPq, pelo financiamento e à Embrapa Agroenergia, projeto BIOBOM.

Referências

Soares, I.P.; Costa, P.P.K.G.; Ribeiro, J.A.deA.; Oliveira Filho, W.P. Investigação de esteroides em biodiesel. Boletim de pesquisa e desenvolvimento, Embrapa Agroenrgia, Brasília, DF. Disponível em:http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085165>