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R E S U M O 
A ferramenta Soil and Water Assessment Tool (SWAT) tem sido utilizada para avaliar mudanças do uso da terra nos 

recursos hídricos em todo o mundo, e como muitos modelos, o SWAT requer calibração. No entanto, o tempo de execução 

dessas calibrações pode ser bastante longo, reduzindo o tempo disponível para uma análise adequada. Este artigo 

apresenta uma abordagem Windows para calibrar o SWAT usando um computador multinodal cluster, composto por seis 

computadores com processadores i7 (3,2 GHz, 12 núcleos), 8 GB de RAM e 1 TB HDD cada. O único requisito para este 

tipo de cluster é ter processadores 64-bit. Nossos computadores foram configurados com o Windows Server HPC 2012 

R2, um switch de rede 10/100 e cabos Ethernet comuns. Utilizamos o algoritmo SUFI2 que vem com o pacote SWAT-

CUP para realizar calibrações com 100 simulações no nível de nó. As execuações de calibração foram configuradas da 

seguinte forma: 1-12 (intervalo de 1 processo) e 12-72 (intervalo de 12 processos), resultando em 17 execuções. Cada 

execução é repetida e os resultados são apresentados como o tempo médio das execuções, a fim de minimizar qualquer 

influência das flutuações dos recursos. Os resultados mostraram que o tempo de execução foi reduzido em quase a metade 

usando nove processos (15 min) em comparação com o controle de um nó (28 min). Observamos uma diminuição linear 

do tempo de execução de um a nove processos. Com processos adicionais, o tempo de execução foi de 23% e estabilizou-

se em 80% do controle. Todas as amostras são divididas em cinco etapas: distribuição dos arquivos (2,24% de todo o 

tempo de processamento), organização das amostras (0,89%), execução do SWAT (47,59%), coleta dos resultados 

(46,51%) e limpeza (0,28%).  

Palavras-chaves: alta performance, hidrologia. 

 

Parallelization of the SUFI2 algorithm: A Windows HPC approach 

 
A B S T R A C T 

The Soil and Water Assessment Tool (SWAT) has been used for evaluating land use changes on water resources 

worldwide, and like many models, SWAT requires calibration. However, the execution time of these calibrations can be 

rather long, reducing the time available for proper analysis. This paper presents a Windows approach for calibrating 

SWAT using a multinodal cluster computer, composed of six computers with i7 processors (3.2 GHz; 12 cores), 8 GB 

RAM and 1 TB HDD each. The only requirement for this type of cluster is to have 64-bit processors. Our computers were 

setup with Windows Server HPC 2012 R2, a network switch 10/100, and regular Ethernet cables. We used the SUFI2 

algorithm that comes with SWAT-CUP package to perform calibrations with 100 simulations at node level. Calibration 

runs were configured as follows: 1-12 (1 process interval), and 12-72 (12 processes interval), resulting in 17 runs. Each 

run was repeated three times, and results are presented as the mean execution time, in order to minimize any influence of 

resources fluctuations. Results showed that time of execution was reduced by almost half by using nine processes (15 

min) in comparison with the one node control (28 min). We observed a linear decrease of execution time from one to nine 

processes. With additional processes, execution time increased about 23% and stabilized at 80% of the control. All 

processing is divided into five steps: distribute files (2.24% of all processing time), organize samples (0.89%), run SWAT 

(47.59%), collect results (46.51%) and cleanup (0.28%). 

Keywords: high performance, hydrology, modelling, water resources. 
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Introduction 

Many physical and biological processes 

are difficult to analyze due to their complexity or 

cost of monitoring. This is especially the case for 

large-scale environmental analyses. As a result, 

mathematical models have been used worldwide by 

researchers and government agencies to simulate 

these processes. There are two main types of 

models, and they have different objectives and 

applications: (i) conceptual or semantic models, 

which are built based only on the relationships 

between variables and seek to identify and explain 

a certain phenomenon and its implications on a real 

system. These models are sometimes essential for 

creating (ii) empirical or physical models, which 

seek to mimic the behavior of a phenomenon in a 

real system under physically observed or measured 

conditions. This type of model also allows the user 

to make predictions about the behavior of the 

system under different conditions. 

In general, empirical models require a set 

of input data, 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑁), which produce 

an output value, 𝑌 = 𝑓(𝑥). When the value of 𝑌 

approaches the value that would be obtained by an 

experiment under conditions 𝑋, the model is 

considered accurate. In addition, when 𝑌 represents 

a phenomenon in the real world, it usually exhibits 

temporal variation, 𝑌(𝑡), spatial variation, 𝑌(𝑥, 𝑦), 

or both, 𝑌(𝑡, 𝑥, 𝑦), which considerably increases 

the complexity of analysis (McKay et al., 1979). 

Sometimes, the variabilities of 𝑋 are large and 

randomly distributed in time or space, making it 

impossible to obtain accurate simulations without 

inserting some random variable. These models are 

classified as stochastic, and in them, 𝑌 can be 

explained by the distribution of its possible values, 

e.g. climate and geological models. Unlike 

deterministic models, where 𝑌 is exclusively 

determined by the values of 𝑋 used in modeling, 

e.g. hydrological models. 

Hydrological models mathematically 

simulate the dynamics of a natural system. In 

recent years, several hydrological models have 

been created, evolving from rational methods 

(Mulvany, 1850; Todini, 2007) to recent empirical 

distributed models (Beven and Kirkby, 1979; Ewen 

et al., 2000; Srinivasan and Arnold, 1994; 

Wigmosta et al., 1994). They are used mainly to 

help manage natural reserves, evaluate anthropic 

impacts, and plan water use, ensuring that the many 

existing human and natural demands are met. They 

also differ greatly in terms of complexity. Some of 

them are simple and allow only simulation of water 

balance parameters, i.e. surface runoff, percolation, 

lateral flow, shallow aquifer return flow, and 

evapotranspiration. Others are complex and are 

used to model all major physical processes 

associated with vegetation growth, soil water 

movement, and climate change at different spatial 

and temporal scales. But all of these complex 

models require calibration due to their use of 

coefficients, nested model components, and 

spatially heterogeneous inputs that are usually not 

measured systematically. 

Calibration is the process by which the 

parameters of a model can be approximated to a 

realistic range for a set of local conditions. The 

calibration processing consist in determining the 

most sensitive parameters, and then attributing 

values to them by comparing modeled and 

observed data for a certain period. Calibration is 

usually performed iteratively over a set of possible 

values for the sensitive parameters. These sets of 

values are often created through mathematical 

combination given a predefined limit or interval. 

Currently, there are many algorithm that provides 

auto-calibration, for example: SUFI2 (Sequential 

Uncertainty Fitting 2; Abbaspour et al., 2004) and 

GLUE (Generalized Likelihood Uncertainty 

Estimation; Beven and Binley, 1992)..  

SUFI2 is the second version of the SUFI 

(Sequential Uncertainty Fitting) algorithm 

developed by Abbaspour et al. (1997), and consists 

of an iterative calibration method that combines 

optimizations and uncertainty analysis of multiple 

parameters. This method shares many elements 

with the GLUE algorithm, but in contrast, SUFI2 

aims to define ranges of values for each parameter, 

rather than specific values (Abbaspour et al., 2004), 

and SUFI2 is designed to improve accuracy and 

processing speed, featuring multi-site and multi-

objective calibrations. However, despite the 

increasing speed and capacity of computers over 

the years, calibration processing time may still be 

excessive, and several approaches involving 

parallel processing have been proposed to reduce 

processing time.. 

Parallel processing or multiprocessing, 

which is understood as the simultaneous execution 

of multiple operations or tasks using computational 

resources at any level, have been successfully 

implemented using cloud (Yalew et al., 2013) and 

grid processing (Yalew et al., 2013), either through 

direct parallelization of source codes (Wu et al., 

2013), or spawning multiple executables with 

different sets of parameters (Rouholahnejad et al., 

2012). In this study, we describe a different 

approach to speed up calibration using SUFI2 and 

Microsoft® Windows HPC to spawn processes 

across a multinodal cluster computer. 

 

 

 



Revista Brasileira de Geografia Física v.10, n.05 (2017) 1535-1544. 

Miranda, R.Q., Galvíncio, J.D., Moura, M.S.B., Srinivasan, R. 1537 

Methodology 

 

The model SWAT (Soil and Water Assessment 

Tool) 

For this study we chose the model SWAT 

(Soil and Water Assessment Tool), because it is 

closely associated to SUFI2 in many publication. 

In fact, SUFI2 has been reported as the most 

efficient algorithm for calibrating SWAT (Nkonge 

et al., 2014; Wu et al., 2013; Yang et al., 2008). 

SWAT is one of the most widely used watershed-

scale hydrological models, and its use by both 

public and private-sector users is expanding 

(Bressiani et al., 2015). It provides results at four 

temporal resolutions: yearly, monthly, daily and 

sub-daily. Current large-scale SWAT applications 

include the African (Awotwi et al., 2015; Bossa et 

al., 2012; Faramarzi et al., 2013; Pouyan 

Nejadhashemi A, 2011; Welderufael et al., 2013) 

and European continents (Koch et al., 2013; 

Malagò et al., 2015; Oeurng et al., 2011; Sellami et 

al., 2013; Taylor et al., 2016), and the United States 

of America (Bieger et al., 2015; Chien et al., 2013; 

G. W. Marek et al., 2016; Gary W. Marek et al., 

2016). 

SWAT is a semi-distributed model in 

which a watershed is divided into Hydrological 

Response Units (HRUs) that correspond to 

homogeneous areas with only one land use, slope 

and soil type. HRUs are represented in the model 

as percentages of sub-basin or watershed area, and 

may not be spatially explicit. SWAT has five main 

components: hydrology, soil, climate, vegetation 

and land management. The hydrological 

component is its main modulator, directly 

influencing plant growth, sediment, nutrient and 

pesticide movements. SWAT hydrology is based 

on the water balance equation: 

 

 
𝑆𝑊𝑓 = 𝑆𝑊𝑖 + ∑(𝑃 − 𝑄𝑠 − 𝐸𝑇 − 𝑊𝑠

𝑡

𝑡=1

− 𝑄𝑔𝑤) 

(1) 

 

where 𝑆𝑊𝑓 and 𝑆𝑊𝑖 are the final and initial water 

in the contents of the soil, respectively (mm), 𝑡 is 

time (days), 𝑃 is precipitation (mm), 𝑄𝑠 is surface 

runoff (mm), 𝐸𝑇 is evapotranspiration (mm), 𝑊𝑠 is 

percolation (mm) and 𝑄𝑔𝑤 is base flux (mm). 

Detailed equations can be found in Arnold et al. 

(1998) and Arnold et al. (2010). 

 

 
 

Figure 1. Adaptation of the SWAT-CUP structure published by Rouholahnejad et al. (2012). 

 

SWAT-CUP (SWAT Calibration and Uncertainty 

Programs) 

To facilitate SWAT calibration processes, we used 

the SWAT-CUP software (SWAT Calibration and 

Uncertainty Programs, Rouholahnejad et al., 

2012), which has been used by several researchers 

to carry out calibrations, and is recommended by 

SWAT developers. SWAT-CUP uses several 

calibration algorithms in a single graphical 

interface to optimize SWAT inputs: SUFI2 

(Sequential Uncertainty Fitting 2), GLUE 

(Generalized Likelihood Uncertainty Estimation), 

PSO (Particle Swarm Optimization; Kennedy and 

Eberhart, 2002), ParaSol (Parameter Solution; van 

Griensven and Meixner, 2007), e MCMC (Markov 

chain Monte Carlo; Gilks, 2005). SWAT-CUP 

processing consists of three steps performed 

iteratively until SWAT outputs are determined to 

be sufficiently accurate (Figure 1): (i) modify the 

SWAT inputs, (ii) run SWAT, and (iii) extract its 
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outputs. More details can be found in 

Rouholahnejad et al. (2012). 

 

 
 

Figure 2. Diagram of the steps of SUFI2 (Sequential Uncertainty Fitting 2). 

 

The algorithm SUFI2 (Sequential Uncertainty 

Fitting 2) 

The operational details of SUFI2 was 

described by Abbaspour et al. (2004), and can be 

divided into 9 steps (Figure 2), which begin with 

the definition of the objective function to be used 

by the algorithm to evaluate the accuracy of a given 

set of parameters. An objective function is a 

category or group of mathematical indicators that 

ranges from a simple sum of values to complex 

indices, such as the Coefficient of determination 

(r2), Chi-square (chi2), Nash-Sutcliffe (NS), 

Percent Bias (PBIAS) and Kling Gupta Efficiency 

(KGE). In SUFI2, one can use either a single 

function or multiple functions (multi-criteria 

calibration) with only one or many different 

variables (e.g. flow and nutrient) from one or more 

measurements points (multi-objective 

formulation). Also these variables or part (or 

compartment) of their temporal series can be 

assigned different weights that are taken into 

account in the calculation of the objective function. 

The second step is to determine realistic intervals 

(the possible max and min values) between which 

each parameter should vary. These intervals 

prevent the algorithm from tagging a parameter as 

calibrated with unrealistic values, e.g. BLAI 

(maximum Leaf Area Index) must be between 0.3 

m2/m2 and 3.1 m2/m2 for a certain biome, or it is 

unreal. The third step involves the sensitivity 

analysis of all parameters related to the output 

variable used to calibrate the model, and this 

analysis allows not only to define which 

parameters will compose the calibration, but also 

helps the fourth step, which consists in choosing 

the maximum and minimum values between which 

each parameter must vary. The fourth step can 

sometimes be confused with the second step. 

Unlike the second step, this interval is not absolute 

and must vary with each iteration.  For example, in 

a given study area, through field experiments, 

sensitivity analyses or remote measurements, we 

found that BLAI should vary between 2.0 and 2.5 

m2/m2. This is our initial interval, which may move, 

narrow or sometimes expand, but always within the 

absolute range (e.g. from 0.3 to 3.1 m2/m2) that 

keeps it realistic. The fifth step consists in sampling 

𝑛 times (𝑛 is the number of iterations) the intervals 

defined on step four of all parameters chosen on 

step three. In order to maximize the speed and 

processing time of the algorithm SUFI2, the 

sampling is done using the Latin hypercube 

method, which ensures that all intervals are 

completely analyzed. 

From now on, all evaluations and statistical 

analysis of simulations are performed, starting with 

the sixth step that calculates the objective function 

for each simulation. The seventh step then 

computes a series of equations that are applied to 

obtain the sensitivity of each parameter. First, (i) 

the sensitivity matrix and (ii) Hessian matrix are 

calculated as described in Abbaspour et al. (2004); 
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and then, (iii) an estimate of the lower limit of the 

covariance matrix of each parameter is obtained 

along with its (iv) standard deviation and (v) 95% 

confidence interval. Details can be found in Press 

et al. (1992). Finally, the sensitivity of each 

parameter is calculated by averaging all columns of 

the sensitivity matrix. In step eight, the 95PPUs of 

all parameters are computed. SUFI2 considers the 

uncertainty of predictions to be the 2.5º (𝑞𝑢) and 

97.5º (𝑞𝑖) percentile of the cumulative distribution 

of simulated points. The optimized set of values is 

calculated for each parameter 𝑞 using the 

percentage of observed data that lies within the 

95PPU region. The mean distances between upper 

and lower 95PPU are determined by the following 

equation: 

 

 
�̅� =

1

𝐾
∑(𝑞𝑢 − 𝑞𝑖)

𝐾

𝑙=1

𝑙 (2) 

where �̅� is the parameter uncertainty, 𝑙 is a 

sequential counter and 𝐾 is the total number of 

observations for each parameter 𝑞. The best result 

is when 90% or more of observed values are within 

95PPU region, r2 is greater than or equal to 0.8, and 

�̅� is close to zero. 

Normally, in the first iterations, �̅� is high, 

but as iterations continue, ā approaches zero, and 

the percentage of observed values within the 

95PPU range increases. This happens because at 

each iteration the values defined in the fourth step 

are updated, producing smaller intervals for 

achieving a better model accuracy. The new 

interval determined in the ninth step only increases 

when the best values are close to the limits of the 

previous interval, but never exceeding the values 

defined in the second step. 

 

 
 

Figure 3. Scheme of the parallelization of a computer code. 

 

Microsoft® HPC Pack 

The Microsoft® HPC Pack is designed for 

high-end applications that require numerous 

computers to be clustered together by multiple 

network cables to achieve scalable high processing 

power. More precisely, the HPC Pack is a 

collection of tools that allows creating and 

managing nodes from a multinodal cluster 

computer. It includes management tools, a job 

scheduler, and the ability to join workstation nodes 

and unmanaged servers to a cluster. Its latest 

release is a free download available on the 

Microsoft Download Center 

(https://www.microsoft.com/en-us/download/). 

These tools manage the complex processing that 

actually occurs in computers. HPC Pack allows to 

interact starting and controling processes or tasks 

that can leverage part or all resources available in a 

cluster computer; and that can happen through two 

ways: (i) a friendly interface (HPC Manager) and 

(ii) and series of command-line applications that 

can be automated using the programming 

languages Poweshell and Batch. 

In order to achieve simplicity, in this study 

we used Batch, which is a scripting language that 

can be executed by a command-line interpreter 

available in the Microsoft® DOS and Command 

Prompt in Windows operational systems, which is 

https://www.microsoft.com/en-us/download/
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essentially a legacy environment carried forward 

that copies many DOS commands. A Batch file 

consists of a series of commands stored in ACSII 

text files that allows a user to accomplish specific 

tasks such as automating repetitive commands and 

decision making through looping and conditional 

branching. The HPC Pack was used before for 

calibrating the SWAT model, but within a grid 

environment. Humphrey et al. (2012) utilized the 

Pack to access cloud resources from Microsoft® 

Azure. 

 

Parallelization scheme  

From all of the procedures related to 

SWAT modelling, the one that is most time 

consuming is calibration, because it is an iterative 

process in which the model is executed repeatedly 

until a satisfactory results are obtained; and in this 

point, parallel processing can make a substantial 

difference in the total processing time. A well-

known way to insert parallelization into a 

programming code is by identifying the iteration 

points, and then remapping the processing flux. In 

a serialized processing, a program or function is 

repeated several times with different inputs until 

there are no more inputs available to process. When 

parallel processing is implemented, the inputs are 

divided into groups of inputs, and each group is 

serially processed at the same time. That is, if the 

number of groups is equal to the number of inputs 

(one input per group), the processing becomes 

100% parallelized, and all processes are to end 

simultaneously; On the other hand, if the number 

of groups is equal to one, the processing can be 

considered fully serialized (Figure 3).

 

 
 

Figure 4. Scheme of the parallelization of SUFI2 (Sequential Uncertainty Fitting 2). 

 

In SWAT-CUP, three files are used to run 

SUFI2: SUFI2_pre.bat, SUFI2_run.bat, 

SUFI2_post.bat. The SUFI2_pre.bat divides the 

intervals of the parameters in order to optimize 

calibration; SUFI2_run.bat runs SWAT.exe one or 

more times, saving the desired results of each 
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iteration in text files; and SUFI2_post.bat performs 

all statistics. For parallel processing, we modified 

SUFI2_run.bat. Instead for running 

sufi2_execute.exe, it runs our custom Batch file as 

illustrated in Figure 4. All processing was divided 

into five steps: distribute files, organize samples, 

run SWAT, collect results and cleanup. The first 

step will make 𝑛 copies of the SWAT-CUP project 

depending on how many processes will be running. 

The folders ‘ParallelProcessing’, ‘Iterations’ and 

the main directory were avoided, since we do not 

need these folders to run SWAT. The second step 

consists in dividing the samples to prevent two 

processes from working on  the same simulation. 

The Figure 5 illustrates the algorithm that we 

created for this purpose. It treats the simulations as 

a vector of simulations, 𝑋 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁), 

where 𝑆𝑁 is a simulation 𝑁, and divides it equally, 

distributing any remainder across the groups. For 

example, if 𝑋 is composed by 10 simulations, and 

those must be divided into 4 groups: 

10 4 = 2⁄  𝑅 2, the remainder is distributed from 

the first group to the last. In this case, 2 will be 

added to the first two groups as in equation 3: 

 

 

𝑓(𝑋) =

3: (𝑆1, 𝑆2) + (𝑆3)

3: (𝑆4, 𝑆5) + (𝑆6)

2: (𝑆7, 𝑆8)

2: (𝑆9, 𝑆10)

 (3) 

 

To specify which simulations each 

processes will run, our Batch file modifies the file 

SUFI2_swEdit.def of the SWAT projects. This file 

was first created for this purpose, and is the most 

important SUFI2’s feature that allows its 

parallelization. After that, Batch file starts SWAT 

in all projects, and once it is finished, all results 

must be copied to the original project. Some of 

them need to be processed first, and that is 

accomplished by the following code, where 

%procs% is the number of processes that we used 

and %file% is the file that is in all projects with 

different results from different simulations and will 

be merged into one. At the end, the Batch file 

deletes every folder and file created for the 

parallelization process. 

 

 

 
 

Figure 5. Pseudocode to get the groups of 

simulations in function of the number of 

simulations (vector’s length) and number of 

groups (number of processes to be spawn). 

 

Code 1. Batchfile code that collects and writes all of the results in a single file. 

 

for /l %%n in (1,1,%procs%) do ( 

    for /f "tokens=*" %%l in (main_directory\worker%%n\SUFI2.OUT\%file%) do ( 

        echo %%l >> SUFI2.OUT\%file% 

    ) 

) 

 

Case study and computer configuration 

Besides software modifications, for a parallel 

processing to occur, one must have specific 

computational resources that support this type of 

computation. There are three main architectures 

used for parallelize processing: grid, cloud, and 

processor cores on a single computer (Figure 6). In 

this study, we used a grid architecture composed by 

six computers with Intel® i7 X980 processors (3.33 

GHz; 12 cores), 8 GB RAM (DDR3; 1,333 MHz), 
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1 TB HDD (7,200 RPM) and 2 PCI-E Gigabit 

Ethernet Controller (10/100/1000) in each one, 

although the only requirement for this type of 

cluster is to have 64-bit processors. Our computers 

were set up with Windows Server HPC 2012 R2, a 

network switch 10/100, and regular Ethernet cables 

(CAT-5). We used the sample project of SUFI2 

algorithm that comes with the SWAT-CUP 

package to perform calibrations with 100 

simulations at node level. Calibration tests were 

configured as follow: 1-12 (1 process interval), and 

12-72 (12 processes interval), resulting in 17 

essays. Each test was repeated three times and 

results are presented as the mean execution time, in 

order to minimize any influence of resource 

fluctuations. 

 

 
 

Figure 6. Main architectures used to parallelize a computer processing. 
 

Results and discussion 

Results showed that time of analysis was 

cut almost in half using nine processes (15 min) in 

relation to the control node (28 min). We observed 

a linear decrease of execution time from one to nine 

processes, and then it increased about 23% and 

stabilized at 80% of the control. The five 

processing steps required different processing 

times: distribute files (2.24% of all processing 

time), organize samples (0.89%), run SWAT 

(47.59%), collect results (46.51%) and cleanup 

(0.28%). The SWAT execution step required the 

most time, and depending on the available 

computer hardware, it can be rather long, making it 

difficult to perform a proper calibration 

(Rouholahnejad et al., 2012). Our results showed 

that parallel processing of SUFI2 accelerated this 

step substantially. Collecting SWAT outputs used 

almost as much time as running SWAT because 

this step was not parallelizable; it ran in series.Files 

in directory SUFI2.OUT cannot be written 

asynchronically because SWAT needs them to be 

in the correct order to correctly read and process 

them. Reading and writing operations 

(Input/Output; I/O) in Batch are restricted in speed 

and format flexibility; thus, this step may be 

drastically improved by implementing a faster 

language like Python, C or Fortran; or installing 

hardware upgrades.  

 

Conclusion 

In this study, we describe how to 

parallelize the widely used SUFI2 algorithm on 

Microsoft® Windows to reduce algorithm 

execution time. Using a sample project, we derived 

a simple Batch file that is able to distribute 

processing across multiple machines. Our study 

used grid architecture technologies and hardware 

for model auto-calibrating purposes. Experimental 

results showed a significant improvement of 

performance in computation time. The major 

bottleneck of this method was the I/O processing 

speed of Batch in merging the different model 

results. Although we focused on a simple 

programming language and a common platform, 

we believe that this research can be used to make 

high performance computing applications more 

intuitive and easy to use. 
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