
RESEARCH ARTICLE

Study of specific nanoenvironments

containing α-helices in all-α and (α+β)+(α/β)

proteins
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Abstract

Protein secondary structure elements (PSSEs) such as α-helices, β-strands, and turns are

the primary building blocks of the tertiary protein structure. Our primary interest here is to

reveal the characteristics of the nanoenvironment formed by both PSSEs and their sur-

rounding amino acid residues (AARs), which might contribute to the general understanding

of how proteins fold. The characteristics of such nanoenvironments must be specific to each

secondary structure element, and we have set our goal here to gather the fullest possible

description of the α-helical nanoenvironment. In general, this postulate (the existence of

specific nanoenvironments for specific protein substructures/neighbourhoods/regions with

distinct functionality) was already successfully explored and confirmed for some protein

regions, such as protein-protein interfaces and enzyme catalytic sites. Consequently,

PSSEs were the obvious next choice for additional work for further evidence showing that

specific nanoenvironments (having characteristics fully describable by means of structural

and physical chemical descriptors) do exist for the corresponding and determined intrapro-

tein regions. The nanoenvironment of α-helices (nEoαH) is defined as any region of the pro-

tein where this secondary structure element type is detected. The nEoαH, therefore,

includes not only the α-helix amino acid residues but also the residues immediately around

the α-helix. The hypothesis that motivated this work is that it might in fact be possible to

detect a postulated “signal” or “signature” that distinguishes the specific location of α-heli-

ces. This “signal” must be discernible by tracking differences in the values of physical,

chemical, physicochemical, structural and geometric descriptors immediately before (or

after) the PSSE from those in the region along the α-helices. The search for this specific

nanoenvironment “signal” was made possible by aligning previously selected α-helices of

equal length. Afterward, we calculated the average value, standard deviation and mean

square error at each aligned residue position for each selected descriptor. We applied Stu-

dent’s t-test, the Kolmogorov-Smirnov test and MANOVA statistical tests to the dataset con-

structed as described above, and the results confirmed that the hypothesized “signal”/

“signature” is both existing/identifiable and capable of distinguishing the presence of an α-

helix inside the specific nanoenvironment, contextualized as a specific region within the
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whole protein. However, such conclusion might rarely be reached if only one descriptor is

considered at a time. A more accurate signal with broader coverage is achieved only if one

applies multivariate analysis, which means that several descriptors (usually approximately

10 descriptors) should be considered at the same time. To a limited extent (up to a maximum

of 15% of cases), such conclusion is also possible with only a single descriptor, and the con-

clusion is also possible in general for up to 50–80% of cases when no less than 5 nonlinear

descriptors are selected and considered. Using all the descriptors considered in this work,

provided all assumptions about data characteristics for this analysis are met, multivariate

analysis regularly reached a coverage and accuracy above 90%. Understanding how sec-

ondary structure elements are formed and maintained within a protein structure could enable

a more detailed understanding of how proteins reach their final 3D structure and conse-

quently, their function. Likewise, this knowledge may also improve the tools used to deter-

mine how good a structure is by means of comparing the “signal” around a selected PSSE

with the one obtained from the best (resolution and quality wise) protein structures available.

Introduction

Crick [1] explained that proteins are uniquely essential to maintaining life. Although proteins

can perform almost any type of role in animals, plants or microorganisms, so far, the most

studied protein function is definitely its enzymatic role. A precisely folded 3D structure is nec-

essary for a protein to perform its function, and if a protein has been unfolded, e.g., by heat or

some chemical agent, the protein will lose its biological function. Before a protein assumes its

final and correct 3D structure, the construction of its PSSEs must have been completed.

Anfinsen [2] experimentally confirmed that the amino acid sequence of a protein provides

all the necessary information for the protein to assume its precise and final 3D structure.

Although currently it is known that this is only a specific case in such an experiment, Anfinsen

stimulated several attempts to predict the 3D structure with the amino acid sequence alone.

Several methodologies appeared during the last 4–5 decades, such as homology modelling [3–

7], ab initio modelling [8–12], and threading [13–17]. Another possible approach to predicting

the final 3D structure of a protein is to understand how the protein forms and maintains the

different PSSEs during and after folding. Several methods were developed to predict PSSEs.

For example, PSSE predictions have been based on circular dichroism data [18–20], on multi-

step learning coupled with a prediction of the solvent accessible surface area, and on backbone

torsion angles [21–23], as well as on machine learning techniques [24–26]. The results of the

aforementioned techniques are much more accurate now than the early results (from the

1980s) for this particular scientific area. For example, the accuracy of these methods increased

from 56% in 1983 [27] to more than 80% in 2015 [28].

The pattern of formed hydrogen bonds between the amino and carboxyl groups along the

PSSE, together with their ϕ and ψ dihedral angles inside a particular region of the Ramachan-

dran plot [29], fully defines the PSSE. There are three groups of secondary structure elements:

helical structures, β-sheets, and turns. Helical structures are subdivided into helix 2.27, α-helix,

helix 310, and π-helix. β-sheet structures may be parallel, anti-parallel and β-bridge. Finally, a

turn may be a tight turn, multiple turns, hairpins and turns of type I, II, VIII, I’, II,’ VIa1, VIa2,

VIb, and IV.

Several algorithms explore the regularity of hydrogen-bond patterns of PSSEs and are fre-

quently employed to identify and distinguish PSSE types. The DSSP algorithm uses the
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hydrogen-bond pattern recognition and the geometric characteristics extracted from the spa-

tial coordinates of the atoms of the amino acid residues to characterize a secondary structure

element [30]. The Stride algorithm uses, in addition to the information used by DSSP, the

dihedral angle potentials to characterize a secondary structure element [31]. Cuff [32] showed

that the DSSP and Stride definitions agree with each other in 95% of the explored cases. An

excellent tool to observe the PSSE definition differences is JavaProtein Dossier (JPD) [33] of the

BlueStar STING suite of programs.

Proteins can be grouped into SSE classes using the SCOP structure classification [34]: all-α,

all-β, α+β and α/β. “All-α” proteins are those that have only helical secondary structure ele-

ments present in the protein (along with some turns and irregular portions) but crucially, no

β-sheets. The “all-β” structures are those that have only β-sheets present in the protein (along

with some turns and irregular portions) but no helical structures. In α+β proteins, both α-heli-

ces and β-strands are present but are largely segregated. The most frequently detected β-

strands in the α+β type of proteins are antiparallel ones [35]. In the α/β type of proteins (when

the α-helices and β-strands are alternatingly following each other in the protein structure), the

β-strands are mostly organized in a parallel fashion [35]. Finally, there are intrinsically disor-

dered proteins, where neither α-helices nor β-strands are present in the protein’s 3D structure

[36]. Using the Structural Classification of Proteins (SCOP) database [37] and the Protein

Data Bank (PDB) [38], we constructed a DataMart, called General SSEs, which performed the

following classifications: 1606 protein chains as all-α – 12 containing a single or exclusive helix

and 1594 nonexclusive helical chains (meaning they have more than one helix); 19407 protein

chains as (α+β)+(α/β)– 99 “exclusive helix” chains and 19308 nonexclusive helix chains (based

on PDB data from August 8, 2016).

This work focuses on α-helical elements and their nanoenvironment in the all-α proteins

and the α-helices in (α+β)+(α/β) classes of proteins.

Neshich and coworkers [39] introduced the concept of an intraprotein nanoenvironment,

and Moraes and coworkers [40] tested this idea for the first time in a protein interface study.

In this work, we considered the set of amino acid residues located within and around α-

helices–the α-helical nanoenvironment. The amino acid residues that form the secondary

structure element plus the amino acid residues in their vicinity yield a complete neighbour-

hood with its own, very specific nanoenvironment characteristics (Fig 1).

We used a somewhat arbitrary number, which is still empirically considered the most suit-

able number, of thirty-two amino acid residues, before and after the secondary structure ele-

ment in the primary sequence to define the total length of the protein sequence to be studied.

The region defined this way is used for analysis so that the corresponding structure fragments

can be aligned during a procedure and so that descriptor values can then be inspected for the

appearance of the hypothesized specific nanoenvironment “signal”. The spatial inclusion of

AARs other than those belonging to the PSSE itself was achieved by defining the radius of a

sphere of an “AAR enclosure” drawn from the α-carbon atom of any residue of the selected

PSSE. As previously hinted, this procedure was performed for the stretch of thirty-two AARs

before a PSSE’s N-terminal and after its C-terminal.

Regarding the importance of this work, we certainly argue for possible positive implications

of the act of acquiring detailed knowledge about PSSEs and their nanoenvironments and

therefore making it possible to perform the following:

a. better understand the protein folding process;

b. improve existing and design new computational tools for quality validation of the second-

ary structure element location, extension, and internal geometry in protein structure mod-

els obtained either by employing protein structure modelling software, such as Modeller

Nanoenvironment specific to α-helices
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[41] and Swiss-Model [42], or by X-ray crystallography, NMR, and electronic microscopy–

and in all cases by inspecting the PSSE environment’s characteristics and their “signal-like”

behaviour compared to that of a “signal” obtained from the best quality reference

structures.

The knowledge about the relationship between protein amino acid sequences, their 3D

structure, and their function will enable improvements in many applications, eventually allow-

ing the proposal of substances such as new vaccines, drugs, veterinary drugs, insecticides, all

with more efficacy [43]. For example, if one starts from a known genome (human, animal,

plant or microorganism) for which it is already possible to obtain an annotated protein

sequence, then with the acquired knowledge we are compiling and reporting in this work, the

Fig 1. An example of an α-helix (in a specific (α+β) protein) and its nanoenvironment: The synthetic gene

encoded DcpS bound to the inhibitor DG157493 (3bl9.pdb) has fourteen α-helices, and each helix has its own

nanoenvironment. Highlighted inside the transparent spheres is an α-helix (ribbon, purple). The nanoenvironment

includes the amino acid residues of the α-helix and the amino acid residues around the helix that are within reach of

the probing sphere, whose radius was previously selected. The pre- and postregions (extension by 32 AARs each) are

not shown here for the sake of clarity of the basic definition.

https://doi.org/10.1371/journal.pone.0200018.g001
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improved secondary structure element prediction will also improve the prediction of the

whole protein’s 3D structure. Accordingly, this information will lead to finding out how to bet-

ter develop new protein function inhibitors (e.g., bactericides, pesticides, insecticides, and vac-

cines). It could therefore be feasible to more precisely simulate enzymatic reactions, protein-

protein interactions, and protein-substrate interactions, with all of the simulations being faster,

more accurate and quite possibly, less expensive [44].

Materials and methods

We extracted the data for analysis of the PSSE nanoenvironment from STING_RDB [45]. The

STING RDB had 9,320,604,319 records in 98 tables (based on PDB data from August 8, 2016)

and included physical, chemical, physicochemical, structural and geometric descriptors

(reported in “per amino acid residue” fashion, for each protein chain) of each protein structure

in the PDB.

All of the raw data, ready for type of processing that we did in this paper, are available at:

https://figshare.com/projects/Structural_and_physical-chemical_characterization_of_alpha-

helices/35462

Two new STING modules for evaluating the PSSE nanoenvironment: PS3A

and PS3DV

This work expanded the Blue Star STING platform [46] by adding two new modules. The first

one is called Protein Secondary Structure STING Analyzer (PS3A). The PS3A, written in the JS

and PHP programming languages, allows a user to set some options for the fine tuning of

PSSE analysis: PSSE length, consensus type (relative to the definition of the PSSE), redundancy

level, and a selector for depicting one of the 69 different descriptors available for the PSSE

nanoenvironment. Additionally, the user may obtain the data reliability plot, the sequence

“logo” (indicating the local conservation of amino acid residues) and the empirical cumulative

distribution function (ECDF) curve. The ECDF curve shows how the descriptor value levels

inside the PSSE environment are different from the values outside this environment. Users

may access the PS3A at https://www.ps3a.cbi.cnptia.embrapa.br/.

PS3DataVizualizer is the second new STING module that was added as a visualization tool

for PS3A, and it offers users the possibility to visualize any of the 69 different STING descrip-

tors available in separate plots that are produced for the nanoenvironments of α-helices (later,

we will also have PS3DV for β-strands and turns as well). The capabilities of PS3DataVizualizer

make it possible to observe the PSSE in two ways: exclusive α-helices (only a single helical

structure segment is present in the protein’s whole structure) and nonexclusive α-helices

(more than one helix is present per protein analysed). Users may select any image and keep

viewing a carousel of more than two thousand images representing combinations of the

selected size of the PSSE and a multitude of protein descriptors drawn from STING_DB.

These plots were produced using the R package with a high-quality image generator enabled.

Images may be saved by the user for later analysis. We developed PS3DV in HTML5 integrated

with JS and also used the jQuery and Bootstrap technologies. PS3DV is accessible at https://

www.ps3dv.cbi.cnptia.embrapa.br/

Initial hypothesis verification

The hypothesis explored and evaluated here (and contextualized in the biological sense) was as

follows: the nanoenvironment descriptor values inside the PSSE are, or are not, statistically

equal to the values outside the PSSE. The same hypothesis contextualized statistically was as
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PLOS ONE | https://doi.org/10.1371/journal.pone.0200018 July 10, 2018 5 / 25

https://figshare.com/projects/Structural_and_physical-chemical_characterization_of_alpha-helices/35462
https://figshare.com/projects/Structural_and_physical-chemical_characterization_of_alpha-helices/35462
https://www.ps3a.cbi.cnptia.embrapa.br/
https://www.ps3dv.cbi.cnptia.embrapa.br/
https://www.ps3dv.cbi.cnptia.embrapa.br/
https://doi.org/10.1371/journal.pone.0200018


follows: H0–the descriptor value distributions are the same, and H1–the descriptor value distri-

butions are not the same (again: inside vs outside the PSSE nanoenvironment).

Three statistical tests were applied to verify the hypothesis. The first one, the Kolmogorov-

Smirnov test (KSt) [47], was used to compare a sample of interest to one with a reference prob-

ability distribution. As a nonparametric test of the equality of continuous, the KSt may also be

used to compare two samples. The Kolmogorov-Smirnov statistics quantify the distance

between the empirical distribution function of the cumulative distribution for the reference

distribution and that of the analysed sample or the distance between the two empirical distri-

bution functions of two samples. The empirical distribution function Fn for n observations Xi

is defined as shown in the equation:

Fn ¼
1

n

Xn

i¼1

I½� 1;x�ðXiÞ

where I[−1,x](Xi) is the indicator function, is equal to 1 if Xi < x and is otherwise equal to 0.

The Kolmogorov-Smirnov statistic for Fn is calculated by finding the supremum (or the

greatest lower bound) absolute value of the differences between the two samples:

Dn ¼ supxjFnðxÞ � FðxÞj

where supx is the supremum of the set of distances.

The distance Dn is used to calculate the p-value that indicates whether the numbers differ

significantly. The null hypothesis H0 is rejected if the p-value is close to zero.

The second statistical test applied was the Q-Q plot [48], which we used here to support Stu-

dent’s t-test [49]. The Q-Q plot is a graphical method for comparing two probability distribu-

tions by plotting their quantiles against each other. If the data have a normal distribution, then

Student’s t-test may be used. Student’s t-test for different sample sizes may be calculated using

the equation below:

t ¼
�x1 � �x2

Sx1x2

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

q

where �xi is the sample average, ni is the sample size, Sx1x2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

x1
þðn2 � 1ÞS2

x2

n1þn2 � 2

q

, and the degrees

of freedom used in this test are n1 + n2 – 2.

Descriptor value sliding window

Another approach used in this work to confirm the existence of the hypothesized “signal”

(where the word “signal” is used here to designate “something that shows that something

else exists or is likely to happen”) was to run a “sliding window” along the positional/struc-

tural alignment for average descriptor values of amino acid residues belonging to the pre-,

post- and PSSE regions. For each descriptor, a limited (PSSE size wise) sliding window test

was performed by varying the PSSE length between 1 and the maximum number of amino

acid residues found (this number can be some of the PSSE sizes found in the STING RDB

and actually found in some specific derived DataMarts, which are described below). For such

selected lengths, we collected all amino acid residue descriptor values, and the average value

was calculated. We then grouped and stored these data using an R script. Student’s t-test was

applied while dividing the data into two sets: inside and outside the “sliding window”. If the

p-value within the region where the window matches (exactly covers) the PSSE length,

approached zero, then the environment/sample inside the window region was considered

statistically different from the region located outside that window. The results obtained

Nanoenvironment specific to α-helices
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confirm that the descriptor values inside the PSSE are statistically distinct from the values

outside (Fig 2).

Elimination of redundancies

The presence of redundant sequences inevitably introduces bias in the statistical tests, masking

the real variance in the descriptor values along the PSSE positional alignment. We eliminated

sequence redundancy (along the PSSE length) at the 95%, 70%, and 50% levels of similarity.

Building PS3A datamarts

The first step undertaken in this work was to obtain all the protein structures from STING_

RDB containing at least one α-helix. Based on the PDB, DSSP and Stride definitions, the all-α
and (α+β)+(α/β) proteins were filtered and stored for further analysis. The second step was to

eliminate the protein sequence redundancy at the 95%, 70%, and 50% levels of similarity using

CD-HIT software [50]. The third step was to group the α-helices according to the consensus

detected among the different algorithms used here to identify/characterize the PSSEs. The

most rigid consensus requires a consensus for all three selected algorithms: PDB, DSSP and

Fig 2. The p-value of Student’s t-test evaluation for a selected descriptor value along the “sliding window” for positionally aligned PSSE sequences.

The coverage of the sequence containing a PSSE is from the N- to the C-terminal ends (± 32 AAR). The sequences includes the PSSE plus 32 residues

before its N-terminal and 32 residues after its C-terminal. The “sliding window” size in this particular case is the same size as the selected PSSE length (12

AAR). Student’s t-test is used for each position of the sliding window. This test measures how much the data inside the “sliding window” differ from the

data outside the windows. The p-values are shown along the y-axes. A p-value that approaches zero in any particular region means that within this region,

the descriptor values differ from the values outside the region in a statistically significant manner. The arrows indicate the direction of movement for the

“sliding window box” (shown here before, at and after the PSSE), and the solid arrow indicates the exact position of the N-terminal of the PSSE.

Shadowed boxes indicate the size of the sliding window placed at three specific positions. The region with a p-value approximating zero coincides with

the positional alignment of the α-helix that has the exact same size. The sharp invagination around AAR position 52 is not as representative (too short

compared to the PSSE under investigation) as the one directly on top and over the whole analysed PSSE.

https://doi.org/10.1371/journal.pone.0200018.g002
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Stride, i.e., the α-helices should have the same length according to all three definitions.

Another possible consensus would be based on the definitions of only two algorithms: PDB-

DSSP, PDB-Stride, and DSSP-Stride (Fig 3). The fourth step in this work was to positionally/

structurally align the α-helices of equal length. The statistics for such PSSE compilations (tabu-

lated below) and some examples of plots using the PDB-DSSP, PDB-Stride and DSSP-Stride

consensus are available in the Supporting Information (Figure A to Figure C in S1 File).

Before proceeding to the next step, the names of the basic datamarts used frequently in this

work are listed: DM1, DM1_e, DM1_ne, DM2, DM2_e, and DM2_ne. There is a complete

description of these datamarts in Table 1, “Number of Helices of Different Sizes in All α and α
+β and α/β Proteins”. “DM1_e” shows the number of helices for each length in all-α proteins

for the so-called “exclusive” helices (or just one helix in the whole protein structure). “DM1_

ne” shows the same information but for the cases involving more than one helix (nonexclusive

helices). DM1 is the sum of DM1_e and DM1_ne. DM2 follows the same nomenclature but

considers α+β and α/β proteins.

Positional/structural alignment of α-helices

The positional/structural alignment was made considering fixed lengths of α-helices for each

of the sizes found in our datamart starting with PSSEs that were a minimum of five amino acid

residues long and ending with the maximum encountered value. As we mentioned above, to

analyse the nanoenvironment of the α-helices, the observation field was extended by 32 amino

acid residues before and after the N- and C-terminal ends (marked with “�”, meaning that any

residue might be found at that position). However, those residues might be in any PSSE class,

except for the H right before the N-terminal end and after the C-terminal end of the analysed

PSSE. However, in cases of missing residues (to complete the desired 32 ones before or after

the selected PSSE), the residues were noted by using gaps in these positions: “-” (Fig 4).

Descriptor selection

We selected 69 descriptors from the extensive list of STING_RDB descriptors and grouped

them in seven categories (Table 2). These descriptors describe the characteristics of the

nanoenvironment where the α-helices form. In the Supporting Information, we offer an expla-

nation and detailed description of these descriptors.

It is not within the scope of this manuscript to discuss in detail the descriptors used here.

The readers are welcome to see the description in [40]; in [51]; and at the Sting web site: http://

www.cbi.cnptia.embrapa.br/SMS/STINGm/help/MegaHelp_JPD.html

Fig 3. Grouping of same-length α-helices using consensus definitions based on the PDB, DSSP and Stride classifications. There are four possible consensus

groups. (A) PDB-DSSP-Stride: when the secondary structure element starts and finishes at the same corresponding amino acid residue location and hence, has

the same length according to the PDB, DSSP and Stride definitions. (B), (C) and (D) when the secondary structure elements start but do NOT finish at the same

amino acid residue, as defined by one of the three criteria used: PDB-DSSP, PDB-Stride, and DSSP-Stride definitions, respectively.

https://doi.org/10.1371/journal.pone.0200018.g003
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Table 1. Number of helices of different lengths in all α and α+β and α/β proteins.

DM1 DM1_e DM1_ne DM2 DM2_e DM2_ne

all-α (exc. + nexc.) all-α (exc.) all-α (nexc.) α+β (exc. + nexc.) α+β (exc.) α+β (nexc.)

Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices
5 81 5 81 5 1463 5 1 5 1462

6 177 6 1 6 176 6 1768 6 14 6 1754

7 97 7 2 7 95 7 1549 7 10 7 1539

8 133 8 1 8 132 8 1173 8 3 8 1170

9 62 9 62 9 1212 9 2 9 1210

10 100 10 100 10 1619 10 6 10 1613

11 107 11 1 11 106 11 1692 11 12 11 1680

12 87 12 87 12 1657 12 3 12 1654

13 111 13 111 13 1222 13 1 13 1221

14 92 14 2 14 90 14 1215 14 5 14 1210

15 131 15 1 15 130 15 882 15 6 15 876

16 44 16 44 16 643 16 1 16 642

17 27 17 27 17 572 17 28 17 544

18 50 18 50 18 490 18 1 18 489

19 52 19 52 19 392 19 392

20 20 20 2 20 18 20 323 20 3 20 320

21 21 21 21 21 428 21 1 21 427

22 23 22 23 22 194 22 194

23 12 23 12 23 99 23 99

24 18 24 18 24 123 24 123

25 41 25 41 25 126 25 126

26 4 26 4 26 61 26 61

27 14 27 14 27 106 27 106

28 19 28 19 28 56 28 56

29 10 29 10 29 84 29 84

30 3 30 1 30 2 30 41 30 1 30 40

31 9 31 9 31 46 31 46

32 18 32 18 32 60 32 60

33 12 33 12 33 37 33 37

34 17 34 17

35 4 35 4 35 6 35 6

36 2 36 2 36 4 36 4

37 1 37 1 37 5 37 5

38 1 38 1 38 3 38 3

39 1 39 1 39 1 39 1

40 2 40 1 40 1 40 4 40 1 40 3

41 1 41 1

42 1 42 1 42 1 42 1

43 1 43 1 43 7 43 7

44 1 44 1 44 1 44 1

45 2 45 2 45 3 45 3

48 1 48 1 48 1 48 1

50 2 50 2 50 2 50 2

51 7 51 7 51 7 51 7

54 1 54 1

(Continued)
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Data preparation, calculations and presentation

The fifth step for the global pipeline developed in this work was to calculate the average values,

standard deviation and standard error of the mean (SEM) for each descriptor listed in Table 2

and across the analysed region, which includes the PSSE and the 32 amino acid residues before

its N-terminal and after its C-terminal. We developed the Protein Secondary Structure Sting

Analyzer (PS3A) software (Fig 5) so that a user could visualize the “signal”/“signature” of the

alignment in the form of an XY type of plot (A). Additionally, this software shows the reliabil-

ity plot (B), the sequence logo (C), and the empirical cumulative distribution function (ECDF)

curve (D). The user may access PS3A at https://www.ps3a.cbi.cnptia.embrapa.br.

The combination of any of the available 69 STING descriptors (see Table 2) with 18 identi-

fied sizes (in DM2_e) for the PSSEs used in this work with two different flavours (a protein

with only a single α-helix was called “exclusive”, and a protein with more than one α-helical

element was called “nonexclusive”) was in fact a fraction of DM2_ne (only for those lengths

found in DM2_e) and resulted in 2484 plots. The sizes of the PSSEs identified were 5–18, 20–

21, 30 and 40. At https://www.ps3dv.cbi.cnptia.embrapa.br/, the user may visualize/explore/

analyse each of those plots stored in the carousel and save the plots for subsequent use.

Table 1. (Continued)

DM1 DM1_e DM1_ne DM2 DM2_e DM2_ne

all-α (exc. + nexc.) all-α (exc.) all-α (nexc.) α+β (exc. + nexc.) α+β (exc.) α+β (nexc.)

Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices Helix size # of helices
55 1 55 1 55 1 55 1

60 1 60 1

62 2 62 2 62 2 62 2

66 1 66 1

67 1 67 1 67 1 67 1

71 1 71 1

107 1 107 1

108 1 108 1 108 1 108 1

109 1 109 1

Total 1606 Total 12 Total 1594 Total 19407 Total 99 Total 19308

https://doi.org/10.1371/journal.pone.0200018.t001

Fig 4. Positional alignment of α-helices. For the example above, five all-α protein structures with α-helices of length = 12 AARs (H) were aligned. Structures B, D

and E have a second α-helix with 12 amino acid residues (marked with an “h”–all in bold), and these structures were aligned too, as shown in the bottom three lines. To

the left and the right of the PSSE N- and C-terminal ends, respectively, all positions are extended to the 32nd position. Some posts are filled with a “-”, meaning a gap.

Those gaps were introduced at the corresponding spots due to a lack of occupation of those loci in selected proteins.

https://doi.org/10.1371/journal.pone.0200018.g004
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Results

A constitutive set of parameters defining the PSSE nanoenvironment

It is intuitively clear that a set of parameters rather than just one descriptor (or a couple

descriptors) is definitely more suitable for a full description of the nanoenvironment in the

context defined above. Figs 6 and 7 demonstrate how 42 parameters (of the 69 selected for this

work) differ (in normalized values) inside versus outside the PSSE. In this particular case, we

analysed a set of 69 parameters for 28 α+β protein structures containing a single helix of 17

AAR per PSSE and calculated the average and standard deviation values for each parameter.

Normalized values were calculated by dividing the average by the standard deviation. This pro-

cess in fact is normalization by the inverse coefficient of variation, which permits easier read-

ing of the difference between two data sets, which otherwise have very similar values [52]. To

demonstrate the extent of the difference in the parameters inside and outside the PSSE, we cal-

culated the difference between the normalized values. From a total of 69 parameters, 34 show a

difference (between 0.1 and 1.0) between the average values inside versus outside the helix,

and for 8 parameters, this difference is greater than 1, totalling 42 parameters (approximately

60.9% of the set of 69 parameters). Those parameters appear to constitute a statistically signifi-

cant “signal” (two of examples are depicted at Figure D and Figure E in S1 File in Supporting

Table 2. List of STING_RDB descriptors used in this work. Although the Supporting Information contains a detailed description, here, we explain some of the acro-

nyms used.

Structural (I) 18. HBMWS � (56) 35. HBMS � (55)

1. Temperature_Factor_CA � 19. HBMWWS � 36. HBMWS � (56)

2. Dihedral_Angle_PHI � 20. HBSS 37. HBMWWS � (57)

3. Dihedral_Angle_PSI � 21. HBSWS 38. HBSS � (58)

4. Dihedral_Chi1� 22. HBSWWS 39. HBSWS (59)

5. Dihedral_Chi2 23. Hydrophobic 40. HBSWWS � (60)

6. Dihedral_Chi3 24. Aromatic 41. Hydrophobic (61)

7. Dihedral_Chi4 25. Ch_attractive � 42. Aromatic (62)

8. Density IFR 26. Ch_repulsive 43. Ch_attractive � (63)

9. Density Internal � 27. Disulfide � 44. Ch_repulsive (64)

10. Space Clash number of clashes � Unused Contacts (IV) 45. Disulfide � (65)

11. Space Clash percent � 28. Number_Unused_Contact 46. Number_Unused_Contact � (66)

Geometric (II) Physical Chemical (V) 47. Electrostatic_Potential_at_CA (67)

12. Cross_Link_Order_CA � 29. Electrostatic_Potential_at_CA � 48. Electrostatic_Potential_Average (68)

13. Cross_Pres_Order_CA 30. Electrostatic_Potential_Average 49. Electrostatic_Potential_at_LHA (69)

Contacts (III) 31. Electrostatic_Potential_at_LHA Others (VII)

14. HBMM � WNA(�) by Distance and at Surface (VI) 50. Accessible_in_Isolation

15. HBMWM � 32. HBMM � (52) 51. Hydrophobicity_KDI

16. HBMWWM 33. HBMWM � (53)

17. HBMS � 34. HBMWWM � (54)

HBMM: main chain to main chain hydrogen bond. HBMWM: main chain to (one H2O) to main chain hydrogen bond. HBMWWM: main chain to (2 H2Os) to main

chain hydrogen bond. HBMS: main chain to side chain hydrogen bond. HBMWS: main chain to (one H2O) to side chain hydrogen bond. HBMWWS: main chain to

(two H2O) to side chain hydrogen bond. HBSS: means side chain to side chain hydrogen bond. HBSWS: side chain to (one H2O) to side chain hydrogen bond.

HBSWWS: side chain to (two H2Os) to side chain hydrogen bond. Ch_attractive means an attractive charge interaction, and Ch_repulsive means a repulsive charge

interaction.

(�) The weighted neighbour average (WNA) is calculated by a weighting according to distance among interacting atoms and the accessibility at the surface (Equations 9

and 10, respectively, in the Supporting Information). Hence, the number of WNA descriptors should be counted twice (numbers in ascending order within brackets on

the right side of that column). Descriptors whose order numbers are marked with a � are those that passed the radar plot test.

https://doi.org/10.1371/journal.pone.0200018.t002
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Fig 5. The Protein Secondary Structure Sting Analyzer (PS3A) panels contain four types of plots. In the case

shown, 987 α-helices that are 15 amino acid residues long were examined from the datamart in which we removed

70% of the redundancy at the whole protein sequence level, and all instances of α-helices were taken from both all-α
and (α+β)+(α/β) proteins. The consensus definition used to determine the presence of an α-helical structure within

proteins was the PDB-DSSP-Stride–the most rigorous one. The total number of such proteins is indicated in the

Supporting Information in Figure B in S1 File. Plots produced by the PS3A software: A) XY plot for average values (±
SEM) for the selected descriptor: electrostatic potential at the α-carbon atom (CA). Negative numbers along the x-axes

indicate locations to the left of the N-terminal of the examined/central PSSE, and positive ones follow its C-terminal

end. B) The degree of occupancy per AAR position or “reliability”, which is the estimate of how accurately the signal

Nanoenvironment specific to α-helices
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Information) for defining the α-helical nanoenvironment. The coverage for exclusive helices is

rather broad, the same number of SSE signals containing 42 descriptors remains nearly the

same for PSSE sizes of 11 to 40 (decreasing to 38 for helix size 6). On the other hand, for

may be observed in A) above. This estimate is only based on how many amino acid residues are present at any location

of the positional alignment of the PSSE. The maximum value (100% reliability) is assumed for the ensemble of studied

samples along the PSSE. Outside the PSSE, the reliability is usually lower than 100%. C) The sequence logo presents

which amino acid type is more frequently found at each positional alignment location–basically indicating the

consensus sequence of the PSSE for a selected length (also shown at the bottom part of the logo). The amino acid

position numbers (shown on the upper part of the plot) follow the same convention described for A) above. D) The

ECDF curve shows how the descriptor average values inside the PSSE region are different from the corresponding

values outside the selected PSSE. All of these plots (for each selected PSSE length, type of protein and redundancy level)

may be accessed at https://www.ps3a.cbi.cnptia.embrapa.br.

https://doi.org/10.1371/journal.pone.0200018.g005

Fig 6. Comparison of the average values of 8 descriptors, normalized (by inverse coefficient of variation) done by

dividing the parameter values with the corresponding standard deviation, and calculated for regions inside (17

AAARs) and outside the PSSE. The following descriptors are likely to show the postulated “signal” (the differences

between the inside and outside descriptor values per position are higher than 1): 1. Hbmm, 15. Hbmm_WNADist, 29.

Hbmm_WNASurf, 61. Number_Unused_Contact_WNADist, 62. Number_Unused_Contact_WNASurf, 63.

Dihedral_Angle_PHI, 64. Dihedral_Angle_PSI, 66. Density. The two shadowed descriptors are expected to show

differences, as these descriptors are basically part of the definition of the investigated PSSE.

https://doi.org/10.1371/journal.pone.0200018.g006
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nonexclusive helices, the coverage decreases from 54 descriptors for helix size 6, to 42 descrip-

tors for helix size 40.

Multiple variable analyses

In the multivariate analysis of variance (MANOVA), it was necessary to first remove those

descriptors that did not obey a normal distribution. In addition, linearly correlated descriptors

Fig 7. Comparison of the average values of 34 descriptors, normalized (by inverse coefficient of variation) done by

dividing the parameter values with corresponding standard deviation, and calculated for regions inside (17 AAARs)

and outside the PSSE. The following descriptors are likely to show the postulated “signal” (the differences between the

inside and outside descriptor values per position are higher than 0.1 and lower than 1): 2. Hbmwm, 4. Hbms, 5. Hbmws, 9.

Hbswws, 12. Disulfide, 13. Ch_attractive, 16.hbmwm_WNADist, 17. Hbmwwm_WNADist, 18. Hbms_WNADist, 19.

Hbmws_WNADist, 20. Hbmwws_WNADist, 21. Hbss_WNADist, 23. Hbswws_WNADist, 26. Disulfide_WNADist, 27.

ch_attractive_WNADist, 31. Hbmwwm_WNASurf, 32. Hbms_WNASurf, 34. Hbmwwm_WNASurf, 35. Hbss_WNASurf,

37. Hbswws_WNASurf, 40. Disulfide_WNASurf, 41. Ch_attractive_WNASurf, 43. Cross_Link_Order_CA, 45.

Dihedral_Chi1, 50. Electrostatic_Potential_at_CA, 54. Electrostatic_Potential_at_CA_WNADist, 55. Electrostatic_

Potential_at_LHA_WNADist, 56. Electrostatic_Potential_Average_WNADist, 57. Electrostatic_Potential_at_CA_

WNASurf, 58. Electrostatic_Potential_at_LHA_WNASurf, 59. Electrostatic_Potential_Average_WNASurf, 65.

Temperature_Factor_CA, 70. SC_Clash, 71. SC_Percent.

https://doi.org/10.1371/journal.pone.0200018.g007
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(defined after using an R script and default threshold/cutoff of 0.9) were also eliminated. As a

result, in almost all of the tests, the number of descriptors actually used in the MANOVA was

lower than the number of descriptors provided to the test input. As described in Fig 8, as the size

of the SSE increases, the number of descriptors that passed both the normal distribution test and

the no mutual correlation test decreases. Consequently, the MANOVA test had less descriptors:

approximately 10 to 15 for helix sizes up to 25 AARs and then decreasing to approximately 5

descriptors for sizes of 40 AARs and above. The lowest number of descriptors used in this test

was 3 (for a helix size of 108 AARs). The average number of descriptors for all helix sizes was 10.

For all helix sizes, the four applied MANOVA tests showed p-values lower then 1x10-6 in at least

83% of the cases and lower than 1x10-3 in at least 95% of the cases. Such results clearly support

our initial hypothesis that a selected number of qualified descriptors may fully identify and

describe the internal nanoenvironment of the protein region containing the helical structure.

The ten most frequent descriptors used by MANOVA (after the descriptors passed the dou-

ble test on the input) were as follows (see also Fig 9): 1. Electrostatic_Potential_Average_W-

NASurf (30, 65%), 2. Number_Unused_Contact_WNADist (30, 65%), 3. Hbms_WNASurf

(26, 57%), 4. Hbmm_WNASurf (25, 54%), 5. Number_Unused_Contact_WNASurf (25, 54%),

6. Hbmm_WNADist (24, 52%), 7 Electrostatic_Potential_at_CA_WNADist (23, 50%), 8. Elec-

trostatic_Potential_Average_WNADist (22, 48%), 9. Dihedral_Chi1 (20, 43%), and 10. Elec-

trostatic_Potential_at_CA_WNASurf (20, 43%). The numbers within parentheses represent

the total number of appearances among the descriptors used and the percentage of the total

number of helix sizes where that particular descriptor was used by MANOVA, respectively.

The situation in α+β protein structures is similar; however, the 10 most frequently found

descriptors are as follows: 1. Number_Unused_Contact_WNADist (37, 69%), 2. Electrostatic_

Potential_at_LHA_WNADist (30, 56%), 3. Electrostatic_Potential_Average_WNASurf (29,

Fig 8. Variation in the number of descriptors that passed both the normal distribution test and the no mutual correlation test for different helix

sizes.

https://doi.org/10.1371/journal.pone.0200018.g008
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54%), 4. Number_Unused_Contact_WNASurf (29, 54%), 5. Electrostatic_Potential_at_

LHA_WNASurf (28, 52%), 6. Electrostatic_Potential_at_CA_WNADist (25, 46%), 7. Electro-

static_Potential_at_CA_WNASurf (24, 44%), 8. Hbms_WNASurf (21, 39%), 9. Cross_Link_

Order_CA (20, 37%), 10. Dihedral_Chi1 (20, 37%). The lowest number of descriptors used in

this test was 2 (for a helix size of 109 AARs). The average number of descriptors for all helix

sizes in α+β proteins was 10 again.

For α+β proteins and all helix sizes, the four applied MANOVA tests showed p-values

lower then 1x10-6 in at least 85% of the cases and lower than 1x10-3 in at least 92% of the cases.

Once again, the null hypothesis was easily ruled out.

We conducted one more test in order to estimate the power of the most frequently used

descriptors (listed above) to distinguish the nanoenvironment of an α-helix from the non-heli-

cal environments. In the case of all-α proteins, the 10 most frequently used descriptors would

give us approximately 70% coverage and p-values lower than 10−3 in more than 90% of the

cases. The first four most used descriptors gave 63% coverage and p-values less than 10−3 in

Fig 9. Representation of 42 different descriptors used for the MANOVA input and then filtered by a double test: A normal distribution of data and

a lack of mutual correlation. The points, which are plotted for each helical size (x-axes), represent those descriptors used by MANOVA for that

particular size. The 42 descriptors found on the y-axes are as follows: 1. Hbmm, 2. Hbmwm, 3. Hbms, 4. Hbmws, 5. Hbswws, 6. Disulfide, 7. Ch_

attractive, 8. Hbmm_WNADist, 9. hbmwm_WNADist, 10. Hbmwwm_WNADist, 11. Hbms_WNADist, 12. Hbmws_WNADist, 13. Hbmwws_

WNADist, 14. Hbss_WNADist, 15. Hbswws_WNADist, 16. Disulfide_WNADist, 17. ch_attractive_WNADist, 18. Hbmm_WNASurf, 19. Hbmwm_

WNASurf, 20. Hbmwwm_WNASurf, 21. Hbms_WNASurf, 22. Hbss_WNASurf, 23. Hbswws_WNASurf, 24. Disulfide_WNASurf, 25. Ch_attractive_

WNASurf, 26. Electrostatic_Potential_at_CA, 27. Electrostatic_Potential_at_CA_WNADist, 28. Electrostatic_Potential_at_LHA_WNADist, 29.

Electrostatic_Potential_Average_WNADist, 30. Electrostatic_Potential_at_CA_WNASurf, 31. Electrostatic_Potential_at_LHA_WNASurf, 32.

Electrostatic_Potential_Average_WNASurf, 33. Number_Unused_Contact_WNADist, 34. Number_Unused_Contact_WNASurf, 35. Cross_

Link_Order_CA, 36. Dihedral_Chi1, 37. Dihedral_Angle_PHI, 38. Dihedral_Angle_PSI, 39. Temperature_Factor_CA, 40. Internal_CA_3, 41. Clash, 42.

Percent. Finally, the three most frequently plotted descriptors are as follows (designated by the three horizontal dashed lines, from top to bottom): 1.

Electrostatic_Potential_Average_WNASurf (order number: 32)� (30, 65%), 2. Number_Unused_Contact_WNADist (order number: 33)� (30, 67%)

and 3. Hbms_WNASurf (order number: 21)� (26, 58%).

https://doi.org/10.1371/journal.pone.0200018.g009

Nanoenvironment specific to α-helices

PLOS ONE | https://doi.org/10.1371/journal.pone.0200018 July 10, 2018 16 / 25

https://doi.org/10.1371/journal.pone.0200018.g009
https://doi.org/10.1371/journal.pone.0200018


more than 83% of the cases. For nonexclusive α-helices, using the 10 corresponding most fre-

quently used descriptors yielded an 84% coverage and p-value less than 10−3 in more than 96%

of the cases. The first 5 of the aforementioned descriptors gave 55% coverage and p-values less

than 10−3 in more than 73% of the cases.

Moving/sliding window of the average values for a selected descriptor

Fig 10 is a compilation of plots, and each set (A-B) has three different graphs. The first graph

shows the variation in the average value of the descriptor: in this case–the number of contacts

of HBMM type(53), weighted by the distance measured over the surface to which the AAR

belongs. Sequence redundancy was removed at the 70% similarity level, revealing 24 helices in

the all-α structures (on the left side of the figure). The same level of redundancy was set for the

α-helices in the (α+β) + (α/β) structures, revealing 203 helices, which also had 12 AAR (on the

right side of the figure). The average descriptor value is shown for each location of the posi-

tional alignment of α-helix size. Along the horizontal axis, “negative” positions (“–”) corre-

spond to the amino acid residues located before the PSSE N-terminal end, while “positive”

positions (“+”) correspond to the amino acid residues after the PSSE C-terminal end. The sec-

ond graph shows the degree of occupancy per position of the encountered amino acid residues

(of any type) that belong to the α-helical structure at any particular position presented in that

plot (where that number is 100 along the PSSE location itself and lower is lower to the left and

right of the PSSE). Therefore, the reliability is 100% along the examined PSSE. In addition,

some residues might be missing (to the left and the right of the analysed PSSE) as the stretch

might not reach the desired limits of the N-terminal -32 to C-terminal +32 residues. The tem-

porary decrease immediately before and immediately after the examined PSSE, followed by an

increase in reliability, is because the PSSE limits must be delimited by AARs, which definitely

may not belong to a helix (that being the definition of PSSE limit). Further from the N- and C-

termini, the presence of other α-helices is possible, and the reliability therefore oscillates until

positions -32 and +32. The reduction in reliability at the very N-terminal and C-terminal ends

of the extended PSSE region results from the surge in gaps, which become ever more frequent

and which we introduce in such cases, usually at the positions discussed here where the origi-

nal sequence does not reach the desired limit position (±32). The third plot represents the data

resulting from the sliding window test. Namely, using an R script, the descriptor values were

grouped in the window with the same length of the selected PSSE and that window was run

(slide) from the left to the right along the positional alignment of the α-helical element and its

extended region. Additionally, other sliding windows of varying length, from one AAR to dou-

ble the PSSE size, were also made to slide along the same path. This experiment proved that it

is possible to identify the PSSE region by a sliding window test, preferably using a window

with the minimum possible length, as proven by the results depicted in Figure H in S1 File.

Finally, Student’s t-test was applied to data that were divided into two sets: data for AARs from

within and from outside the sliding window range. As shown in Fig 10, the p-value from Stu-

dent’s t-test approaches zero exactly within the region where the sliding window matches the

PSSE position. That observation corroborates the hypothesis we postulated at the beginning of

this work. In general, if, as in the third plot of Fig 10A and 10B, the p-value demonstrates such

a clear variation, then the ensemble inside the sliding window at a selected position is signifi-

cantly different from the ensemble outside that window region. Although some regions other

than the central PSSE regions appear to have a p-value approaching zero, these regions are

mostly outside the PSSE where the p-value exhibits a different/specific behaviour compared to

the behaviour observed for the PSSE flanking regions. Even though the PDB does not contain

any single helix protein structure with a long enough sequence to satisfy the conditions of our
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experiment, which would create the situation where we would have flanking regions with no

perturbation from other helical structures or turn structures, it is quite clear from our plots

that such signals / perturbations do exist in the experimental setup. This possibility clearly

might explain partially why we have p-values fluctuating in the flanking regions.

Fig 10. Composite graphs showing the following: Descriptor variation along the regions before, at and after the analysed PSSE; the reliability value (or

% of helical structure at each loci) and the p-value for the descriptor: Number of contacts, type “HBMM”. Data are drawn from the datamart

containing PSSEs of length = 12 AARs; the consensus definition of a helix element is from “PDB-DSSP-Stride”, and the redundancy is 70% similarity

at the sequence level.

https://doi.org/10.1371/journal.pone.0200018.g010
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After being convinced of the validity of the initial hypothesis of this work (valid for multiple

descriptors in multivariate analysis), we needed to closely examine some specific SSE sizes and

selected parameters/descriptors, aiming to identify the upper limit for coverage in the case of

using only a single descriptor.

The Kolmogorov-Smirnov test was applied in order to statistically confirm the previous

visual observations for some of the data analysed here regarding the “existence” of a nanoen-

vironment-specific single descriptor “signal”. A total of 46 different helical lengths (sizes)

(DM1) were subjected to statistical examination using one out of available 69 descriptors (see

Table 2) for a total of 3165 available tests (9 tests were excluded because they showed an input

data problem). A total of 125 tests have a p-value equal to or less than 1x10-6 (3.9%) exactly

over the region fully matching the extent/position of the examined α-helix. Additionally, 426

tests show p-values along the encountered α-helices equal to or less than 1x10-3 (13.5%). These

results indicate that the analysed tests show p-values compatible with the conclusion that the

helical region (in terms of nanoenvironment) is significantly different from the regions outside

the helix. Such relatively low performance of the success indicator becomes more favourable

for the postulated existence of a “signal” for α-helices found in (α+β)+(α/β) proteins: a total of

54 different helical sizes (DM2) were subjected to statistical examination using the same 69

descriptors, for a total of 3704 available tests (22 tests were excluded because they showed an

input data problem). For this situation, a total of 766 tests have a p-value equal to or less than

1x10-3 (20.7%) and exactly over the region fully matching the extent/position of the examined

α-helix, and 298 tests have a p-value smaller than 1x10-6 (8%). A more detailed analysis

(Table 3) identified very clear-cut situations in which the statistics indicate the existence of a

nanoenvironment “signal” in approximately one fifth of the abovementioned cases. In addi-

tion, as explained in the “Hypothesis verification section”, when the p-values are close to 0, as

in the two mentioned sample marts, then we may reject the H0 hypothesis (which claims that

the two datasets–the data from inside the PSSE compared to outside the PSSE–are statistically

not distinguishable from each other). The remaining approximately 80% of the studied cases,

do not have such low p-values within the region of the analysed PSSE. However, this finding

was expected as there is no such unique parameter that has the power to singlehandedly fully

describe the nEoαH.

In conclusion, most of the statistical analysis points towards the possibility of clearly distin-

guishing a helical nanoenvironment from the environment of the region outside the helix. An

apparent upper limit is clearly seen for the usage of a single descriptor. On the other hand, the

number of descriptors in multivariate analysis comfortably points to a coverage level greater

than 90%.

Single descriptor “signature” comparison: The case of two different types

of PSSE

To demonstrate how representative the analysis we presented so far is, it is also necessary to

verify the behaviour for a single descriptor value for an entirely different PSSE–the “β-strand”.

If our hypothesis holds, then the same principles should hold as well, while the signal/signature

Table 3. The KS test applied for sliding windows in all size helices using single parameter analysis.

Datamarts p-value� 1x10-6 1x10-6> p-value� 1x10-4 1x10-4 > p-value� 1x10-2 p-value>1x10-2

all-α exclusive 1,1% 2,4% 7,6% 88,9%

all-α nonexclusive 3,9% 4,5% 13,1% 78,5%

α+β exclusive 2,9% 3,9% 10,5% 82,7%

α+β nonexclusive 8,1% 6,8% 14,3% 70,8%

https://doi.org/10.1371/journal.pone.0200018.t003
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might be different in shape, content (type of descriptor), and intensity. A comparison between

the corresponding datasets for α-helical regions against β-strand regions in (α+β)+(α/β) pro-

teins demonstrated that there is a convincing difference in the PSSE “signal” types describing

their respective PSSE regions (the compilation for complete β-strand analysis is still under

construction and will be published separately). Fig 11 presents the data pointing to the differ-

ence between the nanoenvironments for α-helices and β-strand regions. The descriptors and

datasets compared were as follows: A) (on the left side of this figure panel) EP@Cα, and B) (on

the right side of this figure panel) the number of contacts of HBMM_WNASurf type, in 1657

α-helices in (α+β)+(α/β) proteins against 20790 β-strands in (α+β)+(α/β) proteins chains. The

comparison between the EP@Cα moving average values for α-helices in (α+β)+(α/β) proteins

and β-strands in (α+β)+(α/β) proteins shows that while the PSSE “signal” resembles the letter

“N” in the case of α-helices, at the same time, the “signal” for β-strands resembles the letter

“U” more. The HBMM_WNASurf average values for α-helices in (α+β)+(α/β) proteins and

β-strands in (α+β)+(α/β) proteins are higher for α-helices than for β-strands.

Knowledge of the PSSE nanoenvironment applied to quality assessment of

protein structures: The case of predicted vs experimentally obtained 3D

structures

To demonstrate one example of a practical use of this knowledge and the potential value of

analysing the collected data in everyday situations for computational structural biologists, in

Fig 11. Differences in the variation behaviour of two selected descriptors around α-helices (solid lines) and β-strands (dotted lines). The plots above

present the behaviour of the A) EP@Cα average values for 1811 α-helices in (α+β)+(α/β) proteins and 7773 β-strands in (α+β)+(α/β) proteins. B)

HBMM_WNASurf average values for α-helices in (α+β)+(α/β) proteins and β-strands in (α+β)+(α/β) proteins. The average number of this contact type is

higher in and around α-helices than in and around β-strands. As shown, there are clear differences in signal pattern in the cases presented in A and B.

https://doi.org/10.1371/journal.pone.0200018.g011
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this section we compared two X-ray structures: 1fw4.pdb, with a resolution of 1.7 Å and an R-

factor of 0.220; and a structure with an identical AAR sequence: 1trc.pdb, with a resolution of

3.6 Å and an R-factor of 0.257. The intention here is to evaluate whether the experimentally

observed electron densities produce good model structures as judged by the PSSE nanoenvir-

onment “signals”. For the case of a structure that does not have a good resolution/R-free factor,

this evaluation is crucial in order to improve the final model; in the case of a structure obtained

with good resolution, it is important to know whether the positioning of the PSSE is corrobo-

rated by a PS3A check-up. If successful, we might then suggest that users employ PS3A as a tool

to evaluate and guide improvements in the modelled structures with regard to the type and

positioning of PSSEs. Fig 12 shows the sequence of both structures and their PSSE definitions.

The letter code used is as follows: “h” = α-helices, “c” = coil, and “e” = β-strands.

Fig 13 demonstrates the structural alignment of the well-resolved structure—1fw4.pdb (red

ribbon) versus the poorly resolved structure—1trc.pdb (blue ribbon). Although the poorly

resolved structure does not present an α-helix in the analysed area (117–127) because its reso-

lution is lower, our methodology proves that there is an α-helix at that position, as is observed

and confirmed in the better resolved structure.

Calculation of p-value in multivariate analysis for the regions inside versus outside the heli-

cal structure (inside being from 117th to 127th AAR) returns values of lower than 1x10-6 for

both structures. This result means that the assignment of the PSSE in the lower resolution

structure failed to recognize the presence of a helix in considered region.

From those two very simple experiments, one may clearly conclude that the concept of a

nanoenvironment specific for structural and functional regions is a very applicable concept

(including the case here studied), and this concept could be applied to quality assessments of

protein structures. One should, however be very careful if selecting a single descriptor to be

used for such tests, as we have previously shown that a single parameter has only a limited cov-

erage. Multidescriptor vectors are definitely suggested for broader coverage.

Discussion

At the pathway from the amino acid sequence to the final 3D structure, the secondary struc-

ture elements of proteins are constructed, and one of the problems currently facing molecular

biologists is understanding how the protein initiates, nucleates and maintains the PSSEs dur-

ing folding and understanding the final nanoenvironment of both the PSSEs and the amino

acid residues in their surroundings.

This paper is the result of extensive work selecting, grouping, preparing and treating data

on the nanoenvironment where PSSEs, specifically α-helices, are embedded. The hypothesis

that motivated our work was the possibility of the existence of a PSSE “signal,” i.e., a visually

and statistically detectable perturbation in the value of selected descriptor(s) hinting at

Fig 12. The very same PSSE defined in two protein structures: 1fw4.pdb, with a resolution of 1.7 Å (top sequence), and 1trc.pdb, with a resolution of 3.6 Å
(bottom sequence). The 1FW4 structure has one extra α-helix. Both structures have identical AAR sequences. The region starting at residue #117 and ending at

residue #127 was used in our experiment as this region has the most obvious discrepancy in SSE assignment.

https://doi.org/10.1371/journal.pone.0200018.g012
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particular characteristics of the nanoenvironment of each type of secondary structure element.

The concept of a nanoenvironment was already explored earlier with successful results

reported for protein-protein interfaces and enzyme catalytic sites. This work employed the

same idea and applied the concept to the case of the PSSE nanoenvironment.

The individual plots in Fig 11 demonstrate a different behaviour inside the PSSE for the

“signal” of α-helices, which is not the same as the “signal” of β-strands. However, considering

that the nanoenvironment is not fully defined by a unique/single descriptor, a different

approach was necessary to confirm the hypothesis of the existence of a “signal” inside a specific

PSSE. The application of multivariate analysis of variance (MANOVA) to the same dataset

confirmed the existence of a “signal” for α-helices. Based on these tests, we conclude that a set

of specific parameters, such as contacts, physical-chemical, geometrical and structural descrip-

tors, describes a nanoenvironment, in this case, the nanoenvironment of α-helices. Three

descriptor categories were found to be among the most frequently used for nEoαH identifica-

tion: Number_Unused_Contacts, Electrostatic_Potential and number of contacts of Hbms

type, meaning that the potential for forming contacts, the number of hydrogen bonds (of main

chain to side chain type) and the electrostatic potential of the involved AARs are crucial

descriptors of the nEoαH.

The next step to continue our work is to confirm the hypothesis for β-strands, turns, and

coils. Preliminary tests indicated that the hypothesis would be confirmed in the same way as

our confirmation for α-helices.

Fig 13. The superposition of two identical proteins whose structures were solved at two very different resolutions.

The 1fw4.pdb (red ribbon) structure has a 1.7 Å resolution and 1trc.pdb (blue ribbon), 3.6 Å. Both structures have the

very same amino acid sequence, but 1trc.pdb is an older structure, and its low resolution (3.6 Å) causes some errors in

the α-helix definition and positioning. The region between 117 and 127 AAR, at the top right, demonstrate that in both

cases there is a helical element there but the lower resolution structure does not have a corresponding assignment for

it.

https://doi.org/10.1371/journal.pone.0200018.g013
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15. Söding J, Biegert A, Lupas A. The HHpred interactive server for protein homology detection and struc-

ture prediction. Nucleic acids research. 2005: p. W244–W248. https://doi.org/10.1093/nar/gki408

PMID: 15980461

16. Xu J, Li M, Kim D, Xu Y. RAPTOR: optimal protein threading by linear programming. Journal of bioinfor-

matics and computational biology. 2003: p. 95–117. PMID: 15290783

17. Jian P, Xu J. RaptorX: exploiting structure information for protein alignment by statistical inference. Pro-

teins: Structure, Function, and Bioinformatics. 2011: p. 161–171.

18. LouisiJeune C, Andrade C. Prediction of protein secondary structure from circular dichroism using theo-

retically derived spectra. Proteins: Structure, Function, and Bioinformatics. 2012: p. 374–381.

19. Christoph W, Bellstedt P, Görlach. M. CAPITO-A web server based analysis and plotting tool for circular

dichroism data. Bioinformatics. 2013.

20. Lin K, Yang H, Gao Z, Li F, Yu S. RETRACTED ARTICLE: Overestimated accuracy of circular dichro-

ism in determining protein secondary structure. European Biophysics Journal. 2013: p. 455–461.

https://doi.org/10.1007/s00249-013-0896-y PMID: 23467783

21. Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: improving protein secondary structure predic-

tion by multistep learning coupled with prediction of solvent accessible surface area and backbone tor-

sion angles. Journal of computational chemistry. 2012: p. 259–267.

22. Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts

using artificial neural networks. Journal of biomolecular NMR 56.3. 2013: p. 227–241. https://doi.org/

10.1007/s10858-013-9741-y PMID: 23728592

23. Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, et al. Improving prediction of second-

ary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep

learning. Scientific reports 5. 2015.

24. Seeley M, Clement M, Snell Q. Feature identification and reduction for improved generalization accu-

racy in secondary-structure prediction. 13th IEEE International Conference on BioInformatics and Bio-

Engineering. 2013.

25. Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary struc-

ture prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 12.1.

2015: p. 103–112.

26. Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and rel-

ative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics

30.18. 2014: p. 2592–2597. https://doi.org/10.1093/bioinformatics/btu352 PMID: 24860169

27. Kabsch W, Sander C. How good are predictions of protein secondary structure? FEBS letters. 1983: p.

179–182.

28. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server.

Nucleic acids research. 2015: p. gkv332.

29. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configu-

rations. Journal of Molecular Biology. 1963: p. 95–9.

30. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers. 1983: p. 2577–637. https://doi.org/10.1002/bip.

360221211 PMID: 6667333

31. Frishman D, Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995: p.

566–79. https://doi.org/10.1002/prot.340230412 PMID: 8749853

32. Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence methods for protein secondary

structure prediction. Proteins. 1999: p. 508–19. PMID: 10081963

33. Neshich G, Togawa R, Rocchia W, Mancini AL, Kuser PR, Yamagishi MEB, et al. STING MILLENNIUM

SUITE v.3 and JAVA PROTEIN DOSSIER: a novel concept in data visualization and analysis of the pro-

tein structure/function relationship. In ; 2003; Brisbane, Australia.

34. Murzin AG,ea. SCOP: a structural classification of proteins database for the investigation of sequences

and structures. Journal of molecular biology 247.4. 1995: p. 536–540. https://doi.org/10.1006/jmbi.

1995.0159 PMID: 7723011

Nanoenvironment specific to α-helices

PLOS ONE | https://doi.org/10.1371/journal.pone.0200018 July 10, 2018 24 / 25

https://doi.org/10.1016/S0006-3495(03)74551-2
http://www.ncbi.nlm.nih.gov/pubmed/12885659
https://doi.org/10.1038/nprot.2015.053
https://doi.org/10.1038/nprot.2015.053
http://www.ncbi.nlm.nih.gov/pubmed/25950237
https://doi.org/10.1093/nar/gki408
http://www.ncbi.nlm.nih.gov/pubmed/15980461
http://www.ncbi.nlm.nih.gov/pubmed/15290783
https://doi.org/10.1007/s00249-013-0896-y
http://www.ncbi.nlm.nih.gov/pubmed/23467783
https://doi.org/10.1007/s10858-013-9741-y
https://doi.org/10.1007/s10858-013-9741-y
http://www.ncbi.nlm.nih.gov/pubmed/23728592
https://doi.org/10.1093/bioinformatics/btu352
http://www.ncbi.nlm.nih.gov/pubmed/24860169
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
https://doi.org/10.1002/prot.340230412
http://www.ncbi.nlm.nih.gov/pubmed/8749853
http://www.ncbi.nlm.nih.gov/pubmed/10081963
https://doi.org/10.1006/jmbi.1995.0159
https://doi.org/10.1006/jmbi.1995.0159
http://www.ncbi.nlm.nih.gov/pubmed/7723011
https://doi.org/10.1371/journal.pone.0200018


35. Efimov A. Structural similarity between two-layer α/β and β-proteins. Journal of molecular biology.

1995: p. 402–415.

36. Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disor-

dered protein. Nature. 2007: p. 1021–1025. https://doi.org/10.1038/nature05858 PMID: 17522630

37. Alexey G, Steven M, Brenner E, Hubbard T, Chothia C. SCOP: a structural classification of proteins

database for the investigation of sequences and structures. Journal of molecular biology. 1995: p. 536–

540.

38. PDB. Protein Data Bank. ; 1971.

39. Neshich G, Neshich IAP, Moraes F, Salim JA, Borro L, Yano IH, et al. Using Structural and Physical–

Chemical Parameters to Identify, Classify, and Predict Functional Districts in Proteins—The Role of

Electrostatic Potential Walter Rocchia MS, editor.: Springer International Publishing; 2014.

40. Moraes FR, Neshich IAP, Mazoni I, Yano IH, Pereira JGC, Salim JA, et al. Improving predictions of pro-

tein-protein interfaces by combining amino acid-specific classifiers based on structural and physico-

chemical descriptors with their weighted neighbor averages. Plos One. 2014 January 28: p. 87–107.

41. Benjamin W, Sali A. Protein structure modeling with MODELLER. Protein Structure Prediction. 2014: p.

1–15.

42. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling

protein tertiary and quaternary structure using evolutionary information. Nucleic acids research. 2014:

p. gku340.

43. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S. In-silico drug design: An approach which

revolutionarised the drug discovery process. OA Drug Design & Delivery. 2013 Apr.

44. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of

R&D costs. Journal of health economics. 2016: p. 20–33. https://doi.org/10.1016/j.jhealeco.2016.01.

012 PMID: 26928437

45. Oliveira SRM, Almeida GV, Souza KRR, Rodrigues DN, Falcão PRK, Yamagishi MEB, et al.

STING_RDB: A relational database of structural parameters for protein analysis with support for Data

Warehousing and Data Mining. Genetic Molecular Research. 2007: p. 911–922.

46. Neshich G, Togawa RC, Mancini AL, Kuser PR, Yamagishi MEB, Pappas G, et al. STING Millennium: A

web-based suite of programs for comprehensive and simultaneous analysis of protein structure and

sequence. Nucleic acids research 31.13. 2003: p. 3386–3392. PMID: 12824333

47. Chakravarti, Laha, Roy. Handbook of Methods of Applied Statistics: John Wiley and Sons; 1967.

48. Wilk M, Gnanadesikan R. Probability plotting methods for the analysis for the analysis of data. Biome-

trika 55.1. 1968: p. 1–17. PMID: 5661047

49. Haynes W. Student’s t-Test. In Encyclopedia of Systems Biology. New York: Springer; 2013. p. 2023–

2025.

50. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics. 2006.

51. Neshich G, Mancini AL, Yamagishi MEB, Kuser PR, Fileto R, Pinto IP, et al. STING Report: convenient

web-based application for graphic and tabular presentations of protein sequence, structure and function

descriptors from the STING database. Nucleic Acids Research. 2005: p. D269–D274. https://doi.org/

10.1093/nar/gki111 PMID: 15608194

52. Sharma K, Krishna H. Asymptotic sampling distribution of inverse coefficient-of-variation and its appli-

cations. IEEE Transactions on Reliability. 1994: p. 630–633.

Nanoenvironment specific to α-helices

PLOS ONE | https://doi.org/10.1371/journal.pone.0200018 July 10, 2018 25 / 25

https://doi.org/10.1038/nature05858
http://www.ncbi.nlm.nih.gov/pubmed/17522630
https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/10.1016/j.jhealeco.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/26928437
http://www.ncbi.nlm.nih.gov/pubmed/12824333
http://www.ncbi.nlm.nih.gov/pubmed/5661047
https://doi.org/10.1093/nar/gki111
https://doi.org/10.1093/nar/gki111
http://www.ncbi.nlm.nih.gov/pubmed/15608194
https://doi.org/10.1371/journal.pone.0200018

