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ABSTRACT
We combined linkage (LA) and linkage disequilibrium (LDA) analyses (emerging the term ‘LALDA’) for
genomic selection (GS) purposes. The models were fitted to a simulated dataset and to a real data of
feed conversion ratio in pigs. Firstly, the significant QTLs (quantitative trait locus) were identified
through LA-based mixed models considering the QTL-genotypes as random effects by means of
genotypic identity by descent matrix. This matrix was calculated at the positions of significant QTLs
(based on LA) allowing to include the QTL-genotype effects additionally to SNP (single nucleotide
polymorphism) markers (based on LDA) and additive polygenic effects in several GS models (Bayesian
Ridge Regression – BRR; Bayes A – BA; Bayes B – BB; Bayes C – BC and Bayesian LASSO – BL). These
models combing all mentioned effects were denominated LALDA. Goodness-of-fit and predictive ability
analyses were performed to evaluate the efficiency of these models. For the real data, although
slightly, the superiority of the LALDA models was verified in comparison to traditional LDA models for
GS. For the simulated dataset, the models presented similar results. For both LDA and LALDA
frameworks, BA showed the best fitting through Deviance Information Criterion and higher predictive
ability in the simulated and real datasets.
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1. Introduction

Linkage disequilibrium analysis (LDA) is the basic concept
behind genomic selection (GS), since the associations
between markers and QTLs (quantitative trait locus) is an attri-
bute of the population as a whole. For this reason, it is expected
that these associations be shared by all individuals of the popu-
lation and be preserved for several generations. On the other
hand, linkage analysis (LA) takes into account only the linkage
disequilibrium within families (or specific crosses), which is
undone through recombination after few generations.

Wientjes et al. (2013) reported that prediction accuracy in GS
depends on linkage disequilibrium from recent familiar struc-
tures, signalling for the contribution of LA for GS. Furthermore,
LA can be used to identify chromosomal regions that are inher-
ited from a common ancestral by using identity by descent (IBD)
matrices. According to Bercovici et al. (2010), these regions are
better candidates for detection of causal mutations affecting
the phenotypes, and therefore, can be exploited under a
genome-enabled prediction viewpoint.

Recently, both sources of information (LA and LDA) have
been combined for GS purposes (Boichard et al. 2012; Luan
et al. 2012; Wientjes et al. 2013) and showed satisfactory
results, even outperforming the LDA models (traditional GS
models) in relation to predictive ability in simulated and real

data. These cited studies used only Genomic best linear
unbiased prediction (GBLUP)-based models. However, to the
best of our knowledge, there are no reports in literature
approaching the efficiency of the Bayesian GS models (Bayes
A, B, Cpi, LASSO and Ridge) in the presence of QTL-genotype
effects obtained from LA.

Towards this orientation, we aimed to propose and test a
new class of Bayesian LALDA models (combining LA and LDA)
for genomic selection implemented through free software
(QXPAK e R). These models were fitted to a simulated dataset
and to a real data of feed conversion ratio (FCR) in an exper-
imental outbreed pig population.

2. Material and methods

2.1. Simulated data

We used a public simulated dataset (Usai et al. 2014). The base
generation (GEN0) was composed by 1020 (20 males and 1000
females) unrelated individuals. Each one of the next four non-
overlapping generations (GEN1, GEN2, GEN3 and GEN4) con-
sisted of 20 males and 1000 females from GEN0 by randomly
mating each male with 50 females. The pedigree was composed
by 4100 individuals (males only from GEN0 and all the individ-
uals from GEN1 to GEN4). The simulated genome comprised 5
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chromosomes, each one with a size of 99.95 Mb carrying 2000
equally distributed SNPs (single nucleotide polymorphism) (1
SNP per 0.05 Mb). Currently, this number of 10,000 SNPs can
be considered as low-density for the majority of livestock
species. A total of 50 SNPs were randomly sampled and
treated as true QTLs. The sum of the QTLs’ additive effects
over each individual was defined as true breeding values
(TBV). The simulated trait (Y1) was generated assuming herit-
ability equal to 0.35. The phenotype of each individual was
given by TBV plus the random residual effect sampled from a
normal distribution with mean zero and variance that ensures
the heritability equal to 0.35. Data of 3000 females from GEN1
to GEN3 were used in the training population, so that the rest
of the population (1020 individuals from GEN4) were con-
sidered for validation. All used data are available in the follow-
ing electronic address: http://qtl-mas-2012.kassiopeagroup.
com/en/dataset.php.

2.2. Real data: experimental population and phenotypic
data

The use of animals was approved by the Animal Care and Use
Committee at Department of Animal Science (RG Number 181
444) of the Universidade Federal de Viçosa, Brazil.

The phenotypic data were obtained from an experiment
carried out in Viçosa, Minas Gerais State. A three-generation
resource population was created and managed as described
by Hidalgo et al. (2013) and Verardo et al. (2014). Briefly, 2 nat-
uralized Piau breed grandsires were crossed with 18 grand-
dams from a commercial line composed of Large White,
Landrace and Pietrain breeds in order to produce the F1 gen-
eration, from which 11 F1 sires and 54 F1 dams were selected.
These F1 individuals were crossed to produce the F2 popu-
lation, of which 341 animals were phenotyped for FCR. This
trait was chosen due to its economic importance and to the
difficulty to be measured, which justify the use of GS. The
animals were weighted from birth and weaned at 21 days
old. After weaning, they received commercial feed ad
libitum. They were kept in individual pens from 77 to 105
days old, where the daily feed intake (kg/day), the daily
weight gain (kg/day) and FCR (kg/kg) traits were measured.
The phenotypic mean, median, standard deviation,
maximum and minimum values for FCR were, respectively,
2.78, 2.71, 0.59, 1.53 and 5.25.

2.3. DNA extraction, genotyping and SNP quality
control

Genomic DNA was extracted from the white cells of parental, F1
and F2 animals; more details can be found in Band et al. (2005).
The low-density customized SNPChip with 384 markers was
based on the Illumina Porcine SNP60 BeadChip (San Diego,
CA, USA). These SNPs were selected according to QTL positions
that were previously identified in this population by using
meta-analyses (Silva et al. 2011) and fine mapping (Hidalgo
et al. 2013; Verardo et al. 2014). Thus, although a small
number of markers have been used, the customized SNPchip
based on previously identified QTL positions ensures appropri-
ate coverage of the relevant genome regions in this population.

From these, 66 SNPs were discarded because of a low-genotyp-
ing call rate (<0.95), and from the remaining 318 SNPs, 81 were
discarded due to a minor allele frequency (MAF) < 0.05. Thus,
237 SNP markers were distributed on the Sus scrofa chromo-
somes (SSC) as follows: SSC1 (56), SSC4 (54), SSC7 (59), SSC8
(30), SSC17 (25) and SSCX (13). The average distance between
markers within each chromosome was equal to 5.17, 2.37,
2.25, 3.93, 2.68 and 11.0 Mb; respectively for SSC1, SSC4,
SSC7, SSC8, SSC17 and SSCX.

2.4. Mixed model for QTL detection through LA

In order to implement the proposed LALDAmodel, first we have
to fit the Fernando and Grossman (1989) model (1) aiming to
identify significant QTLs under a LA approach. This model was
fitted separately for each chromosome.

y = Xb+ Zu+ Zw+ e, (1)

where y is the vector (with dimension equal to n, the number
of phenotyped animals) of FCR records; X is the incidence
matrix of fixed effects vector (β) (sex, lot and halotane gene
genotypes); Z is the incidence matrix of polygenic (u) and
QTL-genotype (w) effects, being w = [w1, w2, . . . , wn]′ and e
represents the vector of residual terms. Under independence
between u, w and e, the following distributions were
assumed: u � N(0, s2

uA), where A is the pedigree-based
relationship matrix; w�N(0, s2

wQ), where Q is the genotypic
IBD (Nagamine 2005) matrix (a covariance matrix which
elements are the probabilities that individuals are identical
by descent conditional on pedigree and SNP marker infor-
mation); and e�N(0, s2

e In).
Model (1) was fitted through QXPAK.5.05 software (Pérez-

Enciso and Misztal 2011). For the simulated dataset (with
10,000 SNPs) we need to use the options MEMORY_RAM =
yes and TRANSPOSE, which are indicated for large scale gen-
otyping data. The Q matrices are stored in files called ‘zran.x’,
were x represents the SNP positions scanned every cM. Sig-
nificant QTLs are identified at each tested position by using a
likelihood ratio test (LRT). In this context, model (1) is the full
model, whereas this model without w effect is the null
model. The p-values for this test is calculated at each pos-
ition x. Once the significant QTL have been identified at pos-
ition x, the Q matrix stored at this position will be used to
compose the Bayesian LALDA models introduced in the
next section.

2.5. Bayesian LALDA models for genomic selection

It is important to emphasize that if a significant QTL is located
exactly in the physical position of a given SNP marker, such
marker will be excluded from the LDA component of the
LALDA model, being considered only in the LA component. It
avoids that the same marker be used simultaneously in both
components (LA and LDA) of LALDA model, which can cause
multicollinearity problems.

In order to implement LALDA models, the traditional
genomic selection Bayesian regression models (so called Baye-
sian alphabet) have been adapted to bear the QTL-genotype
(w) effect from LA. In addition to this effect, the proposed
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LALDA model (2) also contains the SNP (gi) and additive poly-
genic (u) effects. The inclusion of u is due to the small
number of SNP markers used here. Assuming only one signifi-
cant QTL from LA, we have:

y∗ = 1m+
∑m
i=1

xigi + Zu+ Zw+ e, (2)

where y* is the vector of FCR records pre-corrected for fixed
effects (sex, lot and halotane gene genotypes); 1 is a vector of
ones and µ is the overall mean; gi is the additive effect of SNP
marker i; xi is the incidence vector of each marker (assuming
the values 2, 1 or 0 that represents the SNP genotypes AA, Aa
and aa, respectively) and m is the number of markers; Z is the
incidence matrix of polygenic (u) and QTL-genotype (w)
effects, assuming, respectively, u�N(0, s2

uA) and
w�N(0, s2

wQ); and e is the residual vector, e�N(0, s2
e In). In

summary, the terms Zw and
∑m
i=1

xigi represent, respectively,

the LA and the LDA components of the proposed LALDAmodel.
All models treated here assume the same prior distribution

for the residual variance, a scaled inverted chi-squared distri-
bution given by s2

e |ne, Se�neSex−2
ne
. The differences between

these models will be given by the prior distributions assumed
for the marker effects.

The ridge regression (BRR) model is the Bayesian version of
RR-BLUP proposed by Meuwissen et al. (2001), which assumes
the same genetic variance for all markers; i.e.
gi�N(0, s2g), s

2
g = s2

g1 = s2
g2 = . . . = s2

gm . The prior distribution

for the marker genetic variance is the following scaled inverted
chi-squared distribution, s2

g|ng, Sg � ngSgx−2
ng
. The Bayes A (BA)

model, differently from BRR, assumes one specific variance (s2
gi )

for each marker i, gi�N(0, s2
gi ), whose prior distribution is given

by s2
gi |ng, Sg � ngSgx−2

ng
. Thus, the joint prior distribution for the

genetic variance of all markers is given by
∏m
i=1

s2
gi |ng, Sg.

Alternative approaches for BRR and BA models are Bayes B
(BB), Bayes Cπ (BCπ) and Bayesian Lasso (BL), which assume vari-
able selection given by the shortening of the regression coeffi-
cients (marker effects). BB and BCπ extend BA and BRR,
respectively, by introducing an additional parameter π (prob-
ability of the marker effect be equal to zero), and this parameter
is treated as unknown and it is assigned a Beta prior π∼
Beta (p0, π0), with p0 > 0 and π0 ɛ [0, 1] (Pérez and de los
Campos 2014). The BB model assumes as prior for the marker
effects a normal mixture distribution given by
gi|p � (1− p)N(0, s2

gi
)+ pN(0, s2

gi
= 0). Similarly to BA,

s2
gidenotes that each SNP has its own variance with prior distri-

bution given by s2
gi |ng, Sg � ngSgx−2

ng
. In the BCπ model, the

prior distribution for marker effects is also given by a normal
mixture distribution, gi|p � (1− p)N(0, s2

g)+ pN(0, s2
g = 0),

however, similarly to BRR, this model assumes the same
genetic variance for all markers with prior distribution given
by s2

g|ng, Sg � ngSgx−2
ng
. Differently from BB and BC, BL provides

regression coefficients estimators that solve the following

optimization problem: min
∑m
i
(yi − xigi)

2 + l
∑m
i
|gi|

{ }
, where

the term
∑m
i
|gi| is the sum of the absolute values of the

regression coefficients and λ is the parameter that controls
the shortening these coefficients.

The BGLR (Pérez and de los Campos 2014) package of R soft-
ware was used to implement all considered models (see the
codes at supplementary material). Analyses were carried out
using Monte Carlo Markov Chain (MCMC) algorithms saving
every 5th cycle from a total of 130,000 iterations, after 30,000
of burn-in. Global convergence was checked by Geweke’s Z cri-
terion and visual inspection of trace plots.

2.6. Comparing Bayesian LALDA models for genomic
selection

All mentioned models (BRR, BA, BB, BC e BL) from (2) were com-
pared in terms of goodness-of-fit considering the whole dataset
through Deviance Information Creiterion (DIC) (Spiegelhalter
et al. 2002). As previously mentioned in the subsection 2.1, for
the simulated dataset the training and validation populations
were composed by 3000 and 1020 individuals, respectively.
For the real dataset, the predictive ability evaluation was
implemented by means of five-fold cross-validation analysis.
For this, of the 5 subsamples (4 subsamples with 68 animals
and 1 subsample with 69 animals), a single subsample was
retained as the validation data for testing the predictive ability,
and the remaining 4 subsamples were used as training data.
The cross-validation process was repeated five times, with each
of the subsamples used exactly once as the validation data.

The predictive ability was reported as the correlation
between the pre-corrected phenotype (y*) from validation
dataset and the estimated total breeding value (EBV) denoted

as ŷ∗. From LALDA models, ŷ∗ = ∑I
i=1

xiĝi + Zû+ Zŵ, and from

the reduced model (LDA), ŷ∗ = ∑I
i=1

xiĝi + Zû.

2.7. Heritability estimates

After identifying the best model (‘Bayesian alphabet’ under
LALDA or LDA approaches), the variance components and her-
itability were estimated using the whole dataset. For LALDA
model, the heritability estimate was obtained as follows:

ĥ2 = ŝ2
a + ŝ2

u + ŝ2
w

ŝ2
a + ŝ2

u + ŝ2
w + ŝ2

e
, (3)

where ŝ2
a is the estimate of the genetic variance explained by all

SNP markers based on LDA, ŝ2
w is the estimate of the genetic

variance explained by the QTL based on LA, ŝ2
u is the estimate

of the additive polygenic variance, and ŝ2
e the estimate of the

residual variance.
In (3), for the methods assuming the same variance for all

markers (BRR and BCπ), the variance component ŝ2
a was

accessed as ŝ2
a = 2ŝ2

g

∑m
n=1

p̂i(1− p̂i); and for those assuming

different variances (BA, BB and BL) as ŝ2
a = 2

∑m
n=1

p̂i(1− p̂i)ŝ
2
gi .

The term pi is the MAF of marker i.
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3. Results

3.1. QTL detection through LA and model comparisons

For the simulated data, the 50 true QTLs postulated in the simu-
lation were detected through LA. As the QTLs are assumed as
specific SNPs (see subsection 2.1), these markers were excluded
from the LDA component of the LALDA model, being con-
sidered only in the LA component.

With respect to real data, Figure 1 shows the profile of the
LRT test across SSC8, since there were no significant QTLs in
other studied chromosomes. From this figure, we found a sig-
nificant QTL at position 136 cM (maximum LRT statistics).

Table 1 shows the DIC values for all fitted models (BRR, BA,
BB, BC and BL under LDA and LALDA viewpoints) considering
both simulated and real datasets.

For the simulated dataset, the LALDA and LDA frameworks
showed exactly the same goodness-of-fit measures. On the
other hand, for the real data, the LALDA model outperformed
the LDA (lower DIC values) for all ‘Bayesian alphabet’ models
(BRR, BA, BB, BC and BL). Additionally, the BA, followed by the

BB and BL models presented lower DIC in both LALDA and
LDAmodels in the two evaluated datasets. Thus, models assum-
ing one specific variance per marker fitted better to the both
datasets.

Table 2 brings the results of cross-validation analysis for pre-
dictive ability. For the real dataset, we calculated the correlation
between the observed and predicted values; whereas for the
simulation dataset, the correlation between observed and TBV
was used for this aim. Although the performance of LALDA
and LDA models has been similar when considering the real
dataset, the results followed the trend observed for good-
ness-of-fit analysis (Table 1). In summary, the LALDA approach
was slightly superior to the LDA for all ‘Bayesian alphabet’
models (BRR, BA, BB, BC and BL). The BA model showed the
best predictive ability, reinforcing the relevance to assume
one specific variance per marker for the genomic analysis of
FCR trait in the studied population.

With respect to the simulated data, since the true QTLs were
assumed as specific SNP markers, the fact of exploiting the
marker effect under a LA or LDA approach did not influence
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Figure 1. QTL profile on chromosome 8 for feed conversion rate in an outbreed pig population.

Table 1. Deviance Information Criterion (DIC) values for LALDA (combining LA and
linkage disequilibrium analysis) and LDA Bayesian models considering real data of
feed conversion rate in an outbreed pig population and simulated data.

Linkage pattern

Dataset Model LALDAa LDAb

BRR 3288.0 3297.2
Bayes A 3284.6 3293.8

Real Bayes B 3286.8 3296.1
Bayes Cπ 3291.7 3299.0
Bayesian LASSO 3286.1 3295.7

BRR 4828.6 4827.1
Bayes A 4820.7 4820.9

Simulated Bayes B 4822.3 4822.1
Bayes Cπ 4829.5 4829.1
Bayesian LASSO 4823.8 4823.1

aLALDA: Bayesian regression + additive polygenic + QTL-genotype effects.
bLDA: Bayesian regression + additive polygenic.

Table 2. Predictive ability (correlation between observed and predicted values) for
LALDA (combining LA and LDA) and LDA Bayesian models considering feed
conversion rate in an outbreed pig population.

Linkage pattern

Dataset Model LALDAa LDAb

BRR 0.28 0.26
Bayes A 0.32 0.29

Real Bayes B 0.30 0.28
Bayes Cπ 0.27 0.25
Bayesian LASSO 0.29 0.27

BRR 0.68 0.67
Bayes A 0.73 0.73

Simulated Bayes B 0.70 0.71
Bayes Cπ 0.67 0.66
Bayesian LASSO 0.71 0.71

aLALDA: Bayesian regression + additive polygenic + QTL-genotype effects.
bLDA: Bayesian regression + additive polygenic.
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the predictive ability. However, in terms of Bayesian models, the
same pattern observed for real data was provided for simulated
data (i.e. BA, followed by the BB and BL models presented
higher predictive abilities).

3.1. Heritability estimates

For the real dataset, since the LALDA model via Bayes A outper-
formed the other models in terms of goodness-of-fit and pre-
dictive ability through cross-validation, this model was chosen
to provide heritability estimates according to Equation (3).
LALDA and LDA presented the same performance for the simu-
lated dataset, and the Bayes A model outperformed the others,
thus the Equation (3) was used to estimate the heritability in
both real and simulated datasets.

Considering the real dataset, the heritability estimated for
FCR was equal to 0.23, with posterior standard deviation
equal to 0.038. This estimate is consistent with those reported
in literature. When using the simulated dataset (assuming
h2 = 0.35), it is possible to infer that all models underesti-
mated the heritability. The RR-BLUP, BC, BLASSO, BB and BA
provided estimates equal to 0.18, 0.20, 0.25, 0.27 and 0.29,
respectively.

4. Discussion

4.1. QTL detection through LA and model comparisons

For the simulated dataset, although a relative ‘high’ number of
QTLs (a total of 50) have been postulated in the simulation, the
LA model was able to detect these ones. As mentioned earlier,
since the true QTLs were assumed as being specific SNPs, the LA
was applied for a kind of ‘optimal situation’ (the marker is the
QTL), thus improving the chances to detect all QTLs.

In terms of the real dataset, in comparison with other usually
traits in pig breeding, we note that there are relatively few
studies approaching QTL detection for FCR in crossed pig popu-
lations. The reason is the difficulty of measurement and the
high cost involved in feed intake phenotyping. Similar to the
results presented here, Beeckmann et al. (2003) also reported
significant QTL for FCR on SSC8 (between the 96.3 and
106 cM) using animals from crosses of pure Meishan, Pietrain
and European wild pig breeds. Zhang et al. (2009) using
Duroc White × Erhualian Chinese crossbred populations ident-
ified significant QTLs for FCR in SSC8 at position 96 cM that
explained 3.27% of the phenotypic variance. The QTL position
for FCR do not exactly match the positions of the SNPs
markers on the physical map. The two most closest SNP
markers, ALGA0049550 and ALGA0050287, are located, respect-
ively, at positions 132.3 and 138.2 cM. (ALGA0049550) e 138.2
(ALGA0050287) on SSC8. Thus, the QTL-genotype effect at pos-
ition 136 cM was included in the Bayesian models for genomic
prediction as the LA component simultaneously with all SNP
markers (which composed the LDA component). The IBD
matrix stored by QXPAK5.05 at the mentioned position was
considered as the covariance matrix associated to QTL-geno-
type effect.

The DIC is relevant only to investigate the models’ prop-
erties and to infer about parameter estimates. However,

the genomic selection depends on predictive ability
concept, which measure the prediction efficiency of non-
observed phenotypes based on known parameter estimates
(in this case the SNP marker effect estimates). Thus, models
chosen by goodness-of-fit measures may not be the best
models to make predictions of new observations. According
to Bishop (2006), the main reason for this problem is the
overfitting, which can evaluated through cross-validation
analysis.

The best performance of LALDA framework for real dataset
(Tables 1 and 2) can be due mainly to the small number of
markers used here, since it enabled to exploit a relevant
region (136 cM) not directly considered in the LDA because
there is no SNP marker physically located at this position. This
kind of extra information added to the model may has contrib-
uted to the improvement of the model performance. However,
for the simulated dataset, this advantage of LALDA models was
not observed because the true QTLs were assumed as the
markers themselves. For this situation which the significant
QTL positions from LA are coincident with the physical SNP
map position, we adopted the LALDA considering these
markers only in the LA component (QTL-genotype effect). In
this context, the fitted model assumed that linkage disequili-
brium occurs only within families (or specific crosses), and can
be undone through recombination after few generations.
Since the comparisons between the mentioned LALDA with
the traditional LDA models resulted in similar results, we can
to infer that LA modelling was not relevant for the simulated
dataset.

The best performance (goodness-of-fit and predictive ability
analysis) of BA model for both datasets, independently of the
LD approach (LDA or LALDA), suggests that the assumption of
one variance per marker is suitable (since BA outperformed
BRR and BCπ) and that variable selection was not effective
(since BA outperformed BB and BL).

Although there are few references comparing the LALDA
with the LDA models, Boichard et al. (2012) studying the
entire Holstein cattle population from France, reported that
predictive ability for total milk production, total protein pro-
duction, total fat production, milk protein percentage, milk
fat percentage and fertility were 0.60 and 0.56, 0.57 and
0.55, 0.66 and 0.59, 0.73 and 0.73, 0.81 and 0.72, and 0.39
and 0.35 respectively for LALDA (denominated as QTL–BLUP)
and LDA (GBLUP) models. In general, although the authors
used a much larger number of animals and markers, the
LALDA model proved to be satisfactory. Luan et al. (2012)
studying populations of Italian dairy cattle reported the impor-
tance of identity-by-state information for the accuracy of
genomic selection. Comparing the predictive ability of
models by combining information from LA and LDA, the
authors found values of 0.60 and 0.59, 0.60 and 0.58 and
0.63 and 0.61, respectively, for the LALDA and LDA models,
considering the traits total milk production, total protein pro-
duction and total fat production. Although the models pre-
sented similar performance, the authors concluded that LA
component explains why the prediction equations derived
for one breed may not predict accurate genome-wide breed-
ing values when applied to other breeds, since family struc-
tures differ among breeds.
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4.2. Heritability estimates

According to a general review by Rothschild and Ruvinsky
(2010), the heritability for FCR in pigs is generally moderate
(ranging from 0.12 to 0.58, with an average of 0.30) and
suggest that selection would be successful. Under a genomic
selection approach, Jiao et al. (2014) working with Duroc pigs
reported the heritability estimated obtained through Bayes A
equal to 0.32 (0.09). Lopez et al. (2016) reported heritability esti-
mates for FCR closest to 0.30, and concluded that genomic
selection for FCR is clearly superior to the conventional
scheme in terms of monetary genetic gain and profit. According
to Akanno et al. (2013), when using genomic selection for feed
conversion in pigs assuming heritability equal to 0.32, the accu-
racy of selection index ranged from 0.38 to 0.66, whereas the
conventional selection provides accuracies between 0.10 and
0.64.

5. Conclusions

Bayesian LALDA models proposed here enable to infer about
the nature of LD at specific regions of interest, thus implying
in new insights on whole genome prediction such as genetic
architecture information and genomic breeding in crossed
populations. The available theoretical support and the related
computational features characterize these models as a new
methodology for genomic selection.
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